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This paper investigates the underactuated attitude stabilization problem using two parallel single-gimbal control

moment gyroscopes (SGCMGs). Different from most existing underactuated control techniques requiring the

zero total angular momentum assumption, only the controllability of the whole control moment gyroscope

(CMG)–spacecraft system, which means the total angular momentum of the spacecraft with CMG array within

the momentum envelope of the CMG array, is required in this paper. To achieve the underactuated attitude

stabilization, a new controller consisting of two parts, that is, a higher level sliding mode control part to stabilize the

angular velocity about the underactuated axis in finite time and a tracking control part to track desired angular

velocities that are used to stabilize the remaining states, is developed. This proposed novel control logic achieves

attitude stabilization when the initial total angular momentum of the CMG-spacecraft is not zero. Simulations show

that the attitude of a microsatellite can be stabilized precisely within acceptable time using the proposed control law

and steering law when the controllability constraint is satisfied. When the initial total momentum of the spacecraft

base and the CMG array exceeds the momentum envelope of the CMG array, simulation results demonstrate that

the attitude is controlled to be a periodic oscillation in the vicinity of the equilibrium, at the same angularmomentum

level determined by the initial condition.

I. Introduction

S PACECRAFT attitude control is a fundamental problem in
spacecraft application, but the results on underactuated cases are

not as common. Most of existing results are obtained when the
spacecraft is fully actuated. Although this is true for most of the
spacecraft, failures occur occasionally. Almost 30% of all failures
are caused by actuators, and out of them two-thirds are caused by
control moment gyroscopes (CMGs), reaction wheels (RWs), and
momentumwheels (MWs) [1].When the remaining actuators cannot
provide three-axis control torque, the spacecraft attitude control
system degrades to an underactuated system. There is a growing
interest in developing attitude control strategies for underactuated
systems to maintain partial or complete control performance,
enhance reliability of attitude control system, simplify collocation of
actuators, decrease cost, economize energy, and so on.
For the underactuated system, the actuator is another key issue

for the control system design. Thrusters provide control torque by
consuming propellant. This kind of control torque is external
torque and the spacecraft dynamic equation is not influenced by the
integration of thrusters. Compared with thrusters, momentum

exchange devices have significant advantages of cleanliness, without
the expulsion of gases that may blur the payloads and sensors, and
precision. However, employing momentum exchange devices as
actuators increases the complexity of controller design because the
angular momentum and the dynamics of the actuators should be
considered simultaneously in the controller design. Among the
momentum exchange devices, RW and single-gimbal control
moment gyroscope (SGCMG)–actuated control systems have been
widely studied [2–5]. For RWs, the generated output control torque
lies in the same direction as the input control command. For the
CMGs, there exists a high nonlinearity from input to output, and the
trigonometric functions are governed by the gimbal angles. Besides,
the Jacobian matrix may lose rank and consequently singularity
occurs. In such cases, there is no output in some specific direction
and the three-axis controllability is lost at these time instants [6,7].
To avoid/escape singularity and map the control torque to the gimbal
angular velocity domain precisely, one approach is to consider the
gimbal dynamics simultaneously in the controller design process and
compute the gimbal speed directly as in [8], and other approach is to
develop different steering laws as in [9–11]. Most of these proposed
steering laws are designed for redundant CMG cluster. Even though
they can be extended to the underactuated system, the performance
may be degraded. Thus investigating the underactuated CMG-
spacecraft system and developing a suitable steering law is of
considerable importance.
To achieve three-axis attitude stabilization of underactuated

CMG-spacecraft system, the controllability of such systems
should be addressed. Using geometric control theory, Crouch gave
necessary and sufficient conditions in the cases of one, two, or
three independent torques. It is stated that a spacecraft using fewer
than three momentum exchange devices is uncontrollable on the
six-dimensional state-space defined by a three-parameter attitude
representation and angular velocity [12]. Bhat and Tiwari further
investigated the CMG-actuated spacecraft system and proved the
controllability of the spacecraft containing one or more CMGs in the
invariant manifold, that is, invariant hypersurface in the state space
determined by the angular momentum conservation property. They
derived a sufficient condition for controllability of two-SGCMG
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spacecraft. It states that the spacecraft is controllable if the initial
momentum of the whole system is within the CMGs’ angular
momentum envelope [13]. This motivates the study of spacecraft
attitude control with one [14] or two CMGs [15,16].
For the attitude control strategy, Tsiotras and Doumtchenko

investigated the control of spacecraft subject to actuator failures [17].
The control problem was divided into angular velocity stabilization
and complete attitude stabilization. Yamada et al. worked on the rate
damping of spacecraft with two arbitrarily configured SGCMGs [18].
Rate damping is achieved when the angular momentum of CMG-
spacecraft system is less than the sum of the angular momentum of the
CMG array; otherwise, the spacecraft settles to a spinning motion.
Different from the rate damping problem, complete global attitude
stabilization with arbitrary initial conditions conflicting with Bhat’s
controllability condition is not possible [13]. However, partial attitude
stabilization under some restricted assumption or in some constrained
manifold is still possible. Gui et al. investigated the attitude stabili-
zation of a rigid spacecraft with two parallel CMGs [19] or two skew
CMGs [20]. In these works, the initial angular momentum of the
CMG-spacecraft system is assumed to be zero. Under this assumption,
the dynamic systemcan be simplified as a two-axis system and attitude
stabilization is achieved. However, this assumption is conservative for
the CMG actuated system compared with the controllability condition
stated in [13]. Thus developing a controller to achieve complete
attitude stabilization when the controllability is satisfied and remove
the unnecessary restrictions is important.
Motivated by the aforementioned observation, this paper develops

a controller to stabilize the underactuated CMG-spacecraft without
the zero total angularmomentum requirement of theCMG-spacecraft
system. First, we set the desired angular velocity about the axis
without control input, that is,ωdz, to be zero. Then the desired lateral
rates, that is, ωdx and ωdy, are designed to stabilize the complete
kinematics. To track this desired angular velocities about the axes
with control input, a feedback control part with feedforward
compensation is developed. Second, by employing the sliding mode
control technique, the dynamic coupling effect is exploited to track
the desired angular velocity, which is set to zero. This is equivalent to
stabilizing the angular velocity ωz about the underactuated axis.
Therefore, complete attitude stabilization without the zero total
angularmomentum requirement is achieved under the joint control of
the rate command tracking about the actuated axes and the angular
velocity damping about the underactuated axis simultaneously. To
realize the control torque demanded by the controller, a new steering
law with low-computation is developed. To compute the inverse of
the specific 2-by-2 Jacobian matrix (A−1), the determinant (det�A�)
and adjoint matrix (A�) are calculated to get A−1 � A�∕ det�A�
when det�A� ≠ 0. When CMG singularity occurs, the Jacobian
matrix is rank deficient and not invertible (det�A� � 0). To escape
the singularity region, we modify the calculated determinant of the
Jacobian matrix by adding a small offset δe such that det�A� ≠ 0.
This determinant modification, a small increment of the denominator
in calculating matrix inverse, introduces a smaller torque error
compared with the global singular robust steering law using the
time-varying perturbation.
The rest of the paper is organized as follows. Section II presents the

system mathematical model, the CMG model, dynamics and
kinematics, and controllability determined by the initial angular
momentum. Section III addresses the controller design procedure
step by step. Section IV presents the proposed steering law.
A comparison study with the global singular robust steering law is
presented. Using the proposed controller and steering logic,
simulation results are shown in Sec. V. Finally, conclusions are noted
in Sec. VI.

II. System Model

A. Parallel CMGs

Consider the case that two identical parallel SGCMGs are adopted
as actuators, as shown in Fig. 1. Each of theCMGcontains a constant-
speed rotor. The direction of the rotors’ angular momentum is
denoted as a unit vector hi. The gimbal rotates about the gimbal

axis gi orthogonal to hi with a gimbal angular velocity _δi. The gyro
output τi in the direction of gi × hi is perpendicular to both gi and hi.
These unit vectors form an orthogonal CMG body coordinate frame
denoted as Gi � fgi;hi; τig, with the subscript i denoting the ith
CMG. As shown in Fig. 2, both the gimbal axes of these two CMGs
are along the Z axis in the body frameFB � fXB; YB; ZBg. Then the
angular momentum of the CMGs expressed in FB is determined by
the magnitude of the rotor’s angular momentum h0 and the gimbal
angle δ � �δ1; δ2�T , when bothh1 andh2 are initially about theX axis
and the positive δi is generated by a rotation about Z axis:

hc �
�
hx
hy

�
� h0

�
cos δ1 � cos δ2
sin δ1 � sin δ2

�
(1)

where the subscript “c” represents CMG.
It can be seen that the angular momentum of this parallel CMG

array is limited in the X–Y plane and there is no angular momentum
along the Z axis parallel to the gimbal axes.
For a momentum exchange device, the output torque τc equals to

− _hc and can be expressed as:

τc �
�
τcx
τcy

�
� −h0

�
− sin δ1 − sin δ2
cos δ1 cos δ2

��
_δ1
_δ2

�
� −h0A_δ (2)

with matrix A being the Jacobian matrix.

B. Spacecraft Dynamics

The total angular momentum of the spacecraft and CMG array,
Ht, can be expressed as:

Ht � Jω� h (3)

where J � diag��Jx; Jy; Jz�� ∈ R3×3 is the moment of inertia of the

whole CMG-spacecraft system. The angularmomentum arising from
the gimbal motion is assumed to be small, implying that the gimbal
moments of inertia are negligible, and therefore it is neglected in

Eq. (3) [19,21]. ω ∈ R3 is the angular velocity of the spacecraft bus
with respect to an inertial frameF I � fXI; YI; ZIg, and expressed in
the body-fixed frame FB. h � �hT

c ; 0�T , with hc defined by Eq. (1).

Fig. 1 Spacecraft with two parallel CMGswhen δ1 � 0 and δ2 � �π∕2�.

Fig. 2 Angular momentum in the body-fixed frameFB.
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Applying Euler’s theorem to Eq. (3), we obtain the attitude
dynamics equation as:

J _ω � −ω×�Jω� h� − _h (4)

where �⋅�× denotes a skew-symmetric matrix corresponding to the

operation a×b � a × b, and _h is the time derivative of h in the body
frame. In this paper, similar to [21,22], the external disturbances and
gimbal friction are not considered.
Expanding Eq. (4) with τi � − _hi, (i � x; y; z) and τz � hz � 0,

we obtain: 8>><
>>:

Jx _ωx � �Jy − Jz�ωyωz � ωzhy � τx

Jy _ωy � �Jz − Jx�ωxωz − ωzhx � τy

Jz _ωz � �Jx − Jy�ωxωy � ωyhx − hyωx

(5)

where τx and τy are the torques produced by theCMGs. This equation
demonstrates that ωz can be controlled through the nonlinear
coupling with the transverse rate ωx, ωy and the CMG momentum
hx and hy even when there is no actuator to produce a Z torque.

C. Kinematics

Spacecraft attitude can be expressed by the attitude direction
cosine matrix R, which describes the spacecraft orientation of body
frame FB relative to the inertial frame F I . However, there are
nine parameters, not all of which are independent, in the rotation
matrix R. Instead of the coordinate transformation matrix, a
nonsingular parameter of unit quaternion is chosen to describe

the spacecraft attitude as Q � � q0 qTv �T , with q0 being the scalar

part of the Q and qv � �q1; q2; q3�T being the vector part. Let Q be
the orientation of the spacecraft body frame FB with respect to the
inertial frame F I . Then the kinematics of the spacecraft is
governed by:

_Q �
"
_q0

_qv

#
� 1

2

"
−qTv

q0I3 � q×v

#
ω (6)

Then the relationship of R and Q is:

R�Q� � �
q20 − qTv qv

�
I3 � 2qvq

T
v − 2q0q

×
v (7)

and a vector YB expressed in FB can be transformed to the vector
YI expressed in F I by:

YI � R�Q�TYB (8)

D. System Controllability

Considering the two-CMG–actuated system without any external
torque, the total angular momentum will be conserved in the inertial
frame F I. Thus all the angular momentum states lie in the invariant
hypersurface in the state space determined by the initial angular
momentum of the whole spacecraft-CMG system. For the initial
angular momentumHt�t0� and the final valueHt�tf� expressed as in
Eq. (3) with the corresponding attitude Q0 and Qf, they should be

equal when they are expressed in F I:

R�Q0�THt�t0� � R�Qf�THt�tf� (9)

For the attitude stabilization problem, the desired attitudeQf is set

to be Qf � �1; 0; 0; 0�T when the body-fixed frame FB coincides

with the inertial frameF I . ThenR�Qf� becomes I3. Equation (9) can
be further expanded by substituting Eq. (3):

R
�
Q0

�
T
�
Jω�t0� � h�t0�

� � Jω
�
tf
�� h

�
tf
�

(10)

where ω�t0� and ω�tf� are the initial and final angular velocities of

the spacecraft at the time instants t � t0 and t � tf; h�t0� and h�tf�

are the initial and the final states of angular momentum of the
CMG-array.
Then ω�tf� can be calculated from Eq. (10) as:

ω
�
tf
� � J−1

�h
R�Q0�T

�
Jω�t0� � h�t0�

�i
− h

�
tf
��

(11)

It should be noted that the angular velocity ω is always expressed
in the body frame. When the attitude stabilization is completed at
t � tf, the body frame coincides with the inertial frame, and the
expressions ofω in body frame and in the inertia frame are the same.
Bhat’s controllability theory implies that we can always find

a final state of CMGs h�tf� � �R�Q0�T�Jω�t0� � h�t0��� when the

total angular momentum of the spacecraft system (Ht�t0�
� Jω�t0� � h�t0�� lies within the momentum envelope of the
CMG array. In such cases, ω�tf� � 0, which implies that the

dynamic system can be completely stabilized and the rotations will
cease. Then we can find a proper controller to render the initial
attitude Q0 to the desired Qf. Otherwise, ω�tf� ≠ 0 and complete

attitude stabilization is not possible.
For two-parallel-CMG system as shown in Fig. 1 and Eq. (1), the

angular momentum of the CMG array is constrained in the X–Y
plane in the body frame. Then the angular momentum envelope
of the CMG array expressed in the body frame can be obtained as:

ENV�h� �
n
hjh2x � h2y � 4h20; hz � 0

o
(12)

It should be noted that the body frame coincideswith inertial frame
when the attitude stabilization is completed. Then the angular
momentum envelope expressed in FB and F I is the same at t � tf
and it is expressed by Eq. (12).
According to Bhat’s controllability theory, the angular momentum

of the CMG-spacecraft system is controlled at the same angular
momentum level determined by the initial condition. Thus the
following two conditions should be guaranteed for the attitude
control problem using CMGs:

HF I
� RT�Jω� h� ≡ Const (13)

HF I
⊂ ENV�h�F I

(14)

with ENV �h�F I
representing the momentum envelope of the CMGs

in F I . For Eqs. (13) and (14), Eq. (13) states that the total angular
momentum of the whole system is conserved in the inertial frame
F I when momentum exchange devices are employed as actuators,
and Eq. (14) states the controllability as in [13].
Hughes analyzed this problem and gave three different cases,

namely, gyrostat with nonspinning carrier (case A), zero momentum
gyrostat (case B), and general case (case C) as in [23]. For case A,
Bhat’s condition is naturally satisfied because the total angular
momentum of the CMG-spacecraft system equals to that of the CMG
array. Most of the conventional design for an underactuated system
concentrates on investigating case B, where the total angular
momentum of the CMG-spacecraft system (i.e., Ht � Jω� h) is
required to be zero as in [19,20,24–26]. In these references, ωz�t0�
about the underactuated axis is always assumed to be zero to satisfy
the zero total angular momentum requirement Ht�t0� � 0. Thus
Eq. (14) holds regardless of the attitude, and we can always find a
proper combination of gimbal angles such that the total angular
momentum is equal to zero. However, this is only a subset of the null

space ofRT regardless of the attitudeQ. In addition to this situation,
there are some other combinations of Q and ω such that the Z
component ofRT�Jω� h�, corresponding to the underacted Z axis,

equals zero; that is, HF I ;z � �R�Q0�T�Jω�t0� � h�t0���z � 0.

Then the angular velocity of the spacecraft about Z axis can be
possibly damped. Different from most of the existing literature, a

more general casewhere �R�Q0�T�Jω�t0� � h�t0���z � 0 is required
rather than Jω�t0� � h�t0� � 0. We derive a controller, that is,
Eq. (15) of this paper, to achieve a complete attitude stabilization
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whenBhat’s controllability condition is satisfied for this general case.
Different scenarios are listed in Table 1.
To qualitatively describe the controllability of different scenarios,

the angular momentum envelope of the CMG array and the initial
angular momentum of the listed three scenarios expressed in F I are
shown in Fig. 3.
In Fig. 3, the planar ellipse located in the XI–YI plane represents

the angular momentum envelope of the two parallel CMGs. This
momentum envelope in spacecraft frame wobbles around as the
spacecraft attitude changes with time although the angular
momentum of the CMG-spacecraft system is conserved in F I . To
guarantee that the spacecraft can be stabilized, the constraints to the
initial states should be satisfied. When the system is stabilized,
namely,R�Qf� � I3 andF I coincides withFB at t � tf, the ellipse
is constrained in theXI–YI plane inF I the same as inFB. Case I with
Ht � 0 shows that the total angular momentum is at the origin. It is
obvious that this case is only a small part within the envelope. Except
Ht � 0, case II with Ht ≠ 0 and HF I ;z � 0 is also controllable

when the angular momentum of the CMG-spacecraft is within the
momentum envelope of the CMG array. When the angular
momentum of the CMG-spacecraft system belongs to case I or case
II, the angular momentum of the spacecraft alone can be absorbed by
the actuators. However, when the total angular momentum extends
beyond the envelope either along the ZI axis or in the XI–YI plane,
or both, there always exists a component that cannot be influenced
through momentum exchange. Then the angular velocity cannot be
completely damped. The situations where the complete attitude
stabilization is not possible may be the situation as in case III,
where the angular momentum has a component sticking out of the
planar ellipse in the XI–YI plane, as shown in Fig. 3, or some other
cases when the magnitude of Ht is larger than the maximum
achievable magnitude of the CMGs’ angular momentum even
thoughHt lies in the XI–YI plane.

III. Inertial Pointing Controller Design

As stated in the system controllability analysis, conventional
approaches assume Ht � 0. Under this sufficient condition,
complete attitude stabilization is achievable. In these studies
[19,20,24–26], theZ axis is always assumed to be underactuated, and
hence ωz is assumed to be zero to satisfy the zero total angular
momentum requirement. In this paper, the assumption of zero total
angular momentum is relaxed. We developed a new controller
consisting of two parts, that is, a higher level sliding mode control

part τs to stabilize the angular velocity about the underactuated
axis (i.e., Z axis) in finite time and a tracking control part τtr to
track desired angular velocities ωdx and ωdy about the actuated

axes (i.e., X axis and Y axis), to achieve complete attitude
stabilization. The proposed controller can be written as:

τ � τs � τtr (15)

with τs stabilizing ωz and τtr stabilizing the remaining five states,
ωx, ωy, q1, q2, and q3, simultaneously.

In Sec. III.A, desired angular velocities about X (ωdx) and Y (ωdy)

axes are specified to control the spacecraft attitude considering
the desired angular velocity about Z axis (ωdz) as null. To track these
ideal angular velocities about X and Y axes, a feedback controller
with feed-forward compensation is designed in Sec. III.B. Section III.
C proposes a sliding mode controller to stabilize ωz in finite time.

A. X-Axis and Y-Axis Rate Commands

In this section, the rate commands to stabilize the kinematics are
developed. Separating the angular velocities according towhether the
axis is actuated directly by the actuator, kinematics (6) is further
rewritten as:

2
66664

_q0

_q1

_q2

_q3

3
77775 � 1

2

2
66664
−q1 −q2
q0 −q3
q3 q0

−q2 q1

3
77775
"
ωdx

ωdy

#
� 1

2

2
66664
−q3
q2

−q1
q0

3
77775
�
ωdz

	
(16)

In this subsection, the desired value ωdz is set to be zero and
hence the second part on the right side of Eq. (16) disappears.
Then a nonsingular discontinuous desired angular velocity given in
[27] can be used to stabilize the kinematics, which is given by:

ωdx �
8<
:
−k1q1 � k2

q2q3
qTv qv

kqvk ≠ 0

0 kqvk � 0

ωdy �
8<
:
−k1q2 − k2

q1q3
qTv qv

kqvk ≠ 0

0 kqvk � 0

(17)

where k1 > 0, k2 > 0, and k2 > 2k1. The interpretation of these two
parameters is given in Sec. V.
As stated in [27], the kinematic system can be stabilized by the

rate command given by Eq. (17) and ωdz � 0 provided the initial

condition of q1�0� and q2�0� satisfying q1�0�2 � q2�0�2 ≠ 0.
The detailed proof can be found in the proof of Theorem 1 in [27].

B. Controller for Tracking X-Axis and Y-Axis Rate Commands

To achieve the desired angular velocities, Eq. (17), an angular
velocity tracking controller is designed based on the spacecraft
dynamics (5). Consider the components along X and Y axes of
Eq. (5), we get:

(
Jx _ωx � a�1 � τx

Jy _ωy � a�2 � τy
(18)

where a�1 and a�2 are defined as:

a�1 � �Jy − Jz�ωyωz � ωzhy

a�2 � �Jz − Jx�ωxωz − ωzhx (19)

and τx and τy are the torques to be produced by the CMGs.
Furthermore, we define the angular velocity error:

~ωx � ωx − ωdx; ~ωy � ωy − ωdy (20)

Table 1 Different initial conditions

Case number Condition

Case I Ht � 0
Case II Ht ≠ 0, HF I ;z � 0

Case III HF I ;z ≠ 0

Fig. 3 Angular momentum of the three listed scenarios.
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Then we design the angular velocity tracking controller as:

τtr �
"
τtrx

τtry

#
�

"
−a�1 − k3Jx ~ωx � Jx _ωdx

−a�2 − k3Jy ~ωy � Jy _ωdy

#
(21)

where k3 is a positive constant.
Let τx � τtrx and τy � τtry at the velocity tracking stage and

substitute the controller (21) into (18). The dynamic system is

simplified as:

(
Jx _ωx � −k3Jx ~ωx � Jx _ωdx

Jy _ωy � −k3Jy ~ωy � Jy _ωdy

(22)

The stability can be proved by choosing a Lyapunov function

V1 � �1∕2� ~ωT �J ~ω with ~ω � � ~ωx ~ωy �T and �J � diag�� Jx Jy ��.
Then we can easily obtain V1�t� � V1�0�e−2k3t, and V1�t� → 0 as

t → ∞. Then ~ω → 0 implies ωx → ωdx and ωy → ωdy.

Remark 1: In this subsection, onlyX axis and Y axis are controlled

to track the desired rate commands. In the following Sec. III.C,

a sliding mode controller is designed to track the desired wdz � 0
(i.e., ωz stabilization).

C. ωz Stabilization Controller

For the underactuated Z axis, although ωz cannot be controlled

directly by a torque about theZ axis, as there is no actuator to produce

aZ torque, it can be controlled through its nonlinear couplingwith the

transverse rates ωx and ωy and through the coupling effect produced

by the CMG momentum hx and hy as shown in Eq. (5). To stabilize
ωz, a sliding mode surface is designed as a linear combination

of ωz and _ωz:

s � k4ωz � k5 _ωz (23)

where k4 > 0 and k5 > 0. We also introduce the following

notations: α1 � 1∕Jx, α2 � 1∕Jy, α3 � 1∕Jz, and c � �Jx − Jy�∕Jz
to simplify the derivation. Using these notations, dynamics (5) is

simplified to:

8>><
>>:

_ωx � α1a
�
1 � α1τx;

_ωy � α2a
�
2 � α2τy;

_ωz � cωxωy � α3ωyhx − α3ωxhy

(24)

Taking time derivative of the Z component of Eq. (24), we obtain:

�ωz � c _ωxωy � cωx _ωy � α3 _ωyhx � α3ωy
_hx − α3 _ωxhy − α3ωx

_hy

(25)

According to the momentum exchange principle τx � − _hx and

τy � − _hy, Eq. (25) is further rewritten as:

�ωz � c _ωxωy � cωx _ωy � α3 _ωyhx − α3 _ωxhy − α3ωyτx � α3ωxτy
(26)

Thus the time derivative of s can be obtained as:

_s� k4 _ωz � k5 �ωz

� k4�cωxωy � α3ωyhx − α3ωxhy�
� k5�c _ωxωy � cωx _ωy � α3 _ωyhx − α3 _ωxhy − α3ωyτx � α3ωxτy�

(27)

Substituting _ωx, _ωy fromEq. (24), controller (15), and τtr, Eq. (20),
in Eq. (27), we obtain:

_s � ΛTτs �Φ�•� (28)

with Λ, Φ�•� defined as:

Λ � k5

" �cα1 − α3�ωy − α3α1hy

�cα2 � α3�ωx � α3α2hx

#
(29)

Φ�•��ck4ωxωy�α3k4hxωy−α3k4hyωx−ck3k5 ~ωxωy

−ck3k5 ~ωyωx�ck5 _ωdxωy�ck5 _ωdyωx−α3k3k5 ~ωyhx

�α3k3k5 ~ωxhy�α3k5 _ωdyhx−α3k5 _ωdxhy−α3k5Jxωy _ωdx

�α3k3k5Jxωy ~ωx�α3k5Jyωx _ωdy−α3k3k5Jyωx ~ωy

�α3a
�
1k5ωy−α3a�2k5ωx

(30)

Then, to stabilize ωz, the sliding mode control term τs is

designed as:

τs � −
�
k6s� k7sgn�s�

�
Λ� (31)

where k6 > 0, k7 � kΦ�•�k � k8, k8 > 0, and the operator x� is

given by:

x� �

8><
>:

x

xTx
kxk ≠ 0

0 kxk � 0

(32)

Thus the overall control law (15) can be written as:

τ � −
�
k6s� k7sgn�s�

�
Λ� �

"
−a�1 � Jx _ωdx − k3Jx ~ωx

−a�2 � Jy _ωdy − k3Jy ~ωy

#
(33)

Now we proceed to prove the stability using the Lyapunov

approach. A Lyapunov function is chosen as:

V2 �
s2

2
(34)

The time derivation of the Lyapunov function is:

_V2 � s _s (35)

Substituting the controller (31) and (28) into Eq. (35):

_V2 � s _s � s
�
ΛTτs �Φ�•�	

� s
�
−k6sΛTΛ�	 − s

�
k7sgn�s� �Φ�•�	

≤ −k6s2 − k8jsj � −2k6V2 − 2k8







V2

p
≤ 0 (36)

Thus V2 ≤ V2�0�e−2k6t, and V2 reaches zero in finite time

T ≤ �1∕k6� ln ��




2

p
k6






















V2�s�t0��

p � k8�∕k8� [28,29]. When t > T,
s � 0, ωz � ωdz � 0 is achieved. The controller (33) is reduced to

Eq. (21), and the desired angular velocities can be tracked. Thus,

the complete kinematics can be stabilized as per Remark 1.
In summary, the whole design process can be concluded by the

following theorem:
Theorem 1: Consider the underactuated spacecraft with two

parallel SGCMGs as in Fig. 1; a complete attitude stabilization of the

dynamic system (5) and kinematics (6) can be achieved by controller

(33) when the angular momentum of the spacecraft-CMG system

lies within the momentum envelope of the CMG array. □

To improve the control performance, a smooth hyperbolic tangent

function is employed to approximate the discontinuous signum

function as:
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τ � −
�
k6s� k7 tanh�s�

�
Λ� �

"
−a�1 � Jx _ωdx − k3Jx ~ωx

−a�2 � Jy _ωdy − k3Jy ~ωy

#
(37)

with

Λ� � Λ
ΛTΛ� jsj (38)

Wewill use the controller (37) in the numerical simulation, which
results in an acceptable performance though the strict proof using the
smooth hyperbolic tangent function is not given.

IV. Singularity and Steering Laws

We employ two parallel CMGs as the actuators. The control
command generated by the controller should be realized by the
actuators. Then the steering law is needed to compute the gimbal
angular rate in response to the control command. However, the
Jacobian matrix A may lose rank and physically the output torques
may align, which would lead to a singularity.

A. Singularity of the Two Parallel CMGs

The Jacobian matrix A is invertible except for some singularity
conditions. Calculating the determinant of the matrix A, we obtain:

det�A� � sin δ2 cos δ1 − sin δ1 cos δ2 � sin�δ2 − δ1� (39)

It is clear that matrix A loses rank when:

δ2 − δ1 � kπ�k ∈ Z� (40)

where Z is the set of integers.
Correspondingly, the singularitymay be either internal or external,

as shown in Fig. 4.
For the case shown in Fig. 4a with k � �2n� 1��n ∈ Z�, the

singularity is internal. The output torques of these two CMGs will
be antiparallel, namely, τ2 � −τ1. Then the overall output torquewill
be zero and the spacecraft will be uncontrollable at this time instant.
For the case shown in Fig. 4b, k � 2n�n ∈ Z�. τ1 and τ2 are in the
same direction and cannot generate an orthogonal component.
The CMG array generates the maximum control torque, and no
additional torque can be produced. This singularity is called the
external singularity.

B. Modified Inverse Steering Law

To map the 2-dimensional orthogonal control torque to the two
gimbal angular rates, the inverse of the Jacobian matrix is needed.
There are various steering laws, such as singularity avoidance
steering law, singularity escape steering law, and the hybrid logic
[10,11]. For the 2 × 2matrixA as in this paper, the adjoint matrix is
easy to obtain, and so we will simply invert the 2 × 2 matrix A.

If det�A� ≠ 0, we can easily obtain:

A−1 � 1

det�A�

"
cos δ2 sin δ2

− cos δ1 − sin δ1

#
(41)

However, Eq. (39) states that det�A� goes to zero under

the condition of Eq. (40). To avoid the difficulty in calculating A−1

via Eq. (40), a small positive angle δe is added in calculating the

determinant while the real gimbal angles are not changed:

det�A� � sin�δ2 − δ1 � δe� �j sin�δ2 − δ1�j < ϱ; ϱ > 0� (42)

To guarantee the singularity escaping by this modification, δe and
ϱ should satisfy:

δe > 2 arcsin ϱ (43)

which means that det�A� > ϱ after the modification.
Then �detA�� is denoted as:

�detA�� �
(

sin�δ2 − δ1�
sin�δ2 − δ1 � δe�

j sin�δ2 − δ1�j ≥ ϱ

j sin�δ2 − δ1�j < ϱ
(44)

and det�A� in Eq. (39) is replacedwith �detA�� to generateA−1with

the cost of introducing a torque error.
According to Eq. (2), when τc � τ, the gimbal rates can be

generated via:

_δ � −
1

h0
A−1τ (45)

C. Comparison of the Steering Laws

The effectiveness of the proposed modified inverse (MI) steering

law is shown in this section and it is compared with the generalized

singular robust (GSR) inverse logic [9,22]. The GSR for a 2 × 2
Jacobian matrix A can be given by:

_δ � −
1

h0
A#τ where A# � AT�AAT � λE�−1 (46)

and

E �
�
1 ε
ε 1

�
> 0; ε � ε0 sin�ωt� ϕ�; λ � λ0e

−μ det�AAT�

with ε0, ω, ϕ, λ0, and μ are all positive numbers and the possible

values can be found in [22].
To quantitatively measure the torque error generated by the

steering law, we define an index:

1

2

OB

XB XB

YB
YB

a) Internal singularity b) External singularity

1

2

OB

Fig. 4 Singularity of the two-parallel-CMG configuration.
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κ �
Z

τTe τe dt (47)

where τe is the difference between the torque generated by the
actuators and the torque required by the controller.
In this section, we choose the same parameters as in [22], namely:

λ0 � 0.01, μ � 10, ε � 0.01 sin�0.05πt� 0.5π�. For the steering
law of Eq. (42), ϱ is chosen to be 0.001, then we have arcsin ϱ�
0.0573∘, and so δe is chosen to be 0.12 deg.The control command is set
to be τx � 0.05 sin�0.05πt� N ⋅m and τy � 0.05 cos�0.05πt� N ⋅m.

Case I: δ1 � δ2 � 0
According to Eq. (40), the initial angleswould represent externally

singular configuration. This case is to show the effectiveness of
singularity escaping. The results are shown in Fig. 5. It can be seen
from Fig. 5a that the gimbal angles are steered out of the singular
domain immediately using the proposed MI method. However, the
singular measure of the GSR is quite close to zero. The torque error
measurement index κ is shown in Fig. 5b. It can been seen that, for the
MI steering law, the torque error integral remains small after exiting
from the singularity. On the contrary, when GSR is applied, the
torque error exists during the whole simulation process and the
torque error integral κ increases gradually. So we can conclude that
the MI steering law is more effective in escaping singularity and
more precise in torque generation compared with the GSR in this
simulation when the initial gimbals are in external singularity
configuration, that is, when the CMG momentums are parallel, as
in Fig. 4b.

Case II: δ1 � 0, δ2 � 0.5π
Figure 6 compares the two steering laws when the initial gimbal

angles are nonsingular. Figure 6a demonstrates that the singularity
measures of the two steering laws are similar. The gimbal angles
enter singularity around t � 10 s and leave singularity soon.
Besides, the magnitude of the torque error using MI is smaller
than the magnitude with GSR according to the simulation results.
We note that the performance of GSR depends highly on the

parameters ε0, ϵ, λ0, and μ. If some optimal values are chosen,
the performance may improve. However, the torque error exists
during thewhole process because of the synthesis of the time-varying
perturbed matrix λE to escape singularity. Compared with GSR, the
MI method requires only a small modification at the singular time
instant. Thus the overall torque error is potentially expected to be
smaller than thatwithGSR.Another advantage ofMI is the simplicity
in calculation. For MI in dealing with two SGCMGs, the inverse
of the Jacobian matrix is given by an analytic Eq. (41) and the
calculation of time varying matrix λE is removed.
Remark 2: The proposed MI method is developed for the

two-SGCMG system, and the conclusions made above are only for
this situation. For other cases when the number of SGCMG is greater
than 2, GSR is still a good choice when MI is not applicable.

V. Numerical Simulation

In this section, numerical examples are illustrated using the
proposed attitude stabilization controller (37) and the CMG steering
law (39–45). The spacecraft is chosen as the 320 kg minisatellite

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1
MI

Time [s]

-4

-2

0

2

4 10-16

10-4

GSR

0

0.5

1

1.5

MI

Time [s]

0

0.02

0.04

0.06

GSR

a) Det (AAT)

b) Det (AAT)
Fig. 5 Steering law comparison with initial angles from singularity
domain.

0

0.5

1

MI

Time [s]

0

0.5

1

GSR

 a) Det (AAT)

 b) Torque error

0

1

2

3

4
10-5

10-3

MI

Time [s]

0

1

2

3

4

GSR

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

Fig. 6 Steering law comparison with initial angles from nonsingularity
domain.
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Uosat-12 as in [25]. The moments of inertia of the principle
axes are:

Jx � 40.45; Jy � 42.09; Jz � 42.36 kg ⋅m2

For the CMGs, [30,31] furnish parameters of a micro-CMG, with
the angular momentum h0 being 0.23 and 0.28 N ⋅m ⋅ s for a 130 kg
satellite BILSAT-1. Then we can choose the ideal value h0 �
0.347 N ⋅m ⋅ s as in [30] for this 320 kgminisatellite. The maximum
gimbal angular velocity is set to be 60 deg ∕s.

In the simulation, k1 is the slope of the linear switching line in the
ω − qv plane (similar to the phase plane), and k2 is a gain for the

nonlinear term in Eq. (17). They are chosen as k1 � 0.01, k2 � 0.08
as in [25]. k3 is the inverse of the time constant of the rate error
control; see Eqs. (21) and (22). It is chosen as 1∕k3 � 20 s. k4 and k5
appear in the sliding mode surface forωz and _ωz; see Eq. (23). These
two parameters, k4 and k5, are used to govern the systemperformance

on the sliding surface and they are chosen as k4 � 11 and k5 � 1,
respectively. k6 and k7�k7 � kΦk � k8� are the feedback gains of s
and sign (s) to guarantee the finite time convergence; see Eq. (31).

e) Control torque f) Gimbal angular velocity

c) Angular velocity d) Angular velocity error

a) Quaternion b) Euler angle

Fig. 7 Control results of case I (Ht � 0).
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Thus k6 and k8 are used to govern the transients of controlling

the Z component of the angular rate ωz, and are chosen to be

k6 � 4 and k8 � 0.1.
Remark 3: The control performance depends highly on the

parameters in the controller, and convergence time increases with

improper gains. How to choose the parameters systematically is still

an open problem. In this paper, k1 and k2 are chosen according to

[23]. k5 is chosen to be 1 because it will be in the denominator in

generating Λ�. This choice makes it easier to tune the parameters.

k8 is set to be a small value according to the derivation. For other

parameters, we first choose a k3 to get a relative good performance.

Then increase k4 and k6 to guarantee the convergence of ωz.

Finally k8 is tuned to get the desired performance.
The simulation results of the three cases pertaining to different

initial conditions in Table 1 are shown below:
Case I:Ht � 0
In this case, the total momentum of CMG-spacecraft is assumed

to be zero. The gimbal angles of the CMGs are set to be δ1 � 0 and
δ2 � π∕2. According to Eq. (1), the angular velocities of the

spacecraft are set as ωx � −h0∕Jx � −0.4915 deg ∕s, ωy �
−h0∕Jy � −0.4724 deg ∕s and ωz � 0 deg ∕s. As mentioned

before, Ht � 0 is the simplest solution of RTHt � 0 regardless of

the attitude Q. Then the initial condition for the quaternion is

chosen as qv � �−0.01; 0.02;−0.7�T , q0 �



















1 − qTv qv

p
� 0.7138.

The simulations results are shown in Fig. 7.
As shown in Figs. 7a and 7b, the attitude is stabilized within

20 min. Figure 7b shows the Euler angles corresponding to

Fig. 7a with a “Z-Y-X” rotation, and it shows that a large-

angle (θx�t0� ≈ −2.4 deg, θy�t0� ≈ 0.83 deg, θz�t0� ≈ −88.9 deg)

maneuver is completed. It is also noted that θx and θy increase while
controlling θz to zero. This is because there is no direct

control input on the Z axis, and hence the developed controller

renders ωz and q3 to zero first via the coupling effect. Figures 7c and
7d demonstrate the angular velocity–related results. It can be

concluded from Fig. 7c that the angular velocity converges to zero in

about 20 min. The maximum angular velocity error in Fig. 7d is

0.4 deg ∕s at t � 0, and after 5 min when the angular velocity error

approaches zero, the angular velocity follows the desired

value well. Then the kinematic equations are steered to reach

equilibrium by the desired angular velocity as stated in Sec. II.A and

Theorem 1 in [27]. Figure 7e portrays the control torque output.

The maximum value is smaller than 80 mN ⋅m, which is far

below the maximum achievable control torque, τmax � 2h0 _δmax

� 2 × 0.347 × π∕3 � 726.38 mN ⋅m. Figure 7f illustrates the

gimbal rate constrained by limit of 60 deg ∕s. In this case, the total

angular momentum is zero, and it corresponds to the origin in both

FB and F I .
Case II:Ht ≠ 0,HF I ;z � 0
In case I, the total angular momentum in F I resides in the

momentum envelope of the CMGs automatically when Ht � 0.
There still exists a subset of combinations of the attitude Q and

angular velocity ω, making the Z component of HF I
zero. When Q

and ω are in this subset under the conditions of Eqs. (13) and (14),

they can also be stabilized using the proposed controller.

a) Quaternion b) Euler angle

d) Angular velocityc)  Desired angular velocity

Fig. 8 Control results of case II (Ht ≠ 0,HF I;z � 0): a) quaternion, b) Euler angle, c) desired angular velocity, and d) angular velocity.
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Since Q and ω are dependent in this case as in Eq. (13), we will
choose Q first and then choose ω. According to the relationship

ofR andQ, we choseQ � �0.5;−0.5;−0.5; 0.5�T . Thenω is chosen
to be ωx � −0.8 deg ∕s, ωy � 0 deg ∕s, and ωz � 0.4 deg ∕s to

guaranteeHF I ;z � 0. The gimbal angles are set as δ1 � δ2 � 0 deg.

Finally, the total angular momentum in FB and F I are

calculated to be Ht � �0.1292; 0; 0.2957�T N ⋅m ⋅ s and HF I

� �−0.2957; 0.1292; 0�t N ⋅m ⋅ s, respectively. These initial con-
ditions satisfy the controllability requirement of Eqs. (13) and (14),
and attitude stabilization is expected to be achievable.
Figures 8 and 9 show the angular velocity stabilization and attitude

stabilization ability with the utilization of controller (37) and the
steering logic (39–45). Figures 8a and 8b show the attitude trajectory
of themaneuver. It can be seen that the attitude is stabilized in 20min.
More specifically, about 90° maneuver about X and Z axes is
completed as shown in Fig. 8b. From the response of desired angular
velocity (Fig. 8c), angular velocity (Fig. 8d), and angular velocity
error (Fig. 9a), we conclude that the velocities aboutX and Y axes are
controlled to track the desired angular velocity, and thevelocity about
the Z axis is gradually damped by the coupling control effect. This
phenomenon is observed clearly in the angular velocity error of
Fig. 9a, which shows that ~ωx and ~ωy converge to zero quickly and ~ωz

is stabilized after ~ωx and ~ωy reach zero. Figure 9b shows that the

maximum control torque is smaller than 80 mN ⋅m and it is within
the limit of the micro-CMG. The trajectory of angular momentum
in FB is demonstrated in Fig. 9d. It is clear that the total angular
momentum in the body frame is not conserved in terms of

components, but the magnitude is kept within numerical precision.
We also calculated HF I

and found that it always stays at the initial

value. So the figure of HF I
is not shown here.

Case III:HF I ;z ≠ 0
In this case, the initial values are almost the same as in case II

except forωy. Herewe setωy to be 0.1 deg ∕s. Then the total angular
momentums in FB and F I are Ht � �0.1292; 0.0735; 0.2957� N ⋅
m ⋅ s and HF I

� �−0.2957; 0.1292;−0.0735� N ⋅m ⋅ s, respec-

tively. The constraint of HF I ;z � 0 is not satisfied. It is obvious

that the angular velocity about the Z axis in FB cannot be absorbed
by the actuators. Thus the attitude cannot be completely stabilized.
Figure 10 shows the simulation results.
As in the previous analysis, Fig. 10 shows that the angular velocity

and attitude cannot be completely stabilized. It can be seen from
Fig. 10a that the attitude will be controlled into a small region with
periodic oscillations. Figure 10b shows the Z-axis trajectory in the
inertial frame. The initial attitude is marked as square and the target is
marked as diamond. It is clear that the attitude is controlled to rotate
around the target attitude in a small region. Figure 10c demonstrates
the history of the angular velocity. The angular velocity is controlled
to converge into a region and then it starts to oscillate because of the
increase of the desired angular velocity. Figure 10d shows the angular
velocity trajectory in the inertial frame. It also shows that the angular
velocity oscillates eventually. Figures 10e and 10f show the control
torque and gimbal rates. Similar to angular velocity, the angular
momentum oscillates in the body frame, whereas it is conserved in
the inertial frame.

c) Gimbal angular velocity

a) Angular velocity error b) Control torque

d) Ht in the body frame
Fig. 9 Control results of case II (Ht ≠ 0,HF I;z � 0): a) angular velocity error, b) control torque, c) gimbal angular velocity, and d) Ht.
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VI. Conclusions

This paper investigates the underactuated attitude stabilization
problem using two parallel control moment gyros without the zero
total angular momentum assumption. This control objective is
achieved by a joint control strategy containing an angular velocity
tracking control term and a sliding mode control term. For the first

term, desired rate commands about the actuated axes are designed to

stabilize the complete kinematics with zero desired angular velocity

about the underactuated axis. Then a rate command tracker is

developed to track the designed angular velocities. For the sliding

term, the coupling effect of the system dynamics is employed to

stabilize the nonzero angular velocity component about the axis

e) Control torque f) Gimbal angular velocity

d) Angular velocity in inertial framec) Angular velocity

a) Quaternion b) Attitude trajectory in inertial frame 

Fig. 10 Control results of case III (HF I;z ≠ 0).

Article in Advance / YUE ETAL. 11

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
M

ar
ch

 1
9,

 2
01

9 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
34

45
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without control input. Then underactuated attitude stabilization is
completed. To map the control command into the gimbal angular
velocity domain precisely, a steering law with low computation is
proposed. Simulation results verify the effectiveness of the proposed
controller and steering law.
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