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Abstract
UAVs have been increasingly used in military and commercial applications. The theory of UAV swarm behavir has gradually
matured and moved to the real application stage. Fast and accurate recognition of the intentions of UAV swarms become a
key part of dealing with coming swarms. This paper proposes a data-driven approach to realize the recognition of the typical
intentions of UAV swarm. The UAV swarm’s intention is divided into three basic categories: expansion, free movement, and
contraction. The dubins model is introduced to depict and study the dynamic characteristics of the movement of the UAV
swarm. Simulation experiments are performed through software to collect data and to verify and refine the proposed data-
driven intention recognition approach. Moreover, real flight experiments are conducted to test the feasibility and accuracy of
the proposed approach, from which key steps about the neural network building and training for intention recognition have
been summarized, and satisfying results in intention recognition with high accuracy and stability during the entire movement
of the UAV swarm have been achieved.

Keywords Swarm · Data-driven · Dubins model · Intention recognition

1 Introduction

AnUnmannedAerialVehicle (UAV) is an aerial platform that
is autonomous/semi-autonomous or remotely controlled to
accomplish itsmission.A swarm is a large number of animate
or inanimate agents massed together and usually in motion
or a formation with specific intentions. A UAV swarm refers
to a coordinated group of multiple UAVs that are operated
and controlled together to achieve a common goal. These
UAVs are typically equipped with sensors, communication
devices, and control algorithms that allow them to fly in a
synchronized manner, and to perform complex tasks such as
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search and rescue, surveillance, and reconnaissancemissions
efficiently.

The intentions of UAV swarms are associated with their
mission objectives. Particularly, in the context of the increas-
ingly intricate aerial combat scenario, the ability to accurately
recognize the intentions of the opposing UAV swarm is cru-
cial for the efficient tactical response, target assignment,
and maneuver determination. Therefore, intention recogni-
tion of UAV swarm has attracted a great deal of interest
[1, 2]. Currently, there are two prominent methodologies
for recognizing the intentions of UAV swarms, namely the
model-based approach and the data-driven approach.

The model-based approach to intent recognition for UAV
swarms encompasses techniques such as finite paramet-
ric models and Bayesian network methods. This approach
primarily concentrates on defining the functional form of
nonlinearities, as well as the tactical application and interde-
pendence of variables associated with air targets. As stated
in [3], the critical challenge in the application of methods
based on the estimation of models within a finite paramet-
ric class is the proper selection of the model class. This is
typically achieved through a search process that progresses
from simple models, such as linear, bilinear, polynomial,
and neural networks, to more complex ones. Specifically, a
Bayesiannetwork approach for recognizing air-target combat
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attempts is proposed in [4]. The method involves analyzing
various parameters, such as speed and distance, to construct a
Bayesian network that can identify the operational intention
of the air target. The parameters of the network are deter-
mined through an analysis of past tactical applications of the
target, reflecting the dependence between variables. How-
ever, the approach’s lack of a standardized structure leads to
a certain degree of subjectivity in the construction process,
which in turn limits the accuracy of the evaluation results. In
[5], a Multi-Entities Bayesian Network (MEBN) approach
for recognizing air target intentions in tactical scenarios is
proposed. TheMEBNmethodology utilizes local knowledge
in the form of MEBN fragments, consisting of local random
variables and their interrelationships, which are reorganized
under specific constraints. The tactical intention of an enemy
air target is identified based on the posterior probability dis-
tribution of the target variables.However, there is a subjective
element in determining the consistency constraints between
MEBN fragments, and varying constraint determinations can
result in significant variations in recognition results. This
challenge arises due to the difficulty in obtaining meaning-
ful descriptions of model uncertainty in nonlinear parametric
models, whose parameters are often obtained through phys-
ical modeling or data-driven identification methods, making
it complicated to estimate [6].

In contrast to the model-based approach, a data-driven
method does not depend on the significance or interrelation-
ship of the variables. Instead, a learning network is created
as a black box to execute the task of intention recogni-
tion, without requiring a comprehension or justification of
the system [7]. In [8–10], a Long and Short-Term Mem-
ory (LSTM) model is introduced to predict air combat target
intent, specifically for addressing the challenge of UAV air
combat target intent prediction under non-complete informa-
tion. In [11], aMarkov ChainMonte Carlo (MCMC) random
sampling algorithm that uses the topological sequence as its
search space is proposed, where a two-step approach focus-
ing on the transfer network’s unique temporal expansion
structure is incorporated in a self-adaptive mechanism of the
genetic learning algorithm to identify the intention. In [12],
a mathematical model for airborne target intent recognition
is developed, utilizing Fisher and Bayes discriminant as the
classifier to formulate target intent recognition principles. In
[13], an air target attack intent determination model based on
Intuitionistic Fuzzy Generative Rule inference (IFGR) and
multi-attribute decision-making is designed. Nevertheless,
due to that the dynamic characteristics of UAV swarmmove-
ment are ignored and comprehensive analysis for selecting
parameters/data that described the swarm intention is lack-
ing, the outcomes of the above-mentioned approaches are
overly optimistic or oversimplified, rendering them of lim-
ited practical value. Recently, a supervised learning model is
proposed in [14] for predicting the formation of UAV swarm

targets. The model employs the softmax regression as the
machine learning classifier and the Robot Operating System
(ROS) as the simulation platform. However, the study only
considered simple geometric formations and assumed homo-
geneous linear motion for all transformations, which may be
unrealistic for real-world applications.

This study utilizes a data-driven learning approach with
the incorporation of the UAV swarmmotion model for inten-
tion recognition. The data is generated under the guidance
of the motion model to increase the realism of the UAV
swarm’smotion through the addition of constraints and diver-
sity. Additionally, the data is filtered to evaluate the effects of
the obtained parameters on the prediction results, in order to
scrutinize and optimize the training of the neural network.
Particularly, several similar networks with different types
of input data were built to compare and select useful and
valuable parameters of the swarm movement. To verify the
feasibility of the proposed UAV swarm intention recogni-
tion method, simulations and experiments are conducted on
a swarm made up of three quadrotors.

2 Problem statement andmethodology

2.1 UAV swarmmodeling

To gain insight into the intention of UAV swarms and
to gather scientific data for data-driven methodologies, a
preliminary examination of the UAV swarm model was con-
ducted.

Dubins model [15–17] is a simplification of the motion
of a single UAV agent. It simplifies the movement into a
one-way, forward-facingmotion pattern. SeveralUAVagents
with such a motion pattern can cooperate and form a swarm.
Every agent follows its movement pattern within the swarm
while also interacting with other agents. The motion of each
swarm agent can be described by the following equation [15]:

px,k+1 = px,k + us cos (θk) δt + ωpx,k (1)

py,k+1 = py,k + us sin (θk) δt + ωpy,k (2)

θk+1 = θk + us

L
tan

(
uφ

)
δt + ωθ,k, (3)

where the px and py are the x and y coordinates of the agent
and θ is the yaw angle of the agent, L is the length of the UAV
agent from the head to the rear tires, us is the speed of the
agent, δt is the sampling time,ωpx,k ,ωpy,k andωθ,k represent
random noises, respectively. A reference signal θdesired based
on the real-time centroid of the swarm (cx , cy) is given as
follows:

θdesired = arctan 2
(
cy − py, cx − px

)
(4)
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Fig. 1 The path of the UAV swarm under the intention of contraction

The agents use this reference signal to design a feedback con-
troller according to the proportional control law as follows:

uφ = min
{
θmax,max

[
θmin, Kp (θdesired − θ)

]}
, (5)

where the steering angle of each agent is guaranteed to be
within [θmin, θmax] rad. The parameter denoted as Kp in
this research serves as a crucial factor that influences the
movement behavior of the UAV agent. Specifically, a posi-
tive value of Kp results in an inward movement of the UAV
agent towards the centroid, aimed at approaching the cen-
troid. Conversely, a negative value of Kp induces an outward
movement of the UAV agent away from the centroid, aimed
at moving away from the centroid. When Kp is set to zero,
theUAVagent exhibits autonomousmovement behavior, dis-
regarding the centroid. This definition of Kp in the context
of the study elucidates its significance as a determinant of
the motion properties of the UAV agent in the experimen-
tal setting and underscores its role in shaping the intentional
behavior of the UAV swarm.

To deal with a swarm made up of three UAV agents,
exactly the study object of this paper, motion data of the
swarm can be obtained by iterating until the set end.

Although the intentions of the UAV swarm are very
diverse, all these complex intentions can be seen as the per-
mutations and combinations of three elementary intentions:
contraction, free movement, and expansion. The definitions
of these three intentions are given as follows:

Definition 1 (Contraction) An intention of contraction is
presented when the swarm intends to move towards the cen-
troid of the swarm.

Definition 2 (Free movement) An intention of free move-
ment is presented when the UAV agents intend to move
straightforwardly on their own.

Fig. 2 The path of theUAVswarmunder the intention of freemovement

Fig. 3 The path of the UAV swarm under the intention of expansion

Definition 3 (Expansion) An intention of expansion is pre-
sented when the swarm moves away from the centroid.

According to the UAV dynamic model in Eqs. (1)–(3) and
the controller in Eq. (5), it is clear that different intentions of
theUAVswarm can be governed by choosing different values
of the control gain Kp. If Kp > 0 in Eq. (5), the swarm is
under the intention of contraction, which is demonstrated in
Fig. 1 with a gathering flying path generated by setting Kp =
0.2. If Kp = 0 in Eq. (5), the swarm is under the intention of
free movement, which is demonstrated in Fig. 2 with a free-
moving flying path generated by setting Kp = 0. Similarly,
if Kp < 0 in Eq. (5), the swarm is under the intention of
expansion, which is demonstrated in Fig. 3 with a expanding
flying path generated by setting Kp = −0.1.
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Fig. 4 Airsim simulation platform

2.2 Problem statement

The problem of interest to this paper is listed below.

Problem 1 For a given UAV swarm made up of three agents
with their initial positions being an equilateral triangle and
the movement pattern of the swarm described by the dubins
model in Eqs. (1)–(3), let the movement start at T = 0 and
end at T = t , then an algorithm is to be designed to recognize
the intention of the swarm correctly (identify the intention
from one of the three basic intentions defined in Definitions
1, 2 and 3) before T = t/2.

2.3 Methodology

In this section, tools and methods employed for the determi-
nation of the intention of UAV swarm systems are presented.

2.3.1 Simulation platform

Airsim simulation platform is an extension developed by
Microsoft based onUnreal Engine 4 as the underlying frame-
work, specifically for the simulation of vehicles andUAVs. A
data exchange API in Python code is widely used in machine
learning and other fields since a large amount of reliable data
can be obtainedwithout losing the accuracy ofmotion, which
can be used as training and test data for neural networks. Fig-
ure 4 shows a screenshot during one simulation experiment
in the Airsim platform with three quadrotors hovering.

TheAirsimplatform interaction repository, including con-
trol, collision avoidance, data transmission and shutdown,
etc., has been integrated into the self-made “Information-
Recognition” (IR) library. It is particularly noted here that the
collision avoidance program in the IR library is an algorithm
designed independently after the simulation found that the
simulated UAVs may collide and entangle with each other.
In the stage of simulation, we set L = 98 mm, us = 20 cm/s,
δt = 0.8 s in the UAV model given in Eqs. (1)–(3) and
θmax = π

8 , θmin = −π
8 with different control gains Kp in

the controller given in Eq. (5) to generate the coordinate
and velocity data of the swarm under different intentions.
Then, during the simulation, by entering the coordinate and
velocity data generated by the UAV model and controller
into the program, the simulated UAV in the Airsim platform
can be controlled to fly exactly according to the calculated
path. Then a set of real-time recordings of various coordi-
nate parameters andmotion parameters during the flight, plus
some calculations and processing, is obtained and saved. The
dataset’s detail and selection will be further introduced and
analyzed in Sect. 3.1.

2.3.2 UAV experiment platform

The DJI Tello UAV has been utilized in actual flight exper-
iments, incorporating a built-in application programming
interface (API) data port that enables real-time transmis-
sion of computer-generated commands to the UAV through a
local area network (LAN). Additionally, the motion parame-
ters obtained by the sensors on the UAV can be concurrently
relayed back to the computer, thus facilitating simultaneous
command transmission and data retrieval through the same
device.

Initialization of DJI Tello UAV (hereinafter also referred
to as UAV), including UAV-fixed frame orientation calibra-
tion, multi-UAV networking, control program testing, etc.,
is the first step of the real flight experiment. In the control
program, the paths obtained from the UAVmodel, which are
smooth curves, are superimposed by multiple minor linear
displacements. However, since the UAVs execute the codes
completely line by line, i.e., the command will be executed
only if the previous one is completely completed, the char-
acteristics of this program execution are manifested in the
discontinuity of the UAV movement. To solve this problem,
we use high-quality LAN to increase the frequency of send-
ing commands to eliminate the pause in the motion of UAVs
and improve the smoothness of the UAV movement.

In the real flight experimental site, the initial position of
the three UAVs is an equilateral triangle with a side length of
4ms, the initial orientation is along the edge of the equilat-
eral triangle, and the path coordinate points are marked with
tape and markers, as shown in Fig. 5. Also, other parameters
like the fuselage length L and flight speed us were changed
according to the real condition of UAVs. Through the control
program of the UAV, while sending the motion command to
the UAV, the command requiring the UAV to return the data
is sent simultaneously, and the UAV will return the data col-
lected by the sensor instantly. After completing a flight, we
process the saved flight data and substitute it into the neural
network to output the results.
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Fig. 6 The flow chart of the
algorithm of intention
recognition

Fig. 5 Experimental site (the tape and marker marks are the coordinate
points on the paths, the tape measure is placed on the x-axis, the red dot
marks are the starting points of the three UAVs, and the arrows in red,
yellow and green indicate the paths under the intentions of contraction,
free movement and expansion, respectively)

2.3.3 Algorithm

The logic of the algorithm used for intention recognition is
shown as the flow chart in Fig. 6.

The systemwill first determinewhether the UAV swarm is
inmotion. If not, the program terminates or goes into hiberna-
tion. If yes, the system will gather the data of interest, which
is the optimal selection of data that will be further introduced
in Sect. 3.1.

The current state of the swarm’s motion is recorded and
stored in an array, which serves as a historical database. Sub-
sequently, the average of the stored data is calculated to gain
insight into the general behavior of the swarm over time. The
reason why the average of current and historical data is used
rather than only current data is that both the motion and the
intention of the swarm are continual, and current data can
include environmental and internal deviations.

After the normalization of the average data, the input of
the artificial neural network is obtained. Here a MultiLayer
Perceptrons (MLP) is designed with the help of Keras, which
is an advanced neural network API written in Python that
can run on TensorFlow. The structure of the neural network
is shown in Fig. 7. The neural network consists of one dense
input layer and three dense layers (including one dense output
layer). The activation of these layers are relu, and softmax is
specially used in the output layer which is not marked in the
figure.

MLP is suitable for classification prediction problems
where inputs are assigned a class or label. Compared with
other popular types of artificial neural networks such as the
Convolutional Neural Network (CNN) and the Recurrent
Neural Network (RNN), MLP has the best performance in
classification [18].

The output of the neural network will be a one-hot encod-
ing. The label for expansion intent is [0, 0, 1], the label for
free movement intent is [0, 1, 0], and the label for contraction
intent is [1, 0, 0]. The program will pick the largest one from
the three-dimensional output and set it as the final classifi-
cation. Finally, the outcome will be compared with the Kp
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Fig. 7 The structure of the artificial neural network used to predict the intention of the UAV swarm

value set in the UAV model to verify the classification of the
neural network.

3 Main results

3.1 Data selection

Data collected from theUAVagents includes the line velocity
v (3-dimensional), angular velocity ω (3-dimensional), line
acceleration a (3-dimensional), angular acceleration α (3-
dimensional), orientation n (4-dimensional), rotation angle
under the real-time centroid polar coordinates system of the
UAV swarm θ (one-dimensional and hereinafter referred to
as the rotation angle) and distance from the real-time cen-
troid of the UAV swarm r (1-dimensional) of every agent
respectively, and spacing d (in x , y and z direction). All
these parameters make up the piece of data of one step. In
all, there are 63 columns in one piece of data.

Since there is a large number of parameters in the data, a
very heavy neural network and a highly complex data col-
lection system are required to process and catch all the data,
respectively. Therefore, one missing parameter can lead to a
disaster in this case. To reduce the complexity of the neural
network and improve its reliability, a test on different com-
binations of the parameters is conducted.

First, one type of parameter is set as the input at a time,
while the structure and the times of training of the neural
network keep the same and the remaining parameters are set
to zero. The results of loss value and accuracy are shown in
Figs. 8 and 9. It can be concluded that the loss values of differ-
ent types of parameters are quite distinct, while the accuracy
distribution is more concentrated. It observed from Figs. 8

Fig. 8 Loss value of single parameter input

and 9 that the four parameters with the lowest loss values are
angular acceleration α, angular velocity ω, spacing d, and
linear acceleration a; and the parameters with the highest
accuracy are linear acceleration a, angular acceleration α,
angular velocity ω, and rotation angle θ .

In view of these results, a further study is carried out on
the combinations of angular acceleration, angular velocity,
distance, linear acceleration, and rotation angle. The follow-
ing Group Set I containing a total of 6 research groups is set
up as follows:

1. Group 01: angular velocity + linear acceleration + angular
acceleration + spacing + rotation angle;

2. Group 02: angular velocity + linear acceleration + angular
acceleration + spacing;
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Fig. 9 Accuracy of single parameter input

3. Group 03: angular velocity + linear acceleration + angular
acceleration + rotation angle;

4. Group 04: angular velocity + linear acceleration + spacing
+ rotation angle;

5. Group 05: angular velocity + angular acceleration + spac-
ing + rotation angle;

6. Group 06: linear acceleration + angular acceleration +
spacing + rotation angle.

The first group in Group Set I contains all the param-
eters, which are used as a standard for comparison. One
type of parameter is removed from the remaining groups
respectively. The results are shown in Fig. 10. In the evalu-
ation of the performance of a specific group, the final loss
and accuracy metrics are employed. The loss value serves as
an objective function that is minimized during the training
process of the neural network. It quantifies the dissimilarity
between the predicted output and the actual output (ground
truth) for a given dataset. Lower loss values indicate a higher
degree of agreement between the predicted and actual out-
puts, while higher loss values imply a poorer alignment. On
the other hand, the accuracy value is a measure of the per-
formance of the intention recognition algorithm, indicating
the percentage of correctly predicted intentions out of the
total number of intentions. It is a widely used metric for
evaluating the accuracy of a classification algorithm, where
higher accuracy values denote superior performance in cor-
rectly predicting the intentions of the UAV swarm. Group 05,
without the parameter linear acceleration, gains the poorest
accuracy and the highest loss. It can be determined that linear
acceleration is a key parameter, and will be reserved in the
follow-up study. Similarly, the results of Group 02 are the
second worst, so its default parameter rotation angle can be
reserved; Group 03 and Group 04 have the best outcomes in

Fig. 10 Performance of different groups in Group Set I

the experiment, based on which the follow-up study can be
carried out:

Based on the results above, the combination of three types
of parameters is then studied, and the following Group Set II
including 5 subgroups is set:

1. Group 03-1: linear acceleration + angular acceleration +
rotation angle;

2. Group 03-2: angular velocity + linear acceleration + rota-
tion angle;

3. Group 03-3: angular velocity + linear acceleration + angu-
lar acceleration;

4. Group04-1: linear acceleration+ spacing+ rotation angle;
5. Group 04-2: angular velocity + linear acceleration + spac-

ing.

As shown in Fig. 11, except that the results of Group 04-2
in Group Set II are slightly worse, the accuracy and loss val-
ues of the five groups are acceptable. Group 03-2 and Group
04-1 with the best results have the same missing parameter:
angular acceleration; andGroup 04-2with the poorest results
has the missing parameter: rotation angle.

Based on all the previous results, it can be inferred that
linear acceleration and rotation angle are the twomost critical
types of parameters. Therefore, amodel combinedwith linear
acceleration and the rotation angle is built, and the result is
that the loss value is 0.0687 and the accuracy is 0.9747,which
are a bit worse but very close to the previous Group 03-2 and
Group 04-1.

It can be also concluded that the existence of linear accel-
eration and rotation angle greatly affects the neural network’s
performance. Adding other parameters properly can further
optimize the model such as the angular velocity, but adding
too many parameters may lead to the deterioration of the
results.
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Fig. 11 Performance of different groups in Group Set II

3.2 Neural network

To make the neural network perform better, the structure and
optimizer of the network are studied in this subsection.

Two different concepts for the neural network architecture
have been proposed, with one suggesting the construction
of a multi-class neural network and the other advocating
for the development of three separate two-class neural net-
works, each responsible for binary classification of a specific
intention. The multi-class neural network exhibits a sim-
pler architecture and provides higher accuracy for balanced
datasets. However, it has limited interpretability and is chal-
lenged when dealing with imbalanced datasets. On the other
hand, the two-class neural network offers good interpretabil-
ity and robustness to imbalanced datasets. However, it is less
efficient when tackling multi-class classification tasks and
shows reduced accuracy for balanced datasets. The selection
of the neural network model is contingent on the specific
classification task and dataset characteristics. If the dataset is
balanced, the multi-class neural network may prove to be the
more advantageous choice, whereas a two-class neural net-
work may be more suitable when working with imbalanced
datasets. Furthermore, the requirement for interpretability
may also influence the selection of a neural network archi-
tecture.

Table 1 depicts the architecture of a multi-class neural
network, comprising two dense (fully connected) layers.
This neural network is specifically designed for classification
tasks that involve three output classes. In contrast, Table 2
illustrates the structure of a two-class neural network, which
consists of three dense layers. This particular neural network
is tailored for binary classification tasks with two output
classes. By utilizing three instances of such two-class neu-
ral networks, each assigned to the binary classification of a
specific intention, it becomes possible to achieve the classi-
fication of three different types of intentions.

Table 1 Multi-class neural network structure

Layer (type) Output shape Param #

dense(Dense) (None, 64) 3520

dense_1(Dense) (None, 3) 195

Table 2 Two-class neural network structure

Layer (type) Output shape Param #

dense(Dense) (None, 64) 3520

dense_1(Dense) (None, 64) 4160

dense_2(Dense) (None, 1) 65

Fig. 12 Comparison of the different optimizers

Upon conducting training with an identical dataset and
duration, the multi-class neural network achieves an accu-
racy of 80%. In contrast, the three two-class neural networks
demonstrate varying accuracy levels of 89.9%, 75.4%, and
89.9%, respectively. These findings suggest that the perfor-
mance of the two-class neural networks in binary intention
classification is not consistent andmay lead to contradictions
or invalidations. Also, the dataset used in this research is gen-
erated by the simulation experimentwhich is quite completed
and balanced. Consequently, the utilization of a multi-class
neural network may be preferred in order to ensure overall
stability in subsequent experiments.

For the selection of the optimizer, a comparative experi-
ment of the optimizers based on the same training dataset,
neural network, and training times, is conducted.As shown in
Fig. 12, the optimizer “Adam” achieves the highest accuracy
and the lowest loss value, while the results using optimizer
“SDG” are relatively poor. Therefore, the optimizer “Adam”
is used in the subsequent neural network construction.
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3.3 Intention recognition

3.3.1 Simulation

The set of parameters selected is that of Group 04-1 in Group
Set II and the neural network is also trained based on that.
With the algorithm introduced in Sect. 2.3.3, the following
results are obtained:

In Fig. 13, the titles indicate the actual duration and
intention of the entire movement of the UAV swarm. The
horizontal axis represents the time in seconds for intent
identification, and the vertical axis represents the prob-
ability of intent recognition. The green, yellow, and red
spots represent the intents of expansion, free movement,
and contraction, respectively. The diagrams suggest that the
previously designed neural network can provide stable and
accurate intention judgments in the first half of the move-
ment.

However, it is observed that the output of the neural net-
work is unstable at the beginning of the movement. This
instability is attributed to the fact that the training data for the
neural network is based on the average value of the first half
of the entiremovement data,which is a relatively longer dura-
tion compared to the initial stage. Consequently, the neural
network fails to detect or learn the characteristics of the data
at the very beginning of the movement, resulting in instabil-
ity in its output. To address this issue, the training data was
improved by using a 50-step by 50-step average of all the
data, aiming to reduce the instability in the neural network’s
output.

3.3.2 Real flight experiment

In the flight experiment, the drones are manually controlled
to fly along the preset marks on the ground, while the
motion parameters are recorded. These recorded parameters
are accumulated and averaged step by step before being input
into the neural network based on the algorithm. The resulting
data, consisting of the number of steps and the corresponding
neural network prediction results, are plotted on three scatter
diagrams as depicted in Fig. 14. In this experiment, the Kp

value is used to represent the behavioral intention, as there
is a one-to-one correspondence between the Kp value and
the intended behavior. Specifically, the typical value Kp = 0
represents the intention of free movement.

Based on the scatter diagrams presented in Fig. 14, it can
be observed that the neural network exhibits a high accuracy
in predicting the behavioral intention of the UAV swarm.
The results indicate that the neural network is capable of
forming accurate judgments throughout the entire movement
process of the UAV swarm. This suggests that the neural
network is effective in recognizing the intended behaviors of
the UAV swarm based on the recorded motion parameters

and accumulated data from the flight experiment. The high
accuracy of the neural network in predicting the behavioral
intention of the UAV swarm implies its potential for real-
world applications in handling incoming UAV swarms.

4 Discussion

In the research process of data-driven intention recognition,
there are differences in the basic setting between the simu-
lation experiment and the actual flight experiment, including
the number of time steps, the value of Kp, the cruising
velocity, etc., caused by the limited size of the actual exper-
imental site and the limited conditions of the experimental
equipment. However, this does not mean that the simulation
experiment does not conform to reality or that the actual flight
experiment loses its meaning. The simulation experiments
are very realistic at various levels. Since Airsim’s underly-
ing framework, UR4 has a very good physical engine, its
various motion modes, and parameters are completely close
to reality. The most important contribution of the simulation
experiment is that it verifies that the idea of data-based intent
recognition is completely feasible, and through comparative
research, the optimal optimizer and optimal parameter com-
bination based on the current simulation results have been
found. The core of the network is equally effective in subse-
quent real flight experiments.

By analyzing the results, it can be found that the neural net-
work in the final flight experiment has very high accuracy in
determining the UAV swarm behavioural intent, which indi-
cates that the expected goal is achieved. However, this result
needs to be further investigated. The neural network cannot
always make such a high-accuracy judgment during exper-
iments, and there are occasional unstable or wrong results.
According to the inspection of the abnormal results, it is
found that the problem does not appear in the algorithm, but
in the data itself. First, the drone’s own flight control system
and the airflow in the experimental site are unstable due to
the current experiment facilities. For example,when the com-
puter sends the command of moving forward to the drone,
the actual movement of the drone is not always straightfor-
ward, and occasionally there will be left or right deviation,
which makes the data collected by the sensor inconsistent
with the expected movement pattern of the drone, result-
ing in a neural network error. Besides, in essence, the drone
reads commands one by one, and the nature of its movement
is discontinuous, even though the continuity of drone move-
ment could be approached by increasing the frequency of
sending commands and reducing the discontinuity to invis-
ible. The discontinuity in movement leads to the existence
of the deceleration process and acceleration process, result-
ing in the distortion of the data. Moreover, the sensor of the
drone also has some unclear problems. After checking the
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Fig. 13 The scatter of simulation verification prediction results against the time steps

data, it is found that when the sensor of the drone senses its
yaw angle, the self-defined zero-yaw direction (x axis under
body-fixed frame) is not fixed, and occasionally there will
be a large deviation. At the same time, the direction of the
body-fixed frame relative to the ground system also deviates,
leading to errors in the data brought into the neural network
and abnormal predictions. These deficiencies require further
exploration to figure out the causes and solve the problems.

5 Conclusion

In this paper, a data-driven method for recognizing the inten-
tionof theUAVswarm is proposed. Insteadof looking atUAV
flight data in isolation and ignoring the actual UAV swarm
dynamics, we combine the dynamic model of UAV swarm

movement with neural network construction and training.
For the construction of the neural network, different opti-
mizers and parameter selections were tested, and the proper
optimizer and parameter combination is found. In terms of
data processing, the method of gradually accumulating and
averaging is adopted to enhance the neural network’s ability
to perceive and determine the entire moving process and to
improve identification accuracy in the early stage of UAV
swarmmovement. After analyzing the simulation and exper-
imental test results, it is found that the proposed method can
give an accurate and stable identification of the intention dur-
ing the entire movement process of the UAV swarm. During
the entiremoving process, the highest accuracy rate can reach
more than 98%, and the unstable output accounts for 15% or
less of the entire moving process.
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Fig. 14 The scatter of prediction results in real flight experiments against the time steps
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