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Abstract—Aiming at solving the model-free fault-tolerant space-
craft attitude control problem, a data-driven adaptive control
scheme is proposed to the spacecraft in the presence of actuator
faults and performance constraints. First, the discrete-time attitude
dynamic model is transformed into an affine nonlinear system based
on local dynamic linearization. Then, a fuzzy logic-based lazily
adapted constant kinky inference rule is introduced to predict the
arbitrarily continuous nonlinear actuator faults and model uncer-
tainties by supervised learning with insufficient prior knowledge. To
satisfy time-varying deferred asymmetric constraints of the attitude
tracking error, a virtual control law is proposed in the attitude
control loop using the back-stepping approach, which is derived
from a deferred switching transformation and barrier Lyapunov
function. The stability of the data-driven adaptive fault-tolerant
attitude control for the nonlinear discrete-time spacecraft attitude
dynamics is analyzed rigorously with the aid of contraction map-
ping principle and discrete-time Lyapunov theory. Compared with
existing methods, the proposed one considers nominal non-global
Lipschitz nonlinear system with arbitrarily continuous unmodeled
uncertainties and time-varying actuator faults, and achieves smaller
prediction error bound than general kinky inference scheme and
better closed-loop performance by estimating and compensating
unknown dynamics. Finally, numerical simulation verifies the ef-
fectiveness of the proposed control scheme.
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I. INTRODUCTION

HIGH precision spacecraft attitude control is a prob-
lem of great challenge in many practical space missions
[1]–[3], such as in-orbit servicing and deep space ex-
ploration. However, due to multiple inertia uncertainties,
complex external disturbances and actuator faults, severe
uncertainties and nonlinearity may exist, leading to diffi-
culties in obtaining an accurate spacecraft model. There-
fore, model-based control scheme may not be suitable for
high precision spacecraft attitude control problem, though
many works has been developed in [4]–[7].

To reject the nonlinearities, disturbances and actuator
faults, a few data-driven results leveraging adaptive con-
trol technique have been reported in [8]–[14]. In [8], a
data-driven adaptive control scheme is proposed for state
constrained nonlinear systems when considering hardware
requirements. In [11], a data-driven active disturbance
rejection control (ADRC) scheme is proposed, which is
effective in dealing with the nonlinearities by embedding
an adaptive estimation in the nonaffine nonlinear sys-
tem under the globally Lipschitz assumption. Recently,
a data-driven immersion and invariance adaptive control
scheme is proposed to the attitude control of a rigid body
spacecraft, which tackles the attitude and angular rate
constraints [12]. However, when disturbances and actuator
faults are taken into consideration in spacecraft attitude
control systems, the data-driven adaptive approach is
rarely developed.

For the problem of the spacecraft attitude control,
many aforementioned works have been reported consider-
ing the eminent control approach of fault-tolerant control
(FTC), aiming at ensuring the state or output performance
when faults occur on the spacecraft. Strategies of FTC
scheme are generally divided into active FTC and passive
FTC [15]. For passive FTC, the robust control scheme
is often considered, both for healthy and fault cases. For
active FTC, the fault detection and diagnosis (FDD) is
introduced to the control process, and the controller is
retrofitted by the fault reconfiguration mechanism [5].
Recent works on the determination of the fault reconfigu-
ration mechanism are summarized as adaptive control ap-
proach [6], control allocation [3], fault observation [2] and
prescribed performances control (PPC) [16]. Recently, the
data-driven learning-based fault observation is considered
in the FTC design [13]. However, considering insufficient
prior datasets of output measurements in practical space-
craft attitude systems, the enhanced learning-based fault
observation and FTC system are required urgently.

Supervised learning method is a class of model
estimation method with great flexibility and ability to
approximate functions [17], [18]. For nonaffine globally
Lipschitz systems, Lipschitz interpolation (LI) [19]–[23]

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022 1

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3312363

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 00:32:05 UTC from IEEE Xplore.  Restrictions apply. 



and nonlinear set membership (NSM) [24] methods are
efficient to estimate the model uncertainties by setting a
rational value of the Lipschitz constant to the predictor,
which is acted as a hyper-parameter. However, for the
model-free case, a novel design of LI containing constant
estimation, which is referred to lazily adapted constant
kinky inference (LACKI), is needed when insufficient
prior knowledge is provided and the bounded estimation
error is required [23], [25]. Although LACKI method
has not yet been validated in spacecraft attitude control
systems, it has been applied in the model predictive
control [25] and model reference adaptive control [23],
where the prediction performance is well verified in the
simulated aircraft roll dynamics.

However, the aforementioned LACKI learning rule is
proposed based on the assumption that the target function
to be predicted is Lipschitz continuous [23]. Although
the prediction boundedness is still satisfied in the non-
Lipschitz continuous case, the LACKI predictor will lose
effectiveness with wider prediction error bound [25].
Fuzzy logic systems (FLSs) [26] are efficient approach
to deal with the non-Lipschitz continuous uncertainties
with faster convergence. Depending on the IF-THEN
rules of the FLSs, the uncertainties can be completely
approximated, usually combining with the adaptive laws
to obtain the estimation of the fuzzy weight [27], [28].
Many applications of FLSs have been investigated for
the constrained control problem [26], stochastic nonlinear
systems [27], [28] and data-driven approach [29], to
overcome the impact of disturbances or uncertainties in
practical systems. To enhance the effectiveness of the
LACKI predictor and extend the prediction ability to the
non-Lipschitz continuous condition, it is worth mentioned
that the introduction of FLSs should be a feasible scheme,
which has not yet been reported in the related research.

Constrained control problem of the spacecraft attitude
system has attracted a great deal of interest recently
[16], [30]–[33]. To guarantee the performance constraints
during the control progress, several control approaches are
proposed, such as prescribed performance control and bar-
rier Lyapunov function. Prescribed performance control
approach presets the overshoot of the tracking error, the
steady and transient performance and it has been widely
applied to spacecraft attitude control [16], [30], [33]. In
[16], a fault-tolerant control scheme is proposed, by com-
bining the prescribed performance control and adaptive
approach considering the input saturation. In [33], a PD-
like model-free prescribed performance control scheme
is introduced to the attitude tracking control of flexible
spacecraft subject to predefined tracking error constraints.
Barrier Lyapunov function-based methods are verified to
be efficient on constrained control for a class of strict-
feedback nonlinear systems, which are mainly subjected
to constant or time-varying state constraints [31], [32].
Taking advantages of the barrier Lyapunov function, a
constrained controller consists of a nominal state feedback
and a compensator is derived to adjust the state response
into the performance bound. In [31], a tangent barrier

Lyapunov–Krasovskii function combined with a neural
network unit is utilized for the strict feedback systems to
deal with nonlinear uncertainties and undetectable actua-
tion faults despite the presence of output constraint and
prescribed transient performance constraint. In [32], an
asymmetric barrier Lyapunov function with relaxed state
constraint at the initial phase is developed by utilizing
error-shifting transformation.

To achieve precise attitude tracking of spacecraft sub-
ject to unmodeled dynamics, actuator faults and deferred
asymmetric performance constraints, a fuzzy supervised
learning-based data-driven adaptive back-stepping control
scheme is proposed, where a fuzzy lazily adapted constant
kinky inference (FLACKI) rule-based predictor is devel-
oped to learn the external disturbances and actuator faults
and a discrete time adaptive law is utilized to estimate the
input gain, respectively. The main contributions of this
paper are summarized as follows:

1) Incorporated with the fuzzy logic, the proposed
novel supervised FLACKI learning rule enhances
the online-learning capability of the existing
LACKI method in [23]. More importantly, it is
applicable to a more general class of arbitrary
continuous systems, and the upper bound of the
prediction error can be reduced when there exists
the over-fitting phenomenon.

2) A data-driven control scheme using barrier Lya-
punov function is developed in the outer loop of
the back-stepping-based control framework to deal
with the deferred asymmetric performance con-
straint, which is a more general case that the initial
tracking condition is unknown and the upper and
lower performance bounds are set to be different,
resulting in more feasibility to be implemented in
practical engineering than the existing constrained
control scheme [33].

The rest of the paper is organized as follows. In
Section II, attitude dynamic of the rigid spacecraft with
actuator faults is provided, and is further discretized
by using local dynamic linearization. In addition, the
general LACKI rule is also introduced. A fuzzy logic-
based FLACKI rule is formulated in Section III, and
a supervised learning predictor is designed to estimate
model uncertainties. In Section IV, the data-driven con-
strained adaptive fault-tolerant attitude controller is de-
signed by leveraging the barrier Lyapunov function and
back-stepping technique. In Section V, the effectiveness
of the proposed control scheme is demonstrated via nu-
merical simulations. Section VI draws the conclusions.

II. PROBLEM FORMULATION

In this section, modeling of spacecraft motion with
actuator faults and external disturbances are derived, then
the local dynamic linearization is introduced to obtain
a nonaffine discrete-time model. Finally, the existing
LACKI rule is introduced.
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A. Modeling of Spacecraft Attitude Dynamics

The attitude kinematics and dynamics are expressed
as follows:

q̇0 = −1

2
qTω, (1a)

q̇ =
1

2

(
q× + q0I3

)
ω, (1b)

Jω̇ = −ω×Jω + τ + d, (1c)

where J = JT ∈ R3×3 denotes the positive-definite iner-
tia matrix of the rigid spacecraft, ω ∈ R3 is the angular
velocity of the spacecraft relative to the inertial coor-
dinate system expressed in the body coordinate system,
Q =

[
qT, q0

]T ∈ R4 is the unit quaternion describing the
pointing direction in the body coordinate system relative
to the inertial coordinate system, τ = [τx, τy, τz]

T ∈ R3

and d ∈ R3 represent the control torque and external
disturbance, respectively. The symbol q× ∈ R3×3 is used
to express a skew-symmetric matrix associated with the
vector q = [q1, q2, q3]

T:

q× =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 . (2)

Assumption 2.1: The spacecraft inertia matrix J is
uncertain and expressed as:

J = J0 +∆J, (3)

where J0 ∈ R3×3 is the unknown positive constant inertia
part, and ∆J ∈ R3×3 denotes the unknown time-varying
part containing unmodeled uncertainties. Both J0 and ∆J
are assumed to be bounded.

B. Modeling of Actuator Faults

Taking into consideration two types of actuator faults
in attitude controller design, i.e., gain fault and bias fault,
the actual input u = [u1, u2, u3]

T ∈ R3 generated by 3
actuators is given by

u = Euc + ū, (4)

where uc = [uc,1, uc,2, uc,3]
T is the nominal input without

fault, E = diag ([e1, e2, e3]) is the unknown time-varying
efficiency loss coefficient with 0 ≤ ei < 1 and i = 1, 2, 3,
ū = [ū1, ū2, ū3]

T ∈ R3 is the unknown time-varying bias
fault.

Then, the control torque acted on the spacecraft (cf. τ
in (1c)) can be obtained as τ = uc. Therefore, the space-
craft attitude dynamics with actuator faults is expressed
as:

Jω̇ = −ω×Jω + Euc + ū+ d. (5)

C. Nonlinear Discrete-Time System Model and Local
Dynamic Linearization

In practical, an approximated spacecraft attitude dy-
namics can only obtained according to I/O measurements
instead of accurate model due to modeling uncertain-
ties, disturbances, and faults [33]. Therefore, the attitude

kinematics and faulty dynamics in (1a), (1b) and (5) is
converted to a data-based form defined as the following
nonaffine discrete time expression:

q0 (k + 1) = q0 (k)−
T

2
qT (k)ω (k) , (6a)

q (k + 1) = q (k) + Ω (k)ω (k) , (6b)
ω(k + 1)=f(ω(k), ..., ω (k − nω) , uc(k) , ..., uc (k − nu))

+ h (d (k − 1) , ..., d (k − nd)) , (6c)

where T is the sampling step size,
Ω (k) = T

2 q
× (k) + q0 (k) I3 ∈ R3×3,

f (ω (k) , ..., ω (k − nω) , uc (k) , ..., uc (k − nu)) =
ω(k) − J−1(k)(ω×(k)J(k)ω(k) − E(k)uc(k)) is
the vector containing the system states and inputs,
h (d (k − 1) , ..., d (k − nd)) = ū(k) + d(k) denotes the
nonlinear system disturbance, nω, nu, nd ∈ N represent
the linearization length. Considering the uncertain and
unknown terms J(k), E(k), ū(k) and d(k) in above
attitude control system, the two functions f (·) , h (·) are
nonlinear and cannot be obtained analytically. To begin
the controller design, the following assumptions are
given:

Assumption 2.2: The actual input rate and control
torque generated by n actuators have the following con-
straints:

|uci (k)− uci (k − 1)| ≤ ρu, |uci (k)| ≤ ρuc (7)

where ρu > 0, ρuc
> 0 are the upper bound of the i-th

control torque and input rate for all i ∈ {1, . . . , n}.
Assumption 2.3: In the discrete-time nonlinear sys-

tem (6c), the function f (·) satisfies the global Lipschitz
condition with respect to the state ω(k). That is, for any
two sampling points k1 and k2, there exists

∥f (ω1 (k1) , ..., ωP (k1))− f (ω1 (k2) , ..., ωP (k2))∥
≤ L1 ∥ω1 (k1)− ω1 (k2)∥+ ...+ LP ∥ωP (k1)− ωP (k2)∥ ,

(8)
where Lm is the assumed Lipschitz constant with m ∈
{1, ..., P} and P = nω + nd + nu +3. The partial deriva-
tive ∂f(·)/∂uc(·) exists with an unchanged sign, which
expresses as ∂f(·)/∂uc(·) ≤ −ϵk or ∂f(·)/∂uc(·) ≥ ϵk
with ϵk being a small positive constant [9], [11].

Assumption 2.4: The function h (·) representing the
disturbance is bounded and non-Lipschitz continuous. In
practical, h (·) consists of the state-related term h1 (·) and
bounded external term h2 (d0), i.e.,

h (d (k − 1) , ..., d (k − nd))

=h1 (ω (k) ,..., ω (k − nω))

+h2 (d0 (k − 1) ,..., d0 (k − nd0
))

where ∥h2 (d0 (k − 1) , ..., d0 (k − nd0))∥ ≤ Ēh.
Remark 2.1: Assumption 2.1 and Assumption 2.2

are common assumptions for a general spacecraft, due to
the time-varying mass property of the spacecraft and the
saturations of the input torque. Assumption 2.3 and As-
sumption 2.4 mainly refer to the local dynamic lineariza-
tion of the discrete-time attitude dynamics considering
the Lipschitz continuous f(·) and the non-Lipschitz h(·).
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Especially, in Assumption 2.4, the non-Lipschitz h(·) is
due to the actuator faults and external disturbances from
the environment.

Then, according to the above assumptions and the
local dynamic linearization in [9], [11], the nonlinear
discrete-time model (6c) can be rewritten as:

∆ω (k + 1) = f (χ (k) , uc (k))− f (χ (k − 1) , uc (k − 1))

− f (χ (k) , uc (k − 1)) + f (χ (k) , uc (k − 1))

+ h (δ (k))− h (δ (k − 1))

=
∂f (·)
∂uc (k)

∆uc (k) + ζ (k) , (9)

where
χ (k) = [ω (k) , ..., ω (k − nω) , uc (k − 1) , ..., uc (k − nu)] ,

δ (k) = [d (k − 1) , ..., d (k − nd)] ,

ζ (k) = −f (χ (k − 1) , uc (k − 1)) + f (χ (k) , uc (k − 1))

+ h (δ (k))− h (δ (k − 1)) ,

and ∆ is the difference operator defined as

∆x (k + 1) = x (k + 1)− x (k) . (10)

Denote ΘT (k) = ∂f(·)
∂uc(k)

∈ R3×3, according to the
Assumption 2.3, ΘT (k) is bounded with the upper bound
of ρΘ > 0.

Then, the discrete dynamics in (6c) is transformed into
the following local dynamic linearization form:

∆ω (k + 1) = ΘT (k)∆uc (k) + ζ (k) . (11)

D. LACKI Rule Formulation

Before giving the control framework, the LACKI rule
is introduced and formulated first. The LACKI rule is a
supervised learning rule that can achieve bounded model
prediction [23]. Define a pseudo-metric ∂ : X 2 → R≥0

and a output pseudo-metric ∂Y : Y2 → R≥0 which are
respectively assigned to the d-dimensional normed input
space X and the m-dimensional normed output space Y .

The Lipschitz continuous function set Lip(L), is de-
fined as in [23] with the introduction of the Lipschitz
constant L. We also denote f ∈ Lip (L∗) as the continu-
ous function with the smallest Lipschitz constant L∗, and
choose f : X → Y as the target function of the supervised
learning rule [20]. During the initial steps, the available
prior sample dataset Bn :=

{(
si, f̃i

)
|i = 1, ..., Nn

}
is

pre-given, which contains Nn ∈ N sample input-output
pairs

(
si, f̃i

)
, where the target function f̃i ∈ Y at sample

inputs si ∈ X .
At the n-th step, we define Kn = {si|i = 1, ..., Nn} ⊂

X as the grid of si and Yn =
{
f̃i|i = 1, ..., Nn

}
⊂ Y

as the output sequence, then the dataset Bn is further
expressed as Bn = (Kn,Yn). To carry out learning rule
or inference procedure for constructing the predictor,
the definition of LACKI rule-based on nonparametric
regression is given firstly.

Definition 2.1 (LACKI rule) [23]: For a prior set of
samples Bn at the n-th step, assign ∂̃ (·, ·; Ξ (n)) : X 2 →

R parameterized by the hyper-parameter Ξ (n). Then the
LACKI predictor is defined as:

f̂n,r (x; Ξ (n) ,Bn) :=
1

2
mn,r (x; Ξ (n))+

1

2
wn,r (x; Ξ (n))

(12)
where
mn,r (·; Ξ (n)) , wn,r (·; Ξ (n)) : X → Rm,

mn,r (·; Ξ (n)) := mini=1,...,Nn f̃i,r + ∂̃ (x, si; Ξ (n)) ,

wn,r (·; Ξ (n)) := maxi=1,...,Nn
f̃i,r − ∂̃ (x, si; Ξ (n)) ,

f̂n,r and f̃i,r denote the r-th component of the output
f̂n and f̃i, ∂̃ (x, x′;L (n)) = L (n) ∂ (x, x′) with L (n)
being the Lipschitz constant to be estimated. To sim-
plify the exposition of the learning rule establishment,
suppose that the output dimension norm space Y ⊆
Rm, of which the pseudo metric satisfies ∂Y (y, y′) =
∥y − y′∥∞,∀y, y′ ∈ Y, and the input dimension norm
space X ⊆ Rd, of which the pseudo metric satisfies
∂ (x, x′) = ∥x− x′∥∞,∀x, x′ ∈ X .

The adapted update rule of the Lipschitz constant
L (n) is given as

L (n) := max

{
0, max

(s,s′)∈Un

∥∥f̃ (s)− f̃ (s′)
∥∥
∞ − λ

∥s− s′∥∞

}
,

(13)
where λ ≥ 0 is a hyper-parameter, which is typically
utilized to compensate for predictor drift due to the
observation error and avoid L (n) diverging or over-
fitting [25]. Meanwhile, for the input set S, S′ ⊂ X ,
define U (S, S′) := {(s, s′) ∈ S × S′|∥s− s′∥∞ > 0},
where Un := U (Kn,Kn) is the set of all distinct
sample input pairs. To realize the online learning of
Lipschitz constant L (n), incremental learning is proposed
to construct iteration from L (n) to L (n+ 1), so that the
number of samples under the (n + 1)-th step satisfies
Kn+1 = Kn ∪ {sn+1} ,∀n. For n ∈ N, choose L (0) := 0,
we inductively define the following incremental update
rules:

L (n+ 1) = max {L (n) ,

max
(s,s′)∈U(Kn,{sn+1})

∥∥f̃ (s)− f̃ (s′)
∥∥
∞ − λ

∥s− s′∥∞

}
.

(14)

To assess the LACKI rule, theoretical analysis of the
boundedness of the predictor (14) has been established
in [23]. Note that the error sequence is increasingly dense
due to a query input set I ⊆ X . The definition of dense
considering the grids sequence (Kn)n∈N is firstly given
before the conclusion of the prediction boundedness.

Definition 2.2 [20]: For the grid sequence (Kn)n∈N,
if points in Kn can be used to approximate any point in
I ⊆ X with increasing accuracy, then the grid sequence
is defined to become dense with respect to I with the
limitation of sample points n. This can be formally written
as

If ∀ϵ0 > 0, x ∈ I,∃n0∀n ≥ n0,∃z ∈ Kn : ∥x− z∥∞ < ϵ0.

Moreover, if the coverage rate of the sequence to the
predefined set is not related to x, the sequence is defined
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to become dense uniformly, with

Iff ∀ϵ0 > 0,∃n0∀n ≥ n0, x ∈ I,∃z ∈ Kn : ∥x− z∥∞ < ϵ0.

According to Definition 2.1, the following theorem is
given about the consistency of the LACKI prediction for
the Lipschitz continuous target functions:

Theorem 2.1 (Uniform boundedness) [21]: Given a
sample sequence (Bn)n∈N, which exists an observation
error with the upper bound of ē ∈ R≥0. For any p > 0,
the hyper-parameter is set to be λ := 2ē + p. Defining
a compact set I ⊆ X , the LACKI rule is considered to
be a universal estimator if (Kn)n∈N converges uniformly
to I ⊆ X , and the prediction sequence

(
f̂n

)
n∈N

is
considered to be convergence to any continuous f : X →
Rm. When f satisfies Lipschitz continuous condition, the
estimation error of LACKI converges uniformly to the
upper bound of 2ē + p

2 . When f contains non-Lipschitz
but continuous terms, the LACKI predictor can achieve
uniform convergence bounded error with the upper bound
of 2ē+ 3p

2 .
The detailed proof of Theorem 2.1 can be found in

[21], [23].

E. Control Objective

The control objective of this article is to propose a
supervised learning-based strategy on the basis of the
nominal iteration-learning-based control scheme, to deal
with the non-Lipschitz disturbances, uncertainties and
actuator faults of the spacecraft attitude dynamics, since
the nominal iteration learning-based data-driven controller
cannot handle the Lipschitz continuous uncertainties. As-
suming that insufficient prior datasets can be obtained,
a fuzzy logic based supervised learning predictor is pro-
posed to achieve the fault observation, and a constrained
control scheme is utilized based on the control barrier
function to ensure the predfined control performance.
III. FUZZY SUPERVISED LEARNING-BASED

PREDICTOR

In this section, a novel FLACKI rule is firstly derived
by taking advantages of the fuzzy logic system, then
a fuzzy supervised learning-based predictor is proposed
to estimate the model uncertainties, leading to bounded
prediction error.

A. FLACKI Rule Formulation

According to the formulation of LACKI rule, the
boundedness of the LACKI prediction is guaranteed under
the assumption of Lipschitz continuous target output,
which is denoted as f ∈ Lip (L∗) with the smallest
Lipschitz constant L∗. However, when it comes to the
condition of non-Lipschitz continuous, as given in [14],
the general LACKI prediction accuracy seems to be
reduced with the prediction error bound up to 2ē + 3p

2 ,
where the chosen of p is decided by the hyper-parameter λ
as p = 2ē−λ to exclude the over-fitting phenomenon [25].

To extend the LACKI rule to an arbitrarily continuous
target function with proper estimation error, an enhanced
LACKI rule-based on fuzzy system is proposed in this
section. Note that the fuzzy system is an efficient scheme
to deal with the non-Lipschitz condition. Firstly, a fuzzy
logic system is introduced to approximate the output
g ∈ Rg with the following fuzzy IF-THEN inference
rules [26], [34]:

If x1 ∈ F l
1, x2 ∈ F l

2, ..., xn ∈ F l
n, then g ∈ Gl,

where x = [x1, x2, ..., xn]
T ∈ Rn expresses the system

input, l = 1, 2, ..., N , N denotes the fuzzy rule number,
F l

i and Gl represent the fuzzy sets. According to [34], the
fuzzy logic system can be obtained as

g (x) =

N∑
l=1

ϑl
n∏

i=1

hFl
i
(xi)

N∑
l=1

[
n∏

i=1

hFl
i
(xi)

] , (15)

where ϑl = maxg∈Rg
hGl (g), ϑ = [ϑ1, ..., ϑN ] denotes

the fuzzy weight. hGl (g) and hFl
i
(x) are the membership

functions of F l
i and Gl, repectively. Let the fuzzy basis

function be

φl (x) =

n∏
i=1

hFl
i
(xi)

N∑
l=1

[
n∏

i=1

hFl
i
(xi)

] . (16)

Then g(x) can be rewritten as

g (x) = ϑTφ (x) , (17)

where φ (x) = [φ1 (x) , φ2 (x) , ..., φN (x)]. Assuming that
the input space x1, x2, ..., xn ∈ U is a compact set in Rn,
for arbitrary ϵ∗ > 0, an optimal vector θ∗ exists with

sup
x∈U

∥∥g (xn)− θ∗Tφ (xn)
∥∥
∞

n→∞→ ϵ∗.

Similar to the discussion of the LACKI rule, define
pseudo-metric ∂ : U2 → R≥0 and ∂H : H2 → R≥0,
then a set of arbitrarily continuous functions, which is
denoted by the fuzzy logic system as Fuz(ϑ) = {ϕ : U →
H|∂H (ϕ (x) , ϕ (x′)) ≤ ∥ϑ∥ ∂ (φ(x), φ(x′)) ,∀x, x′ ∈ U}.
Introduce the optimal vector θ∗, for a non-Lipschitz
continuous target function g, there exists g ∈ Fuz (θ∗).
With the pre-determined fuzzy basis function φ(·), the
fuzzy weight should be finite.

When the target function g is unknown or consists of
unmodeled dynamics, the supervised learning approach
is proposed to the prediction of g with the assumption
that an increasing amount of sample data set is obtained
indexed by the sample step n ∈ N through the corre-
sponding supervised learning rule, which is denoted as
Dn := {(si, g̃i) |i = 1, ..., Nn}, where g̃i is the target out-
put point at the sample input si. Similarly to the general
Lipschitz continuous target function, we also assume that
the samples output contains bounded observation error ē
and ∂H (g̃i, g (si)) ≤ ∂H (0, ē (si)).

With the above formulations of the target function,
sample datasets, and the same definition of the sample
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input grid Gn = {si|i = 1, .., Nn} ⊂ U , a fuzzy predictor
extending the general LACKI is proposed to obtain the
evaluation of the prediction ĝn (x) of g (x).

Definition 3.1 (Fuzzy Lazily Adapted Constant
Kinky Inference (FLACKI) rule): Consider an arbi-
trarily continuous target function g : U → H, where
U and H represent input space and the output space.
For the input elements x, x′ ∈ U , with the assign-
ment of the fuzzy basis function-based input space
metric ∂̃ (φ (x) , φ (x′) ; Ξ1 (n)) parameterized by hyper-
parameter Ξ1 (n), the FLACKI predictor is formulated as

ĝn,v (x; Ξ (n) ,Dn) :=
1

2
un,v (φ (x) , φ(si); Ξ1 (n))

+
1

2
ln,v (φ (x) , φ(si); Ξ1 (n)) ,

(18)

where
un,v (·; Ξ1 (n)) , ln,v (·; Ξ (n)) : U → Rm,

un,v (·; Ξ1 (n))

:= mini=1,...,Nn g̃i,v + ∂̃ (φ (x) , φ (si) ; θ (n)) ,

ln,v (·; Ξ1 (n))

:= maxi=1,...,Nn
g̃i,v − ∂̃ (φ (x) , φ (si) ; θ (n)) ,

∂̃ (φ (x) , φ (si) ; θ (n)) = θ (n) ∂ (φ (x) , φ (si)) ,

∂ (φ (x) , φ (si)) = ∥φ (x)− φ (si)∥∞,∀x, si ∈ U ,
ĝn,v and g̃i,v denote the v-th component of the out-
put ĝn and g̃i, θ (n) represents the estimation of
fuzzy weight, φ (x) is derived as in (16). Similar to
(13), for two sets S, S′ ⊂ U , define C (S, S′) :=
{(s, s′) ∈ S × S′|∥s− s′∥∞ > 0} with Cn := C (Gn,Gn).
The adapted iteration of the fuzzy weight θ (n) is given
as

θ (n+ 1) = max {θ (n) ,

max
(s,s′)∈C(Gn,{sn+1})

∥g̃ (s)− g̃ (s′)∥∞ − λ

∥φ (s)− φ (s′)∥∞

}
,

(19)

where the initial value of the θ is set to be θ (0) = 0.
To assess the FLACKI rule, theoretical analysis of

the boundedness of the predictor (18) is established. For
safety critical needs, the worst-case is in consideration.
That is, for the prediction error sequence ϵ∞ := (ϵ∞n )n∈N
, the worst-case with ϵ∞n := sup

x∈U
∥ĝn (x)− g (x)∥∞ is

studied. Note that the fuzzy basis function φ (x) is strictly
bounded by ∥φ (x)∥ ≤ 1. Then, according to Defini-
tion 3.1, with Gn becoming dense uniformly, the grid
sequence of fuzzy basis function that can be denoted as
φ (x) ∈ Φn is also seen as becoming dense or becoming
dense uniformly. That is, points on Φn can be utilized
to approximate any points in the value set of φ (x) with
increasing accuracy. The following theorem is given to
show uniform boundedness of the FLACKI prediction for
the arbitrarily continuous functions.

Theorem 3.1: With the pre-given sample sequence
(Dn)n∈N and bounded observation error ē, selecting the
hyper-parameter λ := 2ē + p with p > 0 to avoid over-
fitting, the FLACKI rule is considered to be a universal
predictor as the fuzzy basis function grid Φn converges

uniformly, and the predictor (ĝn)n∈N can converge to any
continuous target function with the prediction error upper
bounded by 2ē+ p

2 .
Proof: For any input x ∈ U , let ξxn ∈

arg infs∈Gn
∥x− s∥∞, which represents the nearest sam-

ple neighbor of x in the grid Gn. For all n ∈ N, x ∈ U ,
the prediction error is calculated as

∥ĝn (x)− g (x)∥∞
≤ ∥ĝn (x)− g (ξxn)∥∞ + ∥g (ξxn)− g (x)∥∞
≤ ∥ĝn (x)− ĝn (ξ

x
n)∥∞ + ∥g (ξxn)− g (x)∥∞

+ ∥ĝn (ξxn)− g (ξxn)∥∞
≤(θ (n)+ϑ∗) ∥φ(x)−φ(ξxn)∥∞+∥ĝn (ξxn)−g (ξxn)∥∞,

(20)

where ϑ∗ is denoted as ϑ∗ = ||θ∗||∞. For
∥ĝn (ξxn)− g (ξxn)∥∞, the sample-consistent of the LACKI
rule need to be discussed. Let j, k ∈ {1, ..., Nn} and take
g̃i,v as an example, for all sq ∈ Gn, q ∈ {1, .., Nn}, define

j ∈ argminig̃i,v + θ (n) ∥φ(si)− φ(sq)∥∞,
k ∈ argmaxig̃i,v − θ (n) ∥φ(si)− φ(sq)∥∞.

According to (18), it can be obtained that

ĝn,v (sq) =
1

2

(
g̃j,v + θ (n) ∥φ(sj)− φ(sq)∥∞

)
+

1

2

(
g̃k,v − θ (n) ∥φ(sk)− φ(sq)∥∞

)
.

(21)

Since θ (n) ≥ max(s,s′)∈Cn

∥g̃(s)−g̃(s′)∥∞
−λ

∥φ(s)−φ(s′)∥∞
, in particular,

θ ≥ |g̃k,v−g̃q,v|−λ
∥φ(sk)−φ(sq)∥∞

. Then, we further have

θ∥φ(sk)− φ(sq)∥∞ + λ ≥ |g̃k,v − g̃q,v| = g̃k,v − g̃q,v.
(22)

Thus,
g̃j,v + θ (n) ∥φ(sj)− φ(sq)∥∞ ∈ [g̃q,v − λ, g̃q,v] ,

g̃k,v − θ (n) ∥φ(sk)− φ(sq)∥∞ ∈ [g̃q,v, g̃q,v + λ] ,
(23)

holds, which further leads to

ĝn,v (sq) ∈
[
g̃q,v −

λ

2
, g̃q,v +

λ

2

]
.

Considering the existence of the observation error e (sq)
with the upper bound ē, the prediction error on the sample
point can be obtained as

∥ĝn (sq)− g (sq)∥
≤ ∥ĝn (sq)− g̃ (sq)∥+ ∥g̃ (sq)− g (sq)∥

≤ λ

2
+ ∥e (sq)∥∞ ≤ λ

2
+ ē.

(24)

Note that ξxn ∈ Gn, (20) can be rewritten as

∥ĝn (x)− g (x)∥∞

≤ (θ (n) + ϑ∗) ∥φ(x)−φ(ξxn)∥∞ +
λ

2
+ ē.

(25)

From (25), the boundedness of LACKI prediction on
Gn will be extended. Analysis is carried out respectively
relative to the grid dense of the sample point. When the
grid Gn becomes dense in the input domain U , there
is a rate function rx that satisfies lim

n→∞
rx (n) = 0 and
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∥φ(x)−φ(ξxn)∥∞ ≤ rx (n). For all n ∈ N, it can be
obtained

∥ĝn (x)− g (x)∥∞ ∈
[
0, (θ (n) + ϑ∗) rx (n) +

λ

2
+ ē

]
.

(26)
Due to lim

n→∞
rx (n) = 0, ∥ĝn (x)− g (x)∥∞ converges to[

0, λ2 + ē
]
.

On the other hand, in the case that the grid becomes
dense uniformly, utilizing the uniform convergence with
the independent rate r (n), for some θ (n) = θ̄ ∈ [0, ϑ∗]
and any n ∈ N, it can be obtained that

supx∈U∥ĝn (x)− g (x)∥∞

≤
(
θ̄ + ϑ∗

)
r (n) +

λ

2
+ ē

n→∞→ λ

2
+ ē.

(27)

As long as the hyper-parameter λ is set to be λ := 2ē+ p
with p ≥ 0, we have

supx∈X ∥ĝn (x)− g (x)∥∞
n→∞→ p

2
+ 2ē.

This completes the proof. ■

B. FLACKI-Based Uncertainty Prediction

In this subsection, the uncertain term ζ(k) in local
dynamic linearization model (11) is predicted by the
FLACKI rule. Note that

ζ (k) = −f (χ (k − 1) , uc (k − 1)) + f (χ (k) , uc (k − 1))

+ h (δ (k))− h (δ (k − 1)) . (28)

Let the input vector be

s(k) =
[
ωT (k) , ..., ωT (k − nω − 1) ,

uTc (k − 1), ..., uTc (k − nu − 1)
]T
, (29)

according to Assumption 2.3 and Assumption 2.4, ζ (k)
is non-Lipschitz continuous but with an upper bound
ζ̄l and contains a bounded partial term which is not
related to the sample inputs with the upper bound of
ēζ = 2Ēh. To establish initial conditions, it is assumed
that there exists available Nk ∈ N sample points in
the prior dataset Dk = (Gk, ζk), where the sample grid
Gk = {s(i)|i = 1, ..., Nk} ⊂ O, O denotes the input
space,

Utilizing the FLACKI rule, the prediction of ζ (k) is
represented as

ζ̂v (k) :=
1

2
uk,v (ϱ; Ξ (k)) +

1

2
lk,v (ϱ; Ξ (k)) , (30)

where

uk,v (ϱ; θ1 (k)) :=miniζ̂v (i)+θ1 (k) ∥ϱ (k)−ϱ (s(i))∥∞ ,

lk,v (ϱ; θ1 (k)) :=maxiζ̂v (i)−θ1 (k) ∥ϱ (k)−ϱ (s(i))∥∞ ,

ζ̂v(k) and ζ̃v(i) denote the v-th component of the output
ζ̂(k) and ζ̃(i), v = 1, 2, 3, i = 1, 2, ..., k − 1, ϱ (k) repre-
sents the fuzzy basis function according to the following
fuzzy IF-THEN inference rules:

If s1 ∈ Sl
1, s2 ∈ Sl

2, ..., sn ∈ Sl
n, then ζ ∈ Z l,

Fuzzy logic 

system (32)

Fuzzy weight 

estimation (33)

Kinky 

Inference (31)

Sample points

Prior Datasets

Fig. 1. Diagram of the FLACKI-based prediction.

where s = [s1, s2, ..., sn]
T ∈ Rn with n = 3(nu+nω +3)

and ζ ∈ R3 respectively express the fuzzy logic system
input and output, l = 1, 2, ..., N with N being the fuzzy
rule numbers, Sl

m and Z l represent the fuzzy sets, m =
1, 2, ..., n. Let hZl (ζ) and hSl

m
(s) be the membership

functions of Sl
m and Z l, then ϱ (k) is obtained as

ϱl (k) =

m∏
i=1

hSl
i
(si)

N∑
l=1

[
m∏
i=1

hSl
i
(si)

] , (31)

where ϱ (k) = [ϱ1 (k) , ..., ϱl (k) , ..., ϱN (k)].
Let θ1 (k) denote the fuzzy weight estimation, which

is obtained by the following learning rules:

θ1 (k) = max {θ1 (k − 1) ,

max
(ϱ(i),ϱ(j))∈V(Rk,{ϱk})

∥∥∥ζ̂ (i)− ζ̂ (j)
∥∥∥
∞

− β

∥ϱ (i)− ϱ (j)∥∞

 ,
(32)

where the initial value of the iteration is set to be
θ1(0) = 0, Rk = Rk−1 ∪ {ϱk}, V (Rk, {ϱk}) is the
grid of sample input pairs defined as V (S, S′) :=
{(s, s′) ∈ S × S′|∥s− s′∥∞ > 0} for two sets S, S′ ⊂ O,
β is the hyper-parameter introduced to modify the estima-
tion, β = 2ēζ + p with ēζ ∈ R≥0 being the upper bound
on the observation error of the sample sequence.

The overall diagram of the FLACKI-based prediction
is given in Fig. 2, where the iterative supervised learning
process is govern by (30), (31) and (32). According to
Theorem 3.1, there is an upper bound on the prediction
error under the FLACKI rule, which is expressed as:∥∥∥ζ̂ (k)− ζ (k)

∥∥∥
∞

k→∞→
[
0,
p

2
+ 2ēζ

]
. (33)

IV. DATA-DRIVEN ATTITUDE CONTROL SYSTEM
DESIGN

In this section, a data-driven adaptive back-stepping
fault-tolerant constrained controller is designed. First, a
virtual constrained control law utilizing barrier Lyapunov
function is proposed for attitude kinematics loop to satisfy
the deferred asymmetric performance constraint. Then,
a model-free adaptive controller is designed to stabilize
the angular velocity in the attitude dynamics loop. The
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overall control objective is to stabilize the attitude with
prescribed attitude control performance when the attitude
control system is subjected to actuator faults and unknown
nonlinear uncertainties.

A. Deferred Asymmetric Constrained Controller
Design

In the attitude kinematics loop, the following de-
ferred asymmetric performance constraints to the attitude
tracking error qev(k) = [qev1(k), qev2(k), qev3(k)]

T =
q(k)− qd(k) are taken into account:

1) The state q (k) is free from constraints during the
initial iteration steps k ∈ [0,Ks).

2) The state q (k) is fully constrained after itera-
tion step Ks, that is, q (k) ∈

(
−η (k) , η̄ (k)

)
for

k ∈ [Ks,+∞], where −η (k) , η̄ (k) are the time-
varying lower and upper bounds of q (k).

In view of above constraints, the following switching
function is designed:

ϑ (k) =

1−
(
Ks − k

Ks

)3

, 0 ≤ k < Ks

1, k ≥ Ks

, (34)

where Ks > 0 is the pre-defined switching time indicating
the introduction of attitude constraint.

Moreover, the following properties associated with
ϑ (k) are addressed:

1) ϑ (k) is strictly increasing during the initial period
k ∈ [0,Ks) with ϑ (0) = 0, ϑ (Ks) = 1. For k ≥
Ks, ϑ (k) remains 1 as its maximum value.

2) ϑ (k) and ∆ϑ (k) = ϑ (k + 1)−ϑ (k) denoting the
differential of ϑ (k) according to the definition of
general gradient [35], are continuous and bounded
for all k > 0.

The proof of the above properties can be found in [32].
Then, to transform the attitude response, we define

that
ψ (k) = ϑ (k) qev (k) , (35)

where ψ (k) denotes the transformed attitude tracking
error with consideration of omitting the initial conditions
since ψ (0) = 0 and ψ (Ks) = qev (Ks).

Next, considering the attitude control problem with
deferred asymmetric constraints, the following barrier
Lyapunov function based on the transformed attitude
tracking error ψ (k) is utilized to guarantee the attitude
error performance bound, which is given as

V1 (k) =
ψT (k)ψ (k)

(H1 (k) + ψ (k))
T
(H2 (k)− ψ (k))

, (36)

where H1 (k) and H2 (k) are the barrier functions to
be settled. As q (k) is fully constrained by q (k) ∈(
−η (k) , η̄ (k)

)
, the barrier functions are defined as

H1 (k) = η (k)− q
d
(k) , H2 (k) = η̄ (k)− q̄d (k) , (37)

where q
d
(k) and q̄d (k) are continuous functions with

q
d
(k) ≤ qd (k) ≤ q̄d (k).
The overall control framework is established via back-

stepping approach, and two dynamic surfaces are intro-
duced to derive the overall controller. The first dynamic
surface is selected as

S1 (k) = qev (k) , (38)

which is used to design a virtual control law for the
attitude kinematics loop.

Then, the following dynamics in terms of S1 is given
as

S1 (k + 1) = S1 (k) + Ω (k)ω (k)− qd (k + 1) + qd (k)

= S1 (k) + Ω (k) (ωd0
(k) + S2 (k))− qd (k + 1) + qd (k) ,

(39)
where S2 (k) is the second dynamic surface defined as

S2 (k) = ω (k)− ωd0
(k) . (40)

Taking into consideration the transformed attitude
tracking error (35), (39) is rewritten as

ψ (k + 1) = ψ (k) + ∆ϑ (k)S1 (k)− ϑ (k)∆qd (k)

+ ϑ (k) Ω (k)ωd0
(k) + ϑ (k) Ω (k)S2 (k) ,

(41)

where ∆ϑ (k) = ϑ (k + 1)−ϑ (k), ∆qd (k) = qd (k + 1)−
qd (k). Assume that qd (k) is a constant vector, ∆qd (k) =
0. By introducing the definition of general gradient [35],
the differential of V1 (k) is derived as

∆V1 (k)=V1 (k + 1)− V1 (k)=S
T
1 (k) (S1 (k + 1)− S1 (k))

=M1 (k)ϑ
2 (k)ST

1 (k) (Ω (k)ωd0
(k) + Ω (k)S2 (k)

+η1S1 (k)) +M1 (k)ϑ (k)∆ϑ (k)S
T
1 (k)S1 (k) , (42)

where

M1(k)=
2HT

1 (k)H2 (k)−ϑ (k)
(
HT

1 (k)−HT
2 (k)

)
S1 (k)(

(H1 (k) + ϑ (k)S1 (k))
T
(H2 (k)−ϑ (k)S1 (k))

)
2
,

η1 (k) =
−∆H12 (k) + ϑ (k)

(
∆HT

1 (k)−∆HT
2 (k)

)
S1 (k)

2HT
1 (k)H2 (k)− ϑ (k)

(
HT

1 (k)−HT
2 (k)

)
S1 (k)

,

with

∆H12 (k) = ∆HT
1 (k)H2 (k) + ∆HT

2 (k)H1 (k) ,

∆H1 (k) = H1 (k + 1)−H1 (k) ,

∆H2 (k) = H2 (k + 1)−H2 (k) .

Utilizing the famous Young’s inequalities [34], the
first and the last terms on the right of (42) satisfy the
following inequalities:

M1 (k)ϑ
2 (k)ST

1 (k) Ω (k)S2 (k) ≤
1

4σ1
S2(k)

TS2(k)

+ σ1M
2
1 (k)ϑ4 (k)ST

1 (k) Ω (k) ΩT (k)S1 (k) , (43a)

M1 (k)ϑ (k)∆ϑ (k)S
T
1 (k)S1 (k) ≤

1

4σ2
+ σ2M

2
1 (k)ϑ2 (k)∆ϑ2 (k)ST

1 (k)S1 (k)S
T
1 (k)S1 (k) ,

(43b)

where σ1, σ2 > 0 are tuning parameters.
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Now, it is ready to construct the virtual control law as

ωd0
(k) = −Ω−1 (k)K1S1 (k)− η1Ω

−1 (k)S1 (k)

− σ2M1 (k)∆ϑ
2 (k) Ω−1 (k)S1 (k)S

T
1 (k)S1 (k)

− σ1M1 (k)ϑ
2 (k) ΩT

1 (k)S1 (k) ,

(44)

where K1 > 0 is a feedback gain. Note that the fictitious
control law (44) is introduced to the attitude dynamics
loop as the reference command, and the above control law
can also be seen as an attitude guidance law in practical
engineering. By substituting (43a), (43b) and (44) into
(42), ∆V1 (k) is obtained as

∆V1 (k) ≤ −M1 (k)ϑ
2 (k)K1S

T
1 (k)S1 (k)

+
1

4σ1
ST
2 (k)S2 (k) +

1

4σ2
.

(45)

Since the dynamic surface S2 (k) is contained in
∆V1 (k), a data-driven approach is further introduced to
derive the control input for the attitude dynamics loop in
terms of the second dynamic surface S2 (k) in the next
subsection.

Remark 4.1: In this work, we consider the transient
and steady-state performance constraints of the attitude
tracking error for the entire iteration steps, and the conver-
gence rate constraint of the attitude tracking error is also
characterized. The selection principle of Hi(k) mainly
refers to [29], which aims to achieve fault-tolerant attitude
control for spacecraft reorientation. Moreover, according
to [29] and [31], the initial values of the deferred safety
limitations Hi(Ks) are required to comply with the con-
straint H1(Ks) > qev(Ks) or H2(Ks) > qev(Ks), since
Hi(Ks) denotes the safety constraints. This means that
the attitude responses are required to maintain within
boundaries defined by barrier functions at the initial step
ks. As a result, the attitude tracking error is considered to
satisfy the pre-defined attitude limitations, which will not
equals to or exceeds performance boundaries at k = Ks.

B. Model-Free Adaptive Controller Design

Considering the attitude dynamic system in (11), a
model-free fault-tolerant controller is designed for the atti-
tude dynamics loop by taking advantages of the proposed
FLACKI-based predictor and adaptive control technique.
In view of the second dynamic surface S2 (k) = ω (k)−
ωd0 (k), the attitude dynamics in terms of S2 is denoted
as:

S2 (k + 1) = ω (k + 1)− ωd0
(k + 1)

= S2 (k) + ΘT (k)∆uc (k)− ωd0
(k + 1)

+ ωd0
(k) + ζ (k) .

(46)

The data-driven adaptive control law for the attitude
dynamics loop is designed as:

v (k)

=
−S2 (k)− ζ̂ (k)− ωd0 (k + 1) + ωd0 (k) +K2S2 (k)

λ+
∥∥∥Θ̂T (k)

∥∥∥
uci (k)

=


uci (k −1)+ρusgn (vi (k)),|vi (k)|>ρu∧|uci (k) |<ρuc

uci (k − 1) + vi (k) , |vi (k)| ≤ ρu ∧ |uci (k) |<ρuc

ρuc
sgn (uci (k)) , |uci (k) | ≥ ρuc

,

(47)
where K2 > 0 and λ > 0 are parameters to
be designed, v (k) = [v1 (k) , ..., vm (k)]

T
, uc (k) =

[uc1 (k) , ..., ucm (k)]
T, i = 1, 2, ...,m, Θ̂T

1 (k) denotes the
prediction of ΘT

1 (k).
To obtain Θ̂T

1 (k), a cost function utilizing closed-loop
data is formulated as:

J
(
ΘT

1 (k)
)
=

∥∥ω (k)− ω (k − 1)−ΘT
1 (k)∆uc (k − 1)

∥∥2

+ µ
∥∥∥ΘT

1 (k)− Θ̂T
1 (k − 1)

∥∥∥2

, (48)

where µ > 0 represents the weighting coefficient. The
adaptive estimation law of ΘT (k) can be obtained by
minimizing J

(
ΘT (k)

)
, which yields

Θ̂T
1 (k) = Θ̂T

1 (k − 1)

+
γ
(
∆ω (k)− Θ̂T

1 (k − 1)∆uc (k − 1)
)
∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2
,

(49)
where γ > 0 is the adaptive gain.

C. Convergence Analysis

Combining the contraction mapping principle and
discrete-time Lyapunov theory, the convergence of all the
dynamic surfaces and estimation error of Θ̂T

1 is analyzed.
Before details, the lemma of contraction mapping princi-
ple is given.

Lemma 4.1 [11]: Consider the iteration of state ν (k),
which is expressed as

ν (k + 1) = α (k) ν (k) +ϖ (k) , (50)

where α (k) ∈ RM×M denotes the mapping matrix
and ϖ (k) ∈ RM is the control input. If ∥α (k)∥ <
1, lim

k→∞
ϖ (k) = 0, then lim

k→∞
ν (k) = 0.

According to Lemma 4.1, we can obtain the following
theorem.

Theorem 4.1: For the discrete nonlinear attitude con-
trol system (11) and the adaptive law (49), if 0 < γ < 2,
the boundedness of estimation error of Θ̂T

1 can be guar-
anteed, and the upper bound of the error can be derived
as

lim
k→∞

∥∥Θ̃T
i (k)

∥∥ =
a1

1− a
, (51)

where Θ̃T
i (k) = ΘT

i (k)− Θ̂T
i (k) is the adaptive estima-

tion error of Θ̂T
i (k), Θ̂T

i (k) is the estimation of ΘT
i (k)

: 9
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obtained by (49), a =
∥∥∥I − γ∆uc(k−1)∆uT

c (k−1)

µ+∥∆uc(k−1)∥2

∥∥∥ , a1 =

γ(ζ̄l+ζ̄b)
2
√
µ +2ρΘ, ΘT

i (k) ∈ R1×m is the i-th row of ΘT
1 (k).

Proof: Recall the adaptive law (49), the estimation
error can be denoted as

Θ̃T
i (k) = Θ̃T

i (k − 1) + ∆ΘT
i (k)− γ

µ+ ∥∆uc (k − 1)∥2

×
(
ΘT

i (k − 1)∆uc (k − 1) + ζi (k − 1)

− Θ̂T
i (k − 1)∆uc (k − 1)

)
∆uTc (k − 1)

= Θ̃T
i (k − 1)

(
I − γ∆uc (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2

)
− γζi (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2
+∆ΘT

i (k) , (52)

where ζi (k − 1) is the (k − 1)-th iteration of the i-th row
of the uncertainties ζ, ∆ΘT

i (k) = ΘT
i (k) − ΘT

i (k − 1).
According to the boundedness assumption of ΘT (k), the
upper bound of partial terms in (52) can be obtained as∥∥∥∥γζi (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2
−∆ΘT

i (k)

∥∥∥∥ ≤ γζ̄l
2
√
µ
+2ρΘ = b.

(53)
Taking norm on both sides of (53), it can be derived as∥∥Θ̃T

i (k)
∥∥

=

∥∥∥∥Θ̃T
i (k − 1)

(
I − γ∆uc (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2

)∥∥∥∥+ a1.

(54)
Note that∥∥∥∥Θ̃T

i (k − 1)

(
I − γ∆uc (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2

)∥∥∥∥
≤

∥∥Θ̃T
i (k − 1)

∥∥∥∥∥∥I − γ∆uc (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2

∥∥∥∥ ,
(55)

since 0 < γ < 2, µ > 0, then

0 <

∥∥∥∥I − γ∆uc (k − 1)∆uTc (k − 1)

µ+ ∥∆uc (k − 1)∥2

∥∥∥∥ = a < 1

is satisfied, and one can obtain∥∥Θ̃T
i (k)

∥∥ ≤ a
∥∥Θ̃T

i (k − 1)
∥∥+ a1

≤ ak
∥∥Θ̃T

i (0)
∥∥+

a1
1− a

. (56)

Form lemma 4.1, the boundedness of Θ̃T
i (k) can

be obtained with the upper bound expressed as
lim
k→∞

∥∥Θ̃T
i (k)

∥∥ = a1

1−a . ■

To this end, the main result of this paper is summa-
rized in the following theorem, and the control framework
is shown in Fig. 2.

Theorem 4.2: Under the Assumption 2.1 to As-
sumption 2.4, consider the nonlinear discrete attitude
kinematics and dynamics in (11) with the data-driven con-
trollers (44) and (47), the adaptive estimation law (49) and
FLACKI-based predictions (30) and (32), the closed-loop
system is semi-globally uniform ultimate bounded and the
attitude tracking error satisfies the deferred asymmetric

prescribed constraints, if the control and estimation gains
are selected to satisfy the following selection principles:

K1 > 0, K2Γ1 − 2Γ1 −
I

4σ1
− 3I − κ2I

γ2
< 0, (57)

where Γ1 = H(k)ΘT(k)

λ+∥Θ̂T(k)∥ , γ2 is a positive tuning parameter,

H (k) = ∆uc(k)
v(k) .

Proof: The overall Lyapunov function is chosen as

V (k) = V1 (k) +
1

2
ST
2 (k)S2 (k) . (58)

The differential of V (k) can be approximately de-
scribed as

∆V (k) = ∆V1 (k) + ST
2 (k) (S2 (k + 1)− S2 (k)) . (59)

In the view of (45), ∆V (k) is expressed as

∆V (k) ≤ −M1 (k)ϑ
2 (k)K1S

T
1 (k)S1 (k)

+
1

4σ1
ST
2 (k)S2 (k) +

1

4σ2
+ST

2 (k) (S2 (k + 1)−S2 (k)) .

(60)
Define ∆V2 (k) = ST

2 (k) (S2 (k + 1)− S2 (k)), utiliz-
ing H (k) = ∆uc(k)

v(k) , note that ∥∆uc (k)∥ ≤ ∥v (k)∥ from
(47), then 0 < H(k) ≤ 1, ∆V2(k) can be rewritten as

∆V2 (k) = ST
2 (k)

(
S2 (k) + ΘT (k)∆uc (k)

−ωd0 (k + 1) + ωd0 (k) + ζ (k))

= ST
2 (k)

ζ̃(k) +
I − H(k)ΘT(k)

λ+
∥∥∥Θ̂T(k)

∥∥∥
(

S2(k) + ζ̂(k)

−ωd0
(k + 1) + ωd0

(k)
)
+
K2H(k)ΘT(k)

λ+
∥∥∥Θ̂T(k)

∥∥∥ S2(k)

 .

(61)

Denoting Γ1 = H(k)ΘT(k)

λ+∥Θ̂T(k)∥ and utilizing Young’s

inequality, ∆V2 (k) is derived as

∆V2 (k) = (I − (I −K2) Γ1)S
T
2 (k)S2 (k) + ST

2 (k) ζ̃ (k)

+ (I − Γ1)S
T
2 (k)

(
−ωd0 (k + 1) + ωd0 (k) + ζ̂ (k)

)
≤ (3I − (2I −K2) Γ1)S

T
2 (k)S2 (k) +

1

4
ζ̂T (k) ζ̂ (k)

+ (I − Γ1)S
T
2 (k)∆ωd0

(k) +
1

4
ζ̃T (k) ζ̃ (k) , (62)

where ∆ωd0
= ωd0

(k + 1)− ωd0
(k). Then, according to

(44), it follows that

∥∆ωd0∥ = ∥ωd0 (k + 1)− ωd0 (k)∥ ≤ χ (S1, S2, qd) ,
(63)

where χ (·) is a scalar continuous function. The following
inequalities can be obtained as

(I − Γ1)S
T
2 (k)∆ωd0

(k)

≤ (I − Γ1) ∥χ∥2

2γ2
ST
2 (k)S2 (k) +

γ2
2
.

(64)

Consider a compact set Ψ := {(S1, S2, qd) : V < b}, the
maximum value κ of ∥χ∥ exists on Ψ, synthesizing (62)
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and (64), ∆V2 (k) is denoted as

∆V2 (k)

≤
(
3I − (2I −K2) Γ1 +

κ2 (I − Γ1)

2γ2

)
ST
2 (k)S2 (k)

+
γ2
2

+
1

4
ζ̂T (k) ζ̂ (k) +

1

4
ζ̃T (k) ζ̃ (k) . (65)

From the boundedness of ζ̃ (k) , ζ (k), note that 0 <
∥Γ1∥ < 1, one can obtain

∆V (k) = −M1 (k)ϑ
2 (k)K1S

T
1 (k)S1 (k)

+
1

4σ2
+
γ2
2

+
1

4

∥∥∥ζ̂ (k)∥∥∥2

+
1

4

∥∥ζ̃ (k)∥∥2

+

(
I

4σ1
+3I+(K2−2I)Γ1 +

κ2 (I − Γ1)

2γ2

)
ST
2 (k)S2 (k)

≤ −M1 (k)ϑ
2 (k)K1S

T
1 (k)S1 (k)

+
1

4σ2
+
γ2
2

+
1

4
ζ̄2l +

1

4

(p
2
+ 2ēζ

)2

+

(
I

4σ1
+ 3I − 2Γ1 +K2Γ1 +

κ2I

γ2

)
ST
2 (k)S2 (k) .

(66)

Then, if parameters are selected such that the conditions
in (57) hold, then ∆V (k) can satisfy the following
inequality on V = b:

∆V (k) ≤ −γ0b+ β0, (67)

where γ0 = min{M1 (k)ϑ
2 (k)K1, 2Γ1 − I

4σ1
− 3I −

K2Γ1− κ2I
γ2

}, γ0 > 0, β0 = 1
4σ2

+ γ2

2 + 1
4 ζ̄

2
l +

1
2

(
p
2 + 2ēζ

)2
.

Furthermore, integrating (66) yields

0 ≤ V (k) ≤ β0
γ0

+

(
V (0)− β0

γ0

)
e−γ0k. (68)

That is, V (k) ∈ L∞, as long as γ0 > β0

b , ∆V (k) ≤
0, V (k) ≤ b is an invariant set, which indicates the
boundedness of the asymmetric barrier Lyapunov function
V1 (k), implying that ψ (k) satisfies −H1 (k) ≤ ψ (k) ≤
H2 (k). In addition, in view of ϑ (0) = 0 for k < Ks,
ψ (k) = ϑ (k)S1 (k) = 0. That is, the constraint of the
attitude response is relaxed before iteration step Ks. After
the switching instant Ks, due to ϑ (k) = 1, it is clear
that ψ (k) = S1 (k) and −H1 (k) ≤ S1 (k) ≤ H2 (k),
which realizes the asymmetric prescribed performance of

attitude tracking error. Then, according to (67), it can be
derived that

ψT (k)ψ (k)

(H1 (k) + ψ (k))
T
(H2 (k)− ψ (k))

= V1 (k) ≤ V (k)

≤ β0
γ0

+

(
V (0)− β0

γ0

)
e−γ0k.

(69)
Due to Young’s inequality [25], in the
compact set −H1 (k) ≤ ψ (k) ≤ H2 (k),
(H1 (k) + ψ (k))

T
(H2 (k)− ψ (k)) ≤

(H1 (k) +H2 (k))
T
(H1 (k) +H2 (k)) /4, and

∥ψ (k)∥ ≤ H1(k)+H2(k)
2

√
β0

γ0
+
(
V (0)− β0

γ0

)
e−γ0k

is obtained. As the iteration step k → ∞, it is derived
that

lim
k→∞

∥ψ(k)∥ = lim
k→∞

∥S1(k)∥ =
H1(k) +H2(k)

2

√
β0
γ0
,

(70)
which means the steady response of attitude tracking error
can be bounded and becomes smaller by choosing γ0
properly.

Recall the derivation result that V (k) ≤ b is an invari-
ant set when γ0 >

β0

b , ∆V (k) ≤ 0 can be guaranteed
by satisfying the parameter selection principle. It can
be concluded that the system is semi-globally uniform
ultimate bounded meanwhile attitude tracking error can
coverage into the asymmetric bound [−H1(k), H2(k)] by
the barrier Lyapunov function-based control scheme. This
completes the proof. ■

V. SIMULATION RESULTS AND ANALYSIS

A. Parameter Settings

Numerical simulations are provided to demonstrate the
effectiveness of the FLACKI-based data-driven adaptive
back-stepping fault-tolerant control scheme. The objective
of this simulation is to reorientate the spacecraft to the
desired attitude qd = [0, 0, 0, 1]

T by using the proposed
data-driven control scheme, with the consideration of de-
ferred asymmetric constraints in attitude response, time-
varying actuator faults, and modeling uncertainties. In the
numerical simulation, the sampling frequency is 10 Hz,
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Fig. 3. Prediction by FLACKI rule.
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Fig. 4. Comparison of FLACKI prediction and true value.

that is, the sample step satisfies k = 10t, where t is the
simulation time. Parameters of the spacecraft dynamics
are given as follows [16]:

J0 =

30 1 0.5
1 20 3
0.5 3 10

 kg · m2

with the initial angular velocity and attitude se-
lected as ω0 = [0.06,−0.05,−0.1]

T rad/s and q0 =
[0.4,−0.3,−0.4, 0.7681]

T. The upper bound of control
torque and input rate are set to be ρu = 1, ρuc

= 5. The
modeling uncertainty of inertia matrix is assumed to be
in the form of ∆J = −J1ψ (t)+ J̃ [33], where J1ψ (t) is

J1ψ (t) = − [m1I3,m2I3]

[
ηT1 η1I3 − η1η

T
1

ηT2 η2I3 − η2η
T
2

]
, (71)

with time-varying coefficients η1 and η2 defined as
η1 (t) = 0.1 [1.2κ1t+ 0.05 sin (3t) + +0.05 cos (3t)] ,

η2 (t) = −0.1 [1.2κ1t+ 0.05 sin (3t) + +0.05 cos (3t)] ,

and κ1 being a time-varying coefficient given by

κ1 =

{
1 t ≤ 10
10
t t > 10

.

Additionally, J̃ is denoted as

J̃ =

 0 0.05 sin (3t) 0.05 sin (3t)
0.02 sin (3t) 0 0.03 sin (3t)
−0.02 sin (3t) 0.03 sin (3t) 0

 kg·m2.

The external disturbance is set as:

d = 0.01×

 sin (0.1||ω||t) + ||ω||
sin (0.075||ω||t) + ||ω||
sin (0.05||ω||t) + ||ω||

N · m.

In the simulation, a time-varying bias fault is intro-
duced into the control input at 50 s, which is denoted
as
ū = 0.05

×

 0.9||ω||+ 0.1 sin (0.1||ω||t) + 0.01rand(·)
0.9||ω||+ 0.1 sin (||ω||t/15) + 0.015rand(·)
0.9||ω||+ 0.1 sin (0.05||ω||t) + 0.02rand(·)

N · m,

and the gain fault matrix is defined as

E =

 0.89 + 0.1 sin (0.1t) + 0.01rand(·)
0.885 + 0.1 sin (t/15) + 0.015rand(·)
0.88 + 0.1 sin (0.05t) + 0.02rand(·)

 .
where the function rand(·) produces a random value
from the normal distribution with mean 0 and standard
deviation 1.

A barrier Lyapunov function is introduced to the
attitude kinematics control loop, which defines the time-
varying asymmetric prescribed performance constraints
for the attitude response. Specifically, the asymmetric
performance is given as follows:

ι (k) = 0.2e−0.004k + 0.01,

H1 (k) = (0.6ι(k)− 0.01)1n,

H2 (k) = (0.9ι(k) + 0.03)1n,

where 1n denotes an n-dimensional column vector of
ones. To omit the influence of the initial value conditions,
a deferred switching function is introduced to S1(k), with
the pre-defined switching step set as Ks = 500, which
means the switching time set to be 50 s.

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2022

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2023.3312363

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on September 08,2023 at 00:32:05 UTC from IEEE Xplore.  Restrictions apply. 



-0.3 -0.2 -0.1 0 0.1 0.2

||s||

-1.5

-1

-0.5

0

0.5

1

1

10
-3

sample points

prediction

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

||s||

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10
-3

sample points

prediction

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

||s||

-5

-4

-3

-2

-1

0

1

2

3

3

10
-3

sample points

prediction

-0.02 0 0.02

-4

-2

0

2

4

10
-5

-0.01 0 0.01

-6

-4

-2

0

2

4
10

-5

-0.01 0 0.01

-4

-2

0

2

10
-5

Fig. 5. Prediction by LACKI rule.

0 20 40 60 80 100 120 140 160 180 200

time/s

-2

0

2

4

6

1

10
-3

LACKI prediction value

true value

0 20 40 60 80 100 120 140 160 180 200

time/s

-5

0

5

10

2

10
-3

LACKI prediction value

true value

0 20 40 60 80 100 120 140 160 180 200

time/s

-6

-4

-2

0

2

4

3

10
-3

LACKI prediction value

true value

50 55 60 65 70 75
-2

-1

0

1
10

-4

50 55 60 65 70 75

0

2

4
10

-4

100 120 140 160 180
0
1
2
3

10
-4

Fig. 6. Comparison of LACKI prediction and true value.

To verify the effectiveness of the FLACKI rule-based
data-driven back-stepping adaptive fault-tolerant control
scheme, comparison with existing data-driven method
proposed in [11] is also simulated, in which a data-
driven ADRC method is used with an extended state
observer to deal with the system uncertainties. To have
a fair comparison, the ADRC-based data-driven method
is implemented to the inner loop with the back-stepping
control framework, while the outer loop remains the same
as the proposed scheme in this work. The ADRC-based
controller is given as follows:

v (k)

=
−ω (k)− z2 (k) + ωd (k + 1) +K2 (ωd (k)− z1 (k))

λ+
∥∥∥Θ̂T (k)

∥∥∥ ,

uci (k) =

{
uci (k − 1) + ρusgn (vi (k)) , |vi (k)| > ρu,

uci (k − 1) + vi (k) , |vi (k)| ≤ ρu,
(72)
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Fig. 7. Comparison of prediction error between LACKI and
FLACKI.

where parameters K2 > 0 and λ > 0 are selected the same
as in the scheme proposed in the simulation. z1 (k) , z2 (k)
are the estimation from the data-driven extended state
observer, which is given by

z1 (k + 1) = z1 (k) + Θ̂T (k)∆uc (k)

+ z2 (k) + l1 (ω (k)− z1 (k)) ,

z2 (k + 1) = z2 (k) + l2 (ω (k)− z1 (k)) ,

(73)

where the observer gains are set as l1 = 9.8 and l2 = 8.8.
For the proposed virtual controller (44) of the atti-

tude kinematics loop and the FLACKI-based data-driven
adaptive controller (47), the parameters are selected as
λ = 0.01, µ = 0.01, γ = 1, K1 = 1.76, σ1 = 0.008,
σ2 = 0.007, K2 = 0.9. In addition, in the FLACKI rule,
a fuzzy logic system with 4 fuzzy rules are used and the
fuzzy membership functions are set as following:

hSl
i
(si) = exp

[
−(20si + 0.3(l − 1))2

]
,
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Fig. 9. Input signals.

where i = 1, ..., n, n = 3(nu + nω + 3), nu = nω = 1,
l = 1, ..., 4.

B. FLACKI Rule

To demonstrate the benefits of the proposed online
FLACKI rule in (30) and (32), we first compare it with
the existing LACKI rule in [23], in which 141 data points
are sampled. The simulation time is 200 s, and the fixed

TABLE I
Results of FLACKI and LACKI.

Rule Prior points
RMSE×10−5

Time/s
ζ1 ζ2 ζ3

FLACKI 141 2.78 11.2 17.6 332.07

LACKI 141 7.90 33.3 61.3 220.50

LACKI 301 2.38 17.1 48.9 467.90
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Fig. 10. Comparison of angular velocity response between the
proposed scheme and the scheme in [11] in the presence of actuator

faults.

sample step is set to be 0.1 s. This means that 2001 sample
points are predicted by the 141 prior sample grids.

The simulation results of the proposed FLACKI rule
are shown in Fig. 3 and Fig. 4, while Fig. 5 and Fig.
6 depicts the prediction result of the existing LACKI
rule in [23]. Specifically, it is seen from Fig. 3 to Fig. 6
that bounded prediction of the true value of the system’s
unknown dynamics can be achieved by either FLACKI
rule and LACKI rule. Based on the theoretical analysis,
this estimation error is mainly caused by the external
terms not related to the input grids. The comparison of
prediction error between LACKI and FLACKI is plotted
in Fig. 7, and the quantitative comparison in terms of
root mean square error (RMSE) of the prediction error
and simulation time under LACKI and FLACKI rules are
shown in TABLE I. It can be observed that although
computing time increases with the introduction of the
fuzzy logic in FLACKI rule, the prediction precision is
improved by 69.2%. It is well known from [23], [25] that
the computing time will grow rapidly with more sample
grids. To verify the above illustration, we also provide
the simulation of the LACKI-based prediction with 301
initial sample points for achieving similar prediction
accuracy compared with the proposed FLACKI rule. As
seen in TABLE I, it is clear that more prior points and
computational time are needed for the existing LACKI.

C. Data-Driven Adaptive Back-Stepping
Fault-Tolerant Controller

In this subsection, we first verifies the effectiveness
of the proposed data-driven adaptive back-stepping fault-
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Fig. 11. Comparison of attitude response between the proposed
scheme and the scheme in [11] in the presence of actuator faults.

tolerant controller in (44) and (47), then the advantages
of the proposed controller are demonstrated by comparing
with the existing data-driven ADRC method in [11] (cf.
(72) and (73)).

As shown in Fig. 8, it is clear that the time response of
attitude converges to a prescribed ultimate bound during
the control progress, which has been analyzed theoret-
ically in the previous sections. It is worth mentioning
that the attitude response does not have to satisfy the
time-varying deferred asymmetric constraints before the
switching time. After the predefined switching time of
50 s, all the attitude error responses converge into the
performance bound despite the existence of disturbance
and actuator faults. Fig. 9 depicts the commanded control
inputs (47) of the proposed FLACKI-based scheme.

The comparison results of the attitude and angular
velocity responses under the proposed scheme the ADRC-
based data-driven approach [11] are shown in Fig. 10 to
Fig. 13, where the simulation conditions are respectively
set in the presence of actuator faults and in the absence of
actuator faults. It is observed that, in either the fault-free
condition or the faulty condition, the proposed scheme
achieves better uncertainty suppression performance than
that of the data-driven ADRC scheme for attitude control
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Fig. 12. Comparison of angular velocity response between the
proposed scheme and the scheme in [11] in the absence of actuator

faults.

of spacecraft. This is due to that estimation ability of the
data-driven ADRC is mainly depended on the feedback
gain chosen of the extended state observer, which is
difficult to choose suitable parameters to estimate and
suppress the time-varying unmodeled dynamics. As a
result, the ADRC scheme cannot obtain high tracking
precision and leads to large steady-state tracking error,
as shown in Fig. 11. On the other hand, as long as
the model uncertainties are arbitrarily continuous, the
prediction error under the FLACKI rule is small, so the
proposed data-driven model-free controller in (47) can
achieve satisfactory control performance for spacecraft
attitude control.

VI. CONCLUSION

In this paper, a data-driven adaptive back-stepping
fault-tolerant control scheme is proposed for the space-
craft attitude control problem. To deal with the uncer-
tainties, external disturbances and time-varying actuator
faults, a supervised learning scheme named FLACKI rule
is introduced to estimate arbitrarily continuous actuator
faults and other uncertainties, resulting in bounded es-
timation error. The overall control scheme contains two
parts, where a virtual control law derived from a barrier
Lyapunov function is used to guarantee the deferred asym-
metric constraints of attitude tracking error in the attitude
kinematics loop and a model-free fault-tolerant controller
using the estimation from FLACKI-based predictor is
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Fig. 13. Comparison of attitude response between the proposed
scheme and the scheme in [11] in the absence of actuator faults.

designed to compensate unmodeled arbitrarily continuous
dynamics. The stability analysis of the overall closed-
loop system is performed with the aid of contraction
mapping principle and discrete-time Lyapunov theory.
Numerical simulation verifies the efficiency of the pro-
posed FLACKI-based prediction and the model-free fault-
tolerant control scheme. In future work, the situation that
the initial attitude error exceeds the boundaries defined
by the barrier function will be explored.
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