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Abstract—Aiming at the ultra-precision and ultra-stable re-
quirements of drag-free control in space detection missions, a
multivariable model reference adaptive control (MRAC) scheme
is proposed in this paper based on partial observation state,
to provide adaptive suppression of uncertain disturbances and
improve detection accuracy. The MRAC scheme utilizes model
output matching with partial state containing uniform and bounded
observation error, and estimates the unknown state parameters
through the adaptive law and high-frequency gain decomposition.
In response to the actuator bias fault of the drag-free satellite, a set
of state error iterative convergence sequence in the actuator loop
is established based on the sequence Lyapunov analysis, which is
further introduced into the reconfiguration control input to achieve
the fault-tolerant target without changing the nominal controller.
Through the Lyapunov stability analysis, the convergence of the
closed-loop system states in the presence of actuator faults and
observation errors is obtained. Numerical simulation results for
a 6-DOF drag-free control system demonstrate the effectiveness
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of the proposed MRAC-based reconfigurable fault-tolerant control
scheme.

Index Terms—Partial state feedback; bounded estimation error;
multivariable MRAC; drag-free control; reconfigurable control;
sequential Lyapunov analysis; fault-tolerant control.

I. INTRODUCTION

WITH the development of space science and space ex-
periments, such as microgravity science and space-based
physics verification, ultra-precision and ultra-stable re-
quirements to dynamic characteristics of orbiting satellite
become essential. The drag-free control scheme, utilizing
the suspended test masses (TMs) as inertial reference to
suppress external disturbances acting on the spacecraft to
build an ultra-stable environment of spacecraft platform,
has attracted great attention and has been applied in
space science experiment satellites such as the Laser
Interferometer Space Antenna (LISA) Project [1] .

Currently, the drag-free control can be divided into
active control method and passive control method. The
passive one is based on closed-loop performance require-
ments with the attention of the controller robustness to
achieve noise suppression. In [2], a frequency domain
separation control strategy is proposed based on the
full-band demand of the drag-free controller, combined
with the mixed sensitivity control scheme, which can
realize the separation and decoupling of the control signal
and the scientific measurement signal; In [3], combined
with quantitative feedback theory, a set of design criteria
obtained by the transformation is designed to express the
constraints of the SISO controller sensitivity function, ad-
justing the nominal controller ensuring the boundedness,
and meeting different performance specifications. Active
methods provide observation feedback of the disturbance
or the estimation of the uncertainties, to improve the
adaptive stable ability of the system. In [4], a fixed-time
controller is designed for the stochastic disturbance to
meet the requirements of the low-orbit drag-free satellite.
In [5], the embedded model control method (EMC) is
adopted, with the expansion observer designed to estimate
the external disturbance, the control effect reflects good
robustness.

Moreover, to improve the safety and prevent risks,
fault detection, diagnosis and fault-tolerant capabilities
regarding to actuator faults of the field emission electric
propulsion (FEEP) are also considered for the drag-free
satellite. In [6], an adaptive fault compensation control
scheme is proposed to deal with partial loss of effective-
ness and struck of LEO drag-free satellite actuators, and
the low-noise requirements are also satisfied when the
fault occurs. In [7], aiming at handling multiple faults
of the LISA Pathfinder (LPF) spacecraft, the control
allocation algorithm (TAA) is designed to realize the
model state threshold estimation, and a fault detection,
isolation and the reconfigurable control scheme is intro-
duced to achieve the fault-tolerant capability for the drag-
free satellite.
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In this paper, a fault-tolerant control scheme is devel-
oped for drag-free satellite subject to actuator faults and
partial state observations. Utilizing the partial observation
with uniform and bounded observation error, a model
reference adaptive control (MRAC) scheme is designed
as baseline drag-free controller. Then, to compensate
the 6-DOF actuator faults, a fault-tolerant control (FTC)
scheme is proposed using the sequence Lyapunov method.
The main contributions of the paper are summarized as
follows:

1) A novel fault observer is proposed for actuator bias
fault with the utilization of an iterative estimation
accuracy predictor, which approximates the steady
fault observation error by constructing a uniformly
bounded monotonic convergence sequence. The
proposed fault observer is convenient to implement
on the basis of the existing fault observer in [25],
and obtain a much less conservative estimation
error bound.

2) Considering the bounded estimation error in the
fault observation and partial available state infor-
mation in practical condition, an extended partial
state feedback MRAC scheme is proposed for
the drag-free control system to achieve the high-
precision control performance. To the best of au-
thors, it is the first time that estimation errors of
external disturbances and actuator faults are taken
into account in the partial state feedback MRAC
scheme when compared with the nominal case in
[8], [9], [10], [11], [12], [13], [14], [15], [22], [27],
while the boundedness of all closed-loop signals
are analyzed theoretically.

3) The steady-state accuracy is firstly discussed and
obtained in the practical drag-free control system
compared with the previous reports in [2], [3]
and [17], which provides a detailed theoretical
support to the mission requirement decomposition
for drag-free satellite.

The rest of the paper is organized as follows: In
Section II, the drag-free control problem is formulated, in-
cluding space detection satellite drag-free control system
and fault actuators modeling. In Section III, the FTC con-
troller is designed in actuator loop with sequential Lya-
punov method. In Section IV, the baseline MRAC scheme
is designed with partial state and disturbance feedback
considering bounded estimation errors, the boundedness
of the full closed-loop signals ,the output convergence and
stability is proved, the closed-loop accuracy is obtained
utilizing the upper bound of the estimation error. In
Section V, the simulation environment is introduced to
verify the closed-loop state performance and FTC ability
of the drag-free controller. Section VI gets the conclusion.

II. PROBLEM FORMULATION

In this section, dynamics of the baseline drag-free
satellite and the first-order actuators with bias faults are

TM1 TM2

Satellite

Fig. 1. The 3-body kinematic geometry of drag-free satellite [3].

modeled, then the control problems are formulated with
the establishment of the partial state observation MRAC
framework, the boundedness assumptions of observation
error and uncertainties are given.

A. Dynamic Modeling of Drag-free Satellite

Take the LISA Pathfinder gravitational wave detection
mission spacecraft as an example in [16], [17], [18]
and [19] to model the dynamics of the drag-free control
system. The satellite consists of two opposed inertial
TMs named TM1 and TM2. The kinematic relationship
is shown in the Fig.1.

According to [3], the multi-body dynamics is de-
scribed as:


ϕ̈
r̈1

ϕ̈1

r̈2

ϕ̈2

 =


0 I 0 0 0 0

−T1B T1B r̃o1 I 0 0 0
0 −T1B 0 I 0 0

−T2B T2B r̃o2 0 0 I 0
0 −T2B 0 0 0 I



a
α
a1

α1

a2

α2

 ,

(1)
where ϕ is the attitude of the satellite, ri and ϕi are
the position and attitude of the two TMs defined as
ri = [xi, yi, zi]

T and ϕi = [θi, ηi, φi]
T for i ∈ {1, 2},

T1B, T2B are the transformation matrices from the satel-
lite to the TMs under the nominal position. r̃o1, r̃o2
are oblique symmetric cross matrices defined by the
nominal position vector ro1 = [ro1,x, ro1,y, ro1,z]

T, ro2 =
[ro2,x, ro2,y, ro2,z]

T, expressed as

r̃o1 =

 0 −rO1,z rO1,y

rO1,z 0 −rO1,x

−rO1,y rO1,x 0

 ,
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r̃o2 =

 0 −rO2,z rO2,y

rO2,z 0 −rO2,x

−rO2,y rO2,x 0

 .
Define the acceleration of spacecraft and test masses as

α = J−1t,a =
1

m
f ,α1 = J−1

1 t1,

a1 =
1

m1
f1,α2 = J−1

2 t2,a2 =
1

m2
f2,

where m,m1,m2, J, J1, J2 are masses and inertia mo-
ments of satellite and TMs, f ,f1,f2, t, t1, t2 are the
combined external forces and moments.

When performing Science Mode 1 (or Test Mode
M3), 3 translational DOF, 1 rotational DOF of TM1
and 2 translational DOF of TM2 are selected for drag-
free control, and the remaining 6-DOF is performed as
suspension control [20]. Define the coordinate selection
matrices DDF and DSUS obtained in [21], and rewrite
the dynamic model of the drag-free system as: ϕ̈

q̈DF
q̈SUS

 =

 BATT 0
DDFB1 DDFB2

DSUSB1 DSUSB2

(aSC
aTM

)
, (2)

where qDF , qSUS are the drag-free control and electro-
static suspension control coordinates, qDF = DDF q,
qSUS = DSUSq, q is the relative displacement of the
TMs, B1,B2,BATT are parameter matrices, defined as:

BATT =
[
0 I

]
,B1 =


−T1B T 1B r̃o1

0 −T1B

−T2B T 2B r̃o2
0 −T2B

 ,B2 = I,

aSC ,aTM are the combined external forces and mo-
ments from the satellite and the TMs, aSC =(
aT αT

)
T,aTM =

(
a1

T α1
T a2

T α2
T
)

T. It is
considered that the actuation external force and mo-
ment are composed of controller input uT ,uS , external
interference dSC ,dTMs and TM stiffness deformation,
expressed as:

aSC = uT+dSC ,aTM = uS+dTMs+

[
−Ω2

1 0
0 −Ω2

2

]
q,

where Ω1,Ω2 are the stiffness matrices. The system open-
loop dynamics is finally denoted as: ϕ̈
q̈DF
q̈SUS

 =

BATT 0 0
BDF I 0
BSUS 0 I

uT0

uS1

uS2

+

 dSC
dTM1

dTM2


+

0 0 0
0 −Ω2

DF 0
0 −Ω2

C −Ω2
SUS

 ϕ
qDF
qSUS

 ,

(3)
where, BDF = DDFB1,BSUS = DSUSB1, the con-
troller input uS1 = DDFB2uS ,uS2 = DSUSB2uS ,
the input noise of drag-free system is expressed as

dTM1 = DDFB2dTMs,dTM2 = DSUSB2dTMs.

Two diagonal matrices Ω2
DF ,Ω

2
SUS and an additional

cross-coupling matrix Ω2
C form the coupling stiffness

from the drag-free coordinate to the suspension coordi-
nate, which is defined as:[
−Ω2

DF 0
−Ω2

C −Ω2
SUS

]
=

(
DDF

DSUS

)[
−Ω2

1 0
0 −Ω2

2

](
DDF

DSUS

)−1

.

Aiming at the analysis of drag-free loop, define the
state variable x = [q̇DF , qDF ]

T . Since the control band-
width of the TM actuator is much smaller than the FEEP
that has realized input decoupling, the control input uS1

caused by TM and the disturbance dTM1 will unified
as the lumped external disturbance, the baseline drag-
free dynamic model considering the FEEP input noise
is expressed as:

ẋ = Ax+B (uT + dTM ) ,

y = Cx,
(4)

where A =

[
0 I

−Ω2
DF 0

]
,B =

[
0

BDF

]
are the

state parameter matrices, A,B are unknown and slowly
time-varying. C is the output parameter matrix, and y
is the system output. The total disturbance dTM =
B−1 (uS1 + dTM1) + dSC . dTM is bounded, y de-
fines the system output, and the FEEP actuator inputs
uT = uT0 + dSC . The frequency domain description of
the drag-free control system (7) is described as:

y (t) = G (s) [u] (t) ,G (s) = C(sI −A)
−1
B, (5)

where u (t) = uT (t)+dTM (t). For y (t) = G (s) [u] (t),
[·] is a simple symbol that combines time domain and
frequency domain signal operations [24].

According to [22] and [24], the following lemma is
given:

Lemma 2.1: For any M ×M strictly appropriate and
full-rank rational matrix G (s), there is a lower triangular
polynomial matrix ξm (s), defined as the left modified
interaction matrix of G (s), in the form as

ξm (s) =


d1 (s) 0 . . . . . . 0
hm21 (s) d2 (s) 0 . . . 0

...
...

...
...

...
hmM1 (s) . . . . . . hmMM−1 (s) dM (s)

 ,
(6)

where hmij (s) , j = 1, . . . ,M − 1, i = 2, . . . .M is a
polynomial, and di (s) , i = 1, . . . ,M is a monotonically
stable polynomial of dimension li > 0, such that the
high-frequency gain matrix of G (s) is defined as Kp =
lim
s→∞

ξm (s)G (s), which is finite and non-singular. Con-
sidering partial state with observation errors is introduced
to realize feedback control, and the observation output ŷ0

is expressed as

ŷ0 (t) = C0x (t) + ỹ0 (t) ∈ Rn0 , (7)

where C0 is the output selection matrix, ỹ0 is the es-
timation error introduced by uncertainties. Utilizing the
estimation output to expand the dimension of required
states, so as to realize the design of the full-state feedback
controller. The control goal is to construct a feed back
control law with the partial state vector y0 (t) asymptoti-
cally tracking the reference vector ym (t) generated from
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a reference model system ym (t) = Wm (s) [r] (t), where
Wm (s) = ξ−1

m (s) is stable and r (t) ∈ RM is bounded.
In order to meet the prerequisites of the controller

design, the assumptions are shown as follows:
Assumption 2.1: All zero points of G (s) =

C(sI −A)
−1
B are stable, and (A,B,C) is stable and

detectable.
Assumption 2.2: G (s) is full rank and its left modi-

fied interaction matrix ξm is known.
Assumption 2.3: ỹ0 (t) is continuous and bounded,

and the upper bound is defined as

lim
t→∞

sup ‖ỹ0 (t)‖ ≤ ρy, ρy ≥ 0.

Assumption 2.4: Consider that uncertainties of the
drag-free dynamics are assumed to be bounded. Then, the
disturbed system with uncertainties can be described as:

ẋ = A0x+ ζ1(x,uT ) +B0 (uT + dTM ) ,

y = C0x+ ζ2(x),

where the uncertainties ζ1(x,uT ) and ζ2(x) are assumed
to be bounded, the nominal system matrices A0,B0,C0

are known.
Remark 2.1: The stability of the state parameter

matrix (A,B,C) and zero points of the tranfer function
G(s) is guaranteed by the stiffness matrix −Ω2

DF in (4).
According to [1], [3], for the LISA Pathfinder mission, the
stiffness matrix −Ω2

DF possesses a nominal stable term
−Ω2

DF0 with a small perturbation that is approximately
±5% (see detailed values in subsection V.A Parameter
Settings), so that Assumption 2.1 and Assumption 2.2
hold. In practice, the parameter uncertainties and the
measurement errors are bounded, as mentioned in [2],
[3], [7], so that the expression in Assumption 2.3 and
Assumption 2.4 is also reasonable for the practical case.

B. FEEP actuator fault dynamic modeling

Considering the bias fault in the simplified first-
order actuator loop, establish the following faulty actuator
dynamics:

u̇T = Λ (uT − uc + ū) , (8)

where uc is the control input, ū is the performance loss
bias, ū < 0, ‖ū‖ ≤ ρb, Λ < 0 represents the internal
inertia coefficient of the actuator, ||Λ|| � 1, and the
minimum and maximum characteristic value of Λ−1 is
λn and λx. Cross-coupling and actuator noise dSC is
regarded as external bounded disturbance, so they are no
longer reflected in FEEP dynamics.

Generally, the bias ū is a constant or slowly changing.
Take two moments with a very short interval of T =
t2 − t1, t2 > t1, the fault dynamics of the actuator is
obtained as:{

u̇T1 = Λ
(
uT1 − uct1 + ūt1

)
u̇T2 = Λ

(
uT2 − uct2 + ūt2

)
,

(9)

where, uT1 ,uT2 ,uct1 ,uct2 , ūt1 , ūt2 correspond to the
real input, control input and performance loss bias at the

moment t1, t2 respectively, and assume ūt1 = ūt2 = ū.
Subtract the above two equations and get:

u̇Tδ = Λ (uTδ − ucT ) , (10)

where uTδ = uT2 − uT1 ,ucT = uct2 − uct1 . Due to the
short time interval T ,

uTδ = T
uT2 − uT1

T
≈ T u̇T |t=t1 ≈ T u̇T , (11)

Substituting (11) into (8) and obtain:{
uTδ = T u̇T

u̇T − u̇Tδ = Λ (uT − uTδ − (uc − ucT ) + ū)
(12)

When the bias faults occur, the following controller
form is designed to realize the system retrofit:

uc = uT + ur, (13)

where the retrofit control input ur = −ˆ̄u, ˆ̄u is the per-
formance loss bias estimation obtained by state observer.

Remark 2.2: In the faulty actuator dynamics (8), the
performance loss bias fault ū modeled in [6] is consid-
ered. According to [6], among the various fault types
of the FEEP actuators (Micro-Newton Thrusters), the
performance loss bias fault is one of the most commonly
occurring faults due to the circuit failure of the electronic
actuation. In addition, the performance loss bias fault is
also widely discussed in the satellite control engineering,
as reported in [8], [10], [12], [13].

C. Control Problem Formulation

Reconfigurable FTC problem of the drag-free con-
trol system under actuator faults. According to the
controller framework given in (13), the reconfiguration
control input ur is applied to compensate the state change
caused by the actuator faults. To improve compensation
accuracy, the fault estimation needs higher precision com-
pared with conventional solutions [13]. When designing
the fault observer, Lyapunov analysis is introduced to
construct a unified and bounded monotonic convergence
sequence, which converts the reconfigurable control prob-
lem into an iterative approximation fault estimation prob-
lem.

The precise control problem of drag-free satellite
via partial observation state feedback with estima-
tion error. In the LISA Pathfinder detection mission,
the following performance requirements of the residual
acceleration in the direction of the sensitive axis is shown
as follows [16]:

S
1/2
a (f) ≤ 3× 10−14

[
1 +

(
f

3mHz

)2
]
m/s2/

√
Hz,

(14)
where, S

1/2
a (f) is the spectral density of the residual

acceleration in the direction of the sensitive axis, which
indicates that in the drag-free control problem, each chan-
nel needs extremely high precision when dealing with un-
certainties and complex external disturbance. Discuss the
condition that partial states are lost and there are bounded
estimation errors in the known states. Only known states
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Dyns Estimation error
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Fig. 2. Control framework.

are used to design the feedback controller, and the MRAC
scheme is applied to achieve the approximation of all
channels to the reference model, which is used to achieve
nonlinear suppression and improve system stability. The
control framework is shown in Fig.2.

III. RECONFIGURABLE FAULT-TOLERANT
CONTROLLER DESIGN

To approximate the actuators faults, the state observer
is firstly designed as follows:

Λ−1
(

˙̂uTδ − ˙̂uT

)
= ûTδ − ûT + (uc − ucT )

− l1 (uTδ − ûTδ + k1 (uT − ûT ))

ûTδ = T ˙̂uT

, (15)

where ûT , ûTδ are the state estimations obtained by the
observer, l1,k1 are the observer gains, which satisfy k1 =
k1

T > 0, l1−I > 0. Let the state estimation error ũTδ =
uTδ−ûTδ , ũT = uT −ûT , the observation error equation
is denoted as:

Λ−1
(

˙̃uTδ − ˙̃uT

)
= (ũTδ − ũT )−ū−l1 (ũTδ + k1ũT ) .

(16)
Let S = ũTδ +KũT , K = (l1 − I)

−1
(l1k1 + I), it

can be obtained that K = KT > 0. Utilizing ûTδ = T ˙̂uT
to rewrite the above equation as

Λ−1Ṡ = −ū− (l1 − I)S +
1

T

(
K + Λ−1

)
ũTδ . (17)

The lemma is shown as:
Lemma 3.1 [15]: Consider that S = ũTδ +KũT , if

it exists S̄ > 0 and limited time T > 0, ‖S (t)‖ ≤ S̄t,
then

lim
t→∞

sup ‖ũTδ‖ ≤
(
λmax (K)

λmin (K)
+ 1

)
S̄t.

Then the following theorem is given:
Theorem 3.1: The upper bound of the estimation

error ‖S (t)‖, ‖ũTδ (t)‖ will finally converge after the i-th

iteration:

lim
t→∞

sup ‖S (t)‖ = S̄i ≤ S̄i+1 =

√
λx
λn

φ
(
¯̃uTδi

)
λmin (l1 − I)

lim
t→∞

sup ‖ũTδ (t)‖ ≤ (
λmax

(
(l1 − I)

−1
(l1k1 + I)

)
λmin

(
(l1 − I)

−1
(l1k1 + I)

)
+ 1)S̄i+1 = ¯̃uTδi+1

,

(18)
where, S̄i, S̄i+1, ¯̃uTδi ,

¯̃uTδi+1
are the upper bounds of the

estimation error after iteration, λmax (k), λmin (k) are
the maximum or minimum eigenvalue of matrix k, and
φ
(
¯̃uTδi

)
is the monotonically increasing function defined

by (21), Both
{
S̄i
}
i∈Z+ ,

{
¯̃uTδi

}
i∈Z+

are strictly decreas-
ing convergence sequences. The fault observation can be
calculated by the estimation upper bound and obtained as
follows:

ˆ̄u = − (l1 − I) (l1k1 + I)
−1
l1k1S̄i+1

+
(

(l1 − I) (l1k1 + I)
−1
l1k1 − l1

)
¯̃uTδi+1

.
(19)

Proof: The Lyapunov function is given as:

V0 =
1

2
STΛ−1S. (20)

Differentiate the above equation and yield:

V̇0 = STΛ−1Ṡ

≤ ‖S‖ (−λmin (l1 − I) ‖S‖+ ‖ū‖

+
1

T
((l1 − I)

−1
(l1k1 + I) + Λ−1) ‖ũTδ‖)

≤ −λmin (l1 − I) ‖S‖2 + (‖ū‖

+
1

T
((l1 − I)

−1
(l1k1 + I) + Λ−1) ‖ũTδ‖) ‖S‖

. (21)

Let φ (‖ũTδ‖) = ρb + 1
T ((l1 − I)

−1
(l1k1 + I) +

Λ−1) ‖ũTδ‖, it is known that φ (�) is strictly monoton-
ically increasing. Note that

λn‖S‖2 ≤ 2V0 ≤ λx‖S‖2 (22)
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(21) can be further derived as

V̇0 ≤ −‖S‖

(
λmin (l1 − I)

√
2V0

λx
− φ (‖ũTδ‖)

)
. (23)

Since λmin (l1 − I) > 0 and 1
T ((l1 − I)

−1
(l1k1 +

I) + Λ−1) > 0, and it is known that φ (�) strictly in-
creases monotonically, then assume that ‖ũTδ‖ bounded,
expressed as ‖ũTδ‖ ≤ ¯̃uTδ0 ≤ u∗Tδ . Note that when
√

2V0 >

√
λxφ

(
¯̃uTδ0

)
λmin(l1−I) , V̇0 < 0, it can be obtained

lim
t→∞

sup ‖S (t)‖ ≤ lim
t→∞

sup

√
2V0 (t)

λn

≤ S̄1 =

√
λx
λn

φ
(
¯̃uTδ0

)
λmin (l1 − I)

. (24)

According to the derivation of Lemma 3.1 and (24),
the following set of monotonic inequalities can be ob-
tained:

lim
t→∞

sup ‖S (t)‖ = S̄0 ≤ S̄1 =

√
λx
λn

φ
(
¯̃uTδ0

)
λmin (l1 − I)

lim
t→∞

sup ‖ũTδ (t)‖

≤

λmax

(
(l1 − I)

−1
(l1k1 + I)

)
λmin

(
(l1 − I)

−1
(l1k1 + I)

) + 1

 S̄1 = ¯̃uTδ1

,

(25)
where, S̄1, ¯̃uTδ1 are the actuator state estimation error
prediction value obtained based on the first iteration of
the monotonic inequalities under the initial state S̄0, ¯̃uTδ0 .
By analogy, after i-th iteration of the above monotonic
inequality set, it can be denoted as (18). To formulate the
observation procedure, the iterative procedure is given in
the following Algorithm 3.1:

Algorithm 3.1: S̄i+1 can be obtained by the following
algorithm:

step 1: Select the initial estimation value ûTδ0 and
caulculate ¯̃uTδ0 by ¯̃uTδ0 =

∥∥uTδ − ûTδ0∥∥.

step 2: Calculate S̄1 by S̄1 =
√

λx
λn

φ
(

¯̃uTδ0

)
λmin(l1−I) and

continue to step 3.
step 3: Calculate ¯̃uTδ1 by ¯̃uTδ1 =(

λmax((l1−I)−1(l1k1+I))
λmin((l1−I)−1(l1k1+I))

+ 1

)
S̄1 and return to step

2, the iteration is completed once.
step 4: Repeating i times of step 2 and step 3, ¯̃uTδi+1

and S̄i+1 are obtained to calculate ˆ̄u and ur.
Note the monotonic convergence of the inequal-

ities, two sets of sequences with monotonically de-
creasing state estimation errors can be obtained as{
S̄i
}
i∈Z+ ,

{
¯̃uTδi

}
i∈Z+

. Utilizing the sequence Lyapunov
scheme to perform i-th iterations on the dynamic state of
the actuators, the fault observation is denoted as:

ur = −ˆ̄u = (l1 − I) (l1k1 + I)
−1
l1k1S̄i+1

−
(

(l1 − I) (l1k1 + I)
−1
l1k1 − l1

)
¯̃uTδi+1

.
(26)

The reconfigurable controller to compensate bias fault
will bring the following bounded input errors ũr with the

following convergence bound:

lim
t→∞

sup ‖ũr‖ ≤ ρr. (27)

Remark 3.1: In this work, different initial values of
ûTδ0 are chosen for the healthy case (i.e., the process
before fault is detected) and faulty case (i.e., the process
after fault is detected). Specifically, initial value of ûTδ0
is set to 0 in the healthy case and a calculated value in
faulty case, respectively. Inspired by reference [8] of the
revised manuscript, the fault detection scheme can also
be established as equation (15). The details for choosing
the initial value of ûTδ0 under the two cases are given as
follows:

Case 1: In the healthy case, the initial value of ûTδ0
is set to be 0. In this work, since the drag-free control
problem in the science mode is discussed, there is no
parameter perturbation, and the initial value of ûTδ0 can
be set to be 0 at the starting of the simulation. Note that
in the healthy case, ‖ū‖ = 0. By using the fault detection
scheme in equation (15), the derivative of V̇0 in (21) can
be rewritten as:

V̇0 ≤ −λmin (l1 − I) ‖S‖2

+
1

T

(∥∥∥(l1 − I)
−1

(l1k1 + I)
∥∥∥+ λx

)
‖ũTδ‖ ‖S‖ .

It is clear that V̇0 < 0 if ‖S‖ >
(‖(l1−I)−1(l1k1+I)‖+λx)‖ũTδ‖

Tλmin(l1−I) . Therefore the
state estimation error ‖S‖ should always satisfy

‖S‖ ≤ (‖(l1−I)−1(l1k1+I)‖+λx)‖ũTδ‖
Tλmin(l1−I) in the healthy

case. Otherwise, the fault is detected.
Case 2: In the faulty case (i.e., after the fault is

detected), the initial value of ûTδ0 is set to ûTδ0 =
ûTδ (t)|t=Td , where Td is the time instant that fault is
detected. As derived in Case 1, the time instant Td can
be obtained once ‖S‖ > (‖(l1−I)−1(l1k1+I)‖+λx)‖ũTδ‖

Tλmin(l1−I) .

IV. PARTIAL MRAC DESIGN WITH BOUNDED
ESTIMATION ERROR

In this section, a nominal state feedback MRAC
scheme is constructed with the model output matching
relationship demonstrated, then the stability analysis is
shown with the obtain of convergence upper bound con-
sidering the bounded estimation error of each state.

A. Baseline Control Framework

Utilizing the known partial state information ŷ0 (t) =
C0x̂ (t) to further realize the observation of the remaining
unknown states, and design the baseline state feedback
control framework according to the observation state. The
baseline control law is expressed as:

uT (t) = K∗
1

Tx̂ (t) +K∗
2r (t)− d̂TM , (28)

where K∗
1 ,K

∗
2 are the feedback gains of the observation

state x̂ (t) and the reference model input r (t). dTM
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is supressed by the feedback of d̂TM , where d̂TM is
obtained by the following observer according to [26]:

˙̂
dTM = −λ

(
˙̂x−A0x̂−B0uT − d̂TM

)
,

where λ > 0 is an coefficient to be set. The following
assumption is given:

Assumption 4.1: Let the observation error d̃TM =
dTM − d̂TM , according to Assumption 2.4 and [22],
d̃TM is continuous and bounded, and the upper bound is
defined as

lim
t→∞

sup
∥∥∥d̃TM∥∥∥ ≤ ρd, ρd ≥ 0.

To achieve model output matching and controller
construction, partial state observation ŷ0 (t) is computed
to realize the observation of the full state information.
Introducing the transformation matrix P ∈ Rn×n, then
C0P

−1 =
[
In0 0

]
and n0 = rank [C0], the sys-

tem state equation is converted to ˙̄x (t) = Āx̄ (t) +
B̄u (t),Ā = PAP−1, B̄ = PB. Express the system full
state equation as:[

˙̄x1 (t)
˙̄x2 (t)

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1 (t)
x̄2 (t)

]
+

[
B̄1

B̄2

]
(uT (t) + dTM ) ,

(29)
where x̄ (t) = Px (t) =

[
x̄1

T (t) x̄2
T (t)

]
T,x̄1 (t) ∈

Rn0 , x̄2 (t) ∈ Rn−n0 , Ā11 ∈ Rn0×n0 , Ā12 ∈
Rn0×(n−n0),Ā21 ∈ R(n−n0)×n0 , Ā22 ∈
R(n−n0)×(n−n0), B̄1 ∈ Rn0×M , B̄2 ∈ R(n−n0)×M .
When (A,C0) is observable and detectable,

(
Ā22, Ā12

)
can also be observed and detected.

Therefore, the full state observer can be expressed as:

ˆ̄x (t) =

[
ˆ̄x1

ˆ̄x2

]
=

[
ŷ0 (t)

w (t) +Lrŷ0 (t)

]
, (30)

where ˆ̄x1 (t) , ˆ̄x2 (t) are the observation of each state,
Lr ∈ R(n−n0)×n0 is a constant gain matrix, utilized to
guarantee the eigenvalue matrix Ā22 − LrĀ12 stable.
According to the observer design results, w (t) ∈ Rn−n0

is expressed as follows:

ẇ (t) =
(
Ā22 −LrĀ12

)
w (t)

+
(
B̄2 −LrB̄1

)
(uT (t)+dTM)

+
((
Ā22 −LrĀ12

)
Lr + Ā21 −LrĀ11

)
ŷ0 (t)

(31)

According to [22], if partial state observer is designed
based on real state, i.e. ŷ0 (t) = y0 (t) = C0x (t), then
lim
t→∞

(x (t)− x̂ (t)) = lim
t→∞

P−1
(
x̄ (t)− ˆ̄x (t)

)
= 0, the

state estimation error can achieve exponential conver-
gence with the partial observer. Taking into account the
observation error of the unified bounded state, the partial
state observer will exponentially converge with bounded
error, which is expressed as:

lim
t→∞

sup ‖x (t)− x̂ (t)‖ = lim
t→∞

sup ‖x̃ (t)‖ ≤ ρx.

where, x̃ (t) is the full state observation error, and can be
calculated as

ρx ≤
∥∥P−1

∥∥ ((1 + ‖Lr‖+

∥∥∥∥ B̄2 −LrB̄1

Ā22 −LrĀ12

∥∥∥∥ ρd
+

∥∥∥∥∥
(
Ā22 −LrĀ12

)
Lr +A21 −LrĀ11

Ā22 −LrĀ12

∥∥∥∥∥)ρy)

Computing (31-33) to solve w (t) and denote

w (t) = εy (t) + ε0 (t) +
N2 (s)

Λ (s)
[y0] (t)

+
N1 (s)

Λ (s)
(uT (t) + dTM )

(32)

where εy (t) is the observation error introduced by par-
tial state, εy (t) =

(
sI − Ā22 +LrĀ12

)−1 × ((Ā22 −
LrĀ12)Lr+Ā21−LrĀ11) [ỹ0] (t), εy (t) is continuous
and bounded. ε0 (t) represents the error caused by the
initial value, w (0) is the estimation of Lry0 (0)− x̄2 (0),
Λ (s) = det

(
sI − Ā22 +LrĀ12

)
, N1 (s), N2 (s) are

(n− n0)×M and (n− n0)×n0 dimensional polynomial
matrices. Thus, the observation partial state feedback
controller can be expressed as:

K1
∗Tx̂ (t) = Θ1

∗TA1 (s)

Λ (s)

[
uT + d̂TM

]
(t)

+ Θ20
∗Tŷ0 (t) + Θ2

∗TA2 (s)

Λ (s)
[ŷ0] (t) +K∗

p2ε0 (t) ,

(33)
where K1

∗TP−1 =
[
K∗
p1 K∗

p2

]
,

Θ20
∗T = K∗

p1 + K∗
p2Lr, K∗

p2N1 (s) =
Θ1
∗TA1 (s) ,K∗

p2N2 (s) = Θ2
∗TA2 (s),

A1 (s) =
[
IM , ..., sn−n0−1IM

]
T,A2 (s) =[

In0 , ..., s
n−n0−1In0

]
T.

Based on the above derivation and Θ∗
3 = K∗

2 , ignore
the exponential decay term K∗

p2ε0 (t), the parameterized
nominal partial state feedback controller with observation
error can be obtained:

uT (t) = Θ1
∗Tω̂1 (t) + Θ2

∗Tω̂2 (t)

+ Θ20
∗Tŷ0 (t) + Θ∗3r (t)− d̂TM

, (34)

where ω̂1(t)=
A1(s)
Λ(s)

(
uT (t) + d̂TM

)
,ω̂2 (t)=A2(s)

Λ(s) [ŷ0] (t).
Remark 4.1: Compared with the partial state feed-

back control law based on real state given in [22], the
estimation error introduced by the partial state observation
information in this paper needs to be discussed. According
to (33), with the estimation error mentioned above, the
controller can be re-expressed as:

uT (t) = Θ1
∗TA1 (s)

Λ (s)

(
uT (t) + d̂TM

)
+ Θ2

∗Tω2 (t)

+ Θ20
∗Ty0 (t) + Θ∗3r (t)− d̂TM

+

(
Θ2
∗TA2 (s)

Λ (s)
+ Θ20

∗T
)

[ỹ0] (t) .

(35)
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The baseline controller will introduce the following addi-
tional input error:

εu (t)= d̃TM+

(
Θ2
∗TA2(s)

Λ(s) + Θ20
∗T
)

[ỹ0] (t)

IM −Θ1
∗TA1(s)

Λ(s)

+K∗
p2ε0

= d̃TM +K1
∗Tx̃ (t) .

(36)
Considering the error introduced by the initial value of
the observer K∗

p2ε0 is exponential convergence, It can
also be deduced that input error is continuously bounded,
with the upper bound

lim
t→∞

sup ‖εu (t)‖=
∥∥∥d̃TM∥∥∥+∥∥K1

∗T∥∥ ‖x̃ (t)‖ ≤ρd+‖K∗
1‖ρx.

B. Model Output Matching Conditions

After discussing the observation error introduced by
the control input, the controller is substituted into the
closed-loop system, and discuss the output matching of
the controller. [22] has discussed and proved the output
matching of the object model based on the real partial
state feedback controller, i.e. when uT (t) = K1

∗Tx̂ (t)+
K∗

2r (t), the nominal controller parameters K∗
1 and K∗

2

satisfy matching condition

C
(
sI −A−BK1

∗T)−1
BK∗

2 = Wm (s) ,

K∗−1
2 = Kp.

(37)

The system can ensure the model output matching.
Aiming at the continuously bounded observation error

of partial state, the output matching problem in this paper
is expanded from [22], and continue to prove the output
matching of the closed-loop system under the matching
condition (39). Denote the following theorem:

Theorem 4.1: There exist constant parameters
Θ∗

1,Θ
∗
2,Θ

∗
20,Θ

∗
3, such that the partial observation state

based controller ensure the continuous boundedness of
closed-loop signal and the model output matching track-
ing error ε (t) under any initial conditions.

Proof: The proof of the theorem will be divided into
the following steps, including the convergence and bound-
edness of output matching tracking error, the existence of
controller parameters and the boundedness of closed-loop
systems.

The boundedness of the output matching tracking
error. According to Remark 4.1, the controller input will
introduce continuous bounded errors εu besides partial
state estimation and observation disturbance errors. Note
that the convergence process of the closed-loop system
is firstly converge to the observation system through
partial state feedback, then approach from the observation
system to the real system, the convergence error of
partial state observers and the input error will be consid-
ered comprehensively when matching the system output
y (t)−ym (t) = ε (t). Under the matching condition (37),
the observer-based control law is expressed as:

uT = K1
∗T(x (t)+x̃ (t))+K∗

2r (t)+dTM+d̃TM . (38)

Substituting (38) into (4) and obtain the system output:

y (t) = C(sI −A−BK∗
2 )
−1
BK∗

2 [r] (t)

+C
(
sI −A−BK1

∗T)−1
B(K1

∗Tx̃ (t) + d̃TM ).
(39)

The tracking error is expressed as:

ε (t)=C(sI −A−BK1
∗T)−1B(K1

∗Tx̃ (t) + d̃TM )
(40)

It is seen that the system tracking error is continuously
bounded as:

lim
t→∞

sup ‖ε (t)‖ ≤
∥∥∥C(sI −A−BK1

∗T)−1
B
∥∥∥ ‖εu (t)‖

≤
∥∥∥C(sI −A−BK1

∗T)−1
B
∥∥∥ (ρd + ‖K∗1‖ ρx)

The existence of parameters. The controller param-
eters Θ∗

1,Θ
∗
2,Θ

∗
20,Θ

∗
3 influence model output matching

the reference model output. The conclusion is derived
from controller shown in the previous section.

The boundedness of closed-loop signals. From the
previous derivation, it is known that closed-loop system
output is bounded, i.e. y (t) = ym (t)+ε (t) ∈ L∞. Then
the high-frequency gain matrix is utilized to inversely
infer the boundedness of the system state. Note that

ε (t) = C
(
sI −A−BK1

∗T)−1
Bεu (t)

= C
(
sI −A−BK1

∗T)−1
B

×

d̃TM +K∗
p2ε0 (t) +

(
Θ2
∗TA2(s)

Λ(s) + Θ20
∗T
)

[ỹ0] (t)

IM −Θ1
∗TA1(s)

Λ(s)


(41)

then ξm (s) [ε] (t) can be expressed as the product of
continuous bounded terms, ξm (s) [ε] (t) ∈ L∞. As
ξm (s) [ym] (t) = r (t), ξm (s) [y] (t) ∈ L∞,

According to the essentially boundedness of the out-
put signal, the boundedness of the closed-loop input
signal u (t) is derived. By the full rank of y (t) =
G (s) (uT (t) + dTM ), and G (s) = C(sI −A)

−1
B,

ignoring the exponential decay effect of the initial condi-
tions, it can be denoted

uT (t) = G−1 (s) ξ−1
m (s) ξm (s) [y] (t)− dTM . (42)

Note that the external disturbance is also bounded,
according to the stable assumption of G−1 (s) ξ−1

m (s), the
controller input u (t) is bounded.

Finally, the boundedness of each state of the closed-
loop system is discussed. For the observable system state
parameter matrix (A,C), the constant gain vector L ∈
Rn×M , and the system state x (t) can be expressed as

x (t) = (sI −A+LC)
−1
B (uT (t) + dTM )

+ (sI −A+LC)
−1
L [y] (t)

=
N01 (s)

Λ0 (s)
(uT (t) + dTM ) +

N02 (s)

Λ0 (s)
[y] (t)

(43)

where, the eigenvalue of matrix detA − detLC is sta-
ble for L ∈ Rn×M , Λ0 (s) = det(sI − A + LC),
and configure N01 (s) = adj (sI −A+LC)B and
N02 (s) = adj (sI −A+LC)L to the maximum di-
mension of n − 1. Therefore, the internal state x (t) is
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bounded and can be generalized to get the boundness of
ŷ0 (t) = C0x (t) + ỹ0 (t). ∇

Remark 4.2: the output matching of the
parameter matrices Θ∗

1 ∈ RM(n−n0)×M ,Θ∗
2 ∈

Rn0(n−n0)×M ,Θ∗
20 ∈ Rn0×M ,Θ∗

3 ∈ RM×M are
given in [22] based on accurate state:

Θ1
∗TA1 (s)P (s)+(Θ2

∗TA2 (s)+Θ20
∗TΛ (s))Z0 (s)

= Λ (s)
(
P (s)−Θ3

∗Tkpξm (s)Z (s)
)
,

(44)
where, G (s) = Z (s)P−1 (s) ,G0 (s) = Z0 (s)P−1 (s),
and y0 (t) = G0 (s) [uT ] (t) ,G0 (s) = C0(sI −A)

−1
B.

When the disturbance estimation feedback and partial
observation state are considered in the controller design,
the input-output relationship of the state is updated as:

ŷ0 (t) = G0 (s) (uT (t) + dTM ) + ỹ0. (45)

Taking into account that ỹ0 is bounded, the output match-
ing condition is relaxed and the closed-loop system output
tracking is allowed to have continuous bounded errors.
The matching relationship of closed-loop transfer function
is given according to the baseline requirements:

IM −Θ1
∗TA1 (s)

Λ (s)
−
(

Θ2
∗TA2 (s)

Λ (s)
+ Θ20

∗T
)
G0 (s)

= Θ∗
3W

−1
m (s)G (s)

(46)
It shows that the nominal parameter matrix output
matching is still applicable to the observation state
feedback control scheme in this paper, but the up-
per bound of the tracking error will be introduced as∥∥∥C(sI −A−BK∗T1

)−1
B
∥∥∥ (ρd + ‖K∗

1‖ ρx).

C. Adaptive Controller Design

The adaptive control scheme aims to solve the prob-
lem of nonlinear uncertainties in the system state pa-
rameter matrix (A,B,C). Considering that the adaptive
estimation of the three state matrices in the time domain
model will further increase the difficulty of designing the
adaptive update law, according to [24], the high-frequency
gain decomposition is introduced to simplify the adaptive
approximation process and reduce the difficulty of con-
troller design. Given the following assumptions:

Assumption 4.2: All sequential principal minor
∆i, i = 1, 2, ...,M of the high-frequency matrix Kp are
non-zero with the symbols known. Such Kp has a non-
unique high-frequency gain decomposition:

Kp = LsDsS, (47)

where S = ST > 0,Ls ∈ RM×M is a unit up-
per triangle matrix, Ds = diag [s∗1, s

∗
2, ..., s

∗
M ] =

diag [sign [d∗1] γ1, ..., sign [d∗M ] γM ] has arbitrary and se-
lected constants γi > 0, i = 1, 2, ...,M .

Adaptive partial observation state feedback control
framework: Similar to the nominal state feedback con-
trol, the adaptive version of the partial observation state

feedback control is expressed as:

uT (t) = Θ̂1
T (t)

A1 (s)

Λ (s)

(
u (t) + d̂TM

)
+ Θ̂3 (t) r (t)

+

(
Θ̂2

T (t)
A2 (s)

Λ (s)
+ Θ̂20

T (t)

)
ŷ0 (t)− d̂TM ,

(48)
where Θ̂1, Θ̂2, Θ̂20, Θ̂3 are the adaptive estimations of
Θ∗

1,Θ
∗
2,Θ

∗
20,Θ

∗
3 respectively.

Tracking error equation: The tracking error has been
discussed during the derivation of the nominal partial state
feedback, which shows that the nominal tracking error is
also continuously bounded when the bounded observa-
tion error of the partial state and additional disturbance
exists. Similarly, according to the system output matching
equation, it can be obtained:(
IM −Θ1

∗TA1 (s)

Λ (s)

)
(uT (t) + dTM )

−
(

Θ2
∗TA2 (s)

Λ (s)
+ Θ20

∗T
)
y0 (t)−Θ∗

3W
−1
m (s) [y] (t)

= C
(
sI −A−BK1

∗T)−1
B

×

d̃TM +K∗
p2ε0 (t) +

(
Θ2
∗TA2(s)

Λ(s) + Θ20
∗T
)

[ỹ0] (t)

IM −Θ1
∗TA1(s)

Λ(s)


(49)

Organize the above equations,the tracking error can be
expressed as:

e (t) = y (t)− ym (t)

= Wm (s)Kp

[
uT −Θ∗Tω̂ + εu

]
(t) ,

(50)

where, ω̂ (t) =
[
ω̂1

T (t) , ω̂2
T (t) , ŷ0

T (t) , rT (t)
]
T, cor-

respondingly, Θ∗ =
[
Θ1
∗T,Θ∗T2 ,Θ20

∗T,Θ∗
3

]
T. It can

conclude that the adaptive control scheme implemented
by the error tracking equation is actually utilized to
achieve the approximation process of the system input
to the nominal input.

Estimation error equation based on the high-
frequency gain decomposition. After expressing the
system tracking error as a function of the high-frequency
gain matrix Kp, the decomposition of Kp can be used to
express the adaptive variables parametrically. Substituting
the hdecomposition of Kp in (47) into the tracking error
equation, utilizing the adaptive controller given in (48) to
rewrite (50) as:

e (t) = ξ−1
m (s)LsDsS

((
Θ̂T −Θ∗T

)
ω̂ (t) + εu (t)

)
,

(51)
where, Θ̂T =

[
Θ̂1, Θ̂2, Θ̂20, Θ̂3

]
T. In order to parame-

terize the unknown upper triangular matrix Ls, a constant
matrix Θ∗

0 = L−1
s − I =

{
θ∗ij
}

is introduced, where
θ∗ij = 0, i = 1, 2, ...,M, j ≥ i, and define the parameter
matrix estimation error as Θ̃ (t) = Θ (t)−Θ∗ (t), further
rewrite (51) as:

ξm (s) [e] (t) + Θ∗
0ξm (s) [e](t) = DsS

[
Θ̃Tω̂ + εu

]
(t).

(52)
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Further parameterize (52) and introduce a stable single
polynomial f (s) which dimension is equal to the max-
imum dimension of ξm (s). Utilizing the filter h (s) =
1/f (s) to correct the tracking error, and formulate as:

ξm (s)h (s) [e] (t) + Θ∗
0ξm (s)h (s) [e] (t)

= DsSh (s)
[
Θ̃Tω̂ + εu

]
(t) .

(53)

Let
ē (t) = ξm (s)h (s) [e] (t) = [ē1 (t) , ..., ēM (t)]T

ηi (t) = [ē1 (t) , ..., ēi−1 (t)]T ∈ Ri−1,

θ∗i =
[
θ∗i1, ...,θ

∗
ii−1

]
T, i = 2, ...,M,

(54)

then (53) is expressed as

ē (t) +
[
0,θ2

∗Tη2 (t) ,θ3
∗Tη3 (t) , ...,θM

∗TηM (t)
]
T

= DsSh (s)
[
Θ̃Tω̂ + εu

]
(t) .

(55)
To achieve the object tracking, the model output needs
to be realized, i.e. the convergence of the high-frequency
gain matrix and the controller parameters to the nominal
value is required. Define the overall estimation error fff (t)
containing the parameter estimation error, expressed as:

fff (t) =
[
0, θ̂2

Tη2 (t) , ..., θ̂M
TηM (t)

]
T+ ē (t)

+ Ψ̂ (t)
(
Θ̂T (t)h (s) [ω̂] (t)− h (s)

[
Θ̂Tω̂

]
(t)
)
,

(56)

where, θ̂i (t) , i = 2, ...,M, Ψ̂ (t) are the adaptive param-
eter matrix estimations of Ls and DsS. Simplify (56)
to obtain the linear form of parameter estimation and
tracking error to update the adaptive law, derived the
estimation error and expressed as follows:

fff (t) =
[
0, θ̂2

Tη2 (t) , ..., θ̂M
TηM (t)

]
T + ē (t)

+ Ψ̂ (t)
(
Θ̂T (t)h (s) [ω̂] (t)− h (s)

[
Θ̂Tω̂

]
(t)
)

=
[
0, θ̃2

Tη2 (t) , ..., θ̃M
TηM (t)

]
T

+ Ψ̃ (t)
(
Θ̂T (t)h (s) [ω̂] (t)− h (s)

[
Θ̂Tω̂

]
(t)
)

+DsSΘ̃T (t)h (s) [ω̂] (t) +DsSh (s) [εu] (t) ,

(57)

where θ̃i (t) = θ̂ (t)−θ∗i , i = 2, ...,M, Ψ̃ (t) = Ψ̂ (t)−Ψ∗

is the parameter estimation error of the high-frequency
gain matrix, Ψ∗ = DsS.

Adaptive update law. When designing an adaptive
law based on the observation state, the tracking error is
unknown caused by uncertainties, which only yields

ê (t) = ŷ (t)− ym (t) = Wm (s)Kp

[
uT −Θ∗Tω̂

]
(t) .
(58)

The adaptive laws are obtained as

˙̂θi (t) = −Γθifff (t)ηi (t)

m2 (t)
, i = 2, 3, ...,M,

˙̂ΘT (t) = −Dsfff (t) [h (s) [ω̂]]T (t)

m2 (t)
,

˙̂Ψ (t) = −
ΓΨfff (t)

[[
Θ̂T
]
h (s) [ω̂]− h (s)

[
Θ̂Tω̂

]]
T (t)

m2 (t)
,

(59)

where, Γθi ,ΓΨ are the adaptive gain matrices, which
satisfy Γ = ΓT > 0, parameter m is given as:

m2 (t) = 1 + [h (s) [ω̂]]T (t) [h (s) [ω̂]] (t)

+

M∑
i=2

ηi
T(t)η1(t) +

[[
Θ̂T
]
h (s) [ω̂]− h (s)

[
Θ̂Tω̂

]]
T(t)

×
[[

Θ̂T
]
h (s) [ω̂]− h (s)

[
Θ̂Tω̂

]]
(t) .

To analyse the stability of the close loop signals and
the convergence of output tracking error, the theorem is
shown as follows:

Theorem 4.2: Subject the feedback controller (48),
reconfigurable fault-tolerant controller (28), adaptive laws
(61), and control plant (4) to the drag-free closed-loop
system, ensuring each signal bounded and output track-
ing error e (t) = y (t) − ym (t) convergence, the L2

norm upper bound of the vector is not greater than
‖Wm (s)K3 (s)DsS (ρd + ρr + ‖K∗

1‖ ρx)‖ with actua-
tor faults shown in (8).

The proof of Theorem 4.2 can be obtained in a similar
way as [22]. To derive the stability accurancy of the output
signals, a detailed proof is obtained in Appendix.

V. SIMULATION RESULTS AND ANALYSIS

A. Parameter Settings

In the simulation, the step length is set to be 0.1 s, and
the control performance of the baseline partial observation
state feedback MRAC and the FTC system are verified
respectively. The simulation time is set to be 500 s. The
noise dTM refers to [17]. According to [17], for the
dynamic modeling of the drag-free control system, the
stiffness matrix is set as

Ω2
DF = 10−7 × (1± 5%)

×


11.19 1.35 1.35 0.00425 0 0
1.35 9.55 1.35 0.00425 0 0
1.35 1.35 24.12 0.00425 0 0

26.087 26.087 26.087 30.64 0 0
0 0 0 0 9.55 1.35
0 0 0 0 1.35 24.12

 ,

and the input matrix is set as

BDF =


−1 0 0 0 0 0
0 −1 0 0.45 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 .

In the numerical simulation of the baseline controller,
the H∞ control scheme and the QFT quantitative feed-
back control scheme are introduced to compare with
the scheme designed in this paper. The z1, z2 axes state
[ż1, z1, ż2, z2]T is observed by the remaining 4-DOF state.
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The observer gain L is set as

L =


1 1 0 0 0 0 0 0
1 1 0.02 0.22 0 0 0 0
1 1 0 0 0 0.11 0 0
0 1 0 1 0.07 0.11 0.07 0.11

 .
The left interaction matrix is modified as ξm (s) =(
s+ 8× 10−7

)
· I8×8, the adaptive gains are set to be

Γθ = 0.001 · I5×5, ΓΨ = 1 · I8×8.
In the simulation verification of the reconfigurable

fault-tolerant controller, the bias fault ū
i

introduced by
each actuator are constant values, ū1 = −5×10−12, ū2 =
−4× 10−11, ū3 = −1.2× 10−11, ū4 = −7× 10−12, ū5 =
ū6 = −2 × 10−11. The initial value of ûTδ0 in the six
sensitive axes when the fault detection triggers is set to
be ûTδ0 = [−7.2,−7,−8.4,−12.2,−7,−8.4]T × 10−12.
Before the fault is detected, the initial value of ûTδ0 is 0.
The fault observer gains of the comparison scheme in [25]
and the proposed scheme in this work are set to be the
same, k1 = 0.1 ·I6×6 and l1 = 1.6 ·I6×6. The constructed
sequence has 20 iterations in each channel.

B. Simulation Verification and Analysis

To support our theoretical analysis, the simulation
results are divided into two parts. The control perfor-
mance of the proposed MRAC scheme is verified by
comparing to the H∞ [2] scheme and QFT [3] scheme
in the first part, while the efficiency of the fault observer
is verified by comparing the typical fault observer [25] in
the second part. Numerical simulation is performed based
on the sample space gravitational wave detection satellite
in [17], and the control performance of the nominal
partial observation state feedback MRAC scheme and
the reconfigurable fault-tolerant controller are verified in
the time domain and frequency domain. The simulation
results are shown in Fig. 3 to Fig. 13 and are analyzed
as follows:

Verification of baseline partial observation state
feedback MRAC control scheme: Introducing QFT
quantitative feedback control scheme [3] and H∞ robust
control scheme [2], compared with the MRAC scheme
in x1, y1, θ1, y2 axes. The simulation results are shown
in Fig. 3-6. Which show that in the sensitive axis x1,
the MRAC scheme improves the disturbance suppression
ability by 70% compared with the linear robust control
schemes, and the disturbance suppression ability on the
other non-sensitive axes increases by 30% − 80%. As a
nonlinear control scheme, the MRAC scheme has better
nonlinear approximation ability than the other two linear
control methods, and has a better adaptive disturbance
suppression effect in response to system observation er-
rors and other uncertainties. In view of the requirement
satisfaction of the sensitive axis residual acceleration.
Fig. 7 shows the residual acceleration frequency domain
simulation result, which verifies that the MRAC scheme
meets the requirement of detection, and also verifies
the performance improvement effect of its comparison

TABLE I
Parameter Sets of Observer (15).

Order observer gain observer gain
of sets k1 l1

1 k1 = 0.05 · I6×6, l1 = 0.8 · I6×6,
2 k1 = 0.1 · I6×6, l1 = 0.8 · I6×6,
3 k1 = 0.15 · I6×6, l1 = 1.0 · I6×6,
4 k1 = 0.2 · I6×6, l1 = 1.0 · I6×6,
5 k1 = 0.1 · I6×6, l1 = 1.6 · I6×6,

with other convention schemes. The frequency domain
simulation also reflects the z1, z2 axes displacement and
acceleration performance. As shown in Fig. 8-11, the
MRAC scheme meets the performance requirements of
the sample detection mission.

Fault tolerant ability verification of reconfigurable
control scheme based on sequential Lyapunov method:
Introduce constant bias faults into the first-order actuator
loops of the baseline control system ū

i
, i = 1, 2, ..., 6,

utilizing sequential Lyapunov method to iteratively recon-
figurable input and verify the fault tolerant ability in 6-
DOF drag-free loops. The simulation results are shown
in Fig. 12 to Fig.15. The motivation of our proposed
sequence Lyapunov scheme based method is to decrease
the estimation error of the commonly used observer (15)
by the iterative procedure in Algorithm 3.1. According to
Fig. 12 and Fig. 13, we compare the performance between
the observer (15) and the proposed sequence Lyapunov
scheme based observer. Fig.13 depicts the actual fault and
fault estimation results derived from observer (15) under
5 different sets of parameters in x, y and z axes given in
TABLE I, with the fault estimation denoted as:

ˆ̄u0 = − (l1 − I) (l1k1 + I)
−1
l1k1S

+
(

(l1 − I) (l1k1 + I)
−1
l1k1 − l1

)
ũTδ ,

from which we observe that there is a large deviation be-
tween the actual fault and the estimated ones. Therefore,
the commonly used observer (15) need to be enhanced to
improve the estimation accuracy. On the other hand, as
shown in Fig. 13, the proposed observe achieves better
estimation accuracy than that of observer (15). Moreover,
since the fault estimation accuracy is improved by the
proposed observer, the FTC scheme can exhibit good
fault-tolerant capability in each drag-free channel, as
illustrated in Fig. 14 and Fig. 15.

VI. CONCLUSION

Aiming at the precision and stability problem of the
drag-free control system of space detection spacecraft,
an MRAC scheme is proposed in this paper based on
partial observation state feedback. To realize the actuator
bias fault tolerant performance, a retrofit control method
based on the sequence Lyapunov method is designed to
achieve FTC scheme. Specifically, the sequential Lya-
punov method is utilized to realize the simultaneous
detection of the two types of state information in the
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Fig. 3. Displacement noise comparison between the baseline MRAC
scheme and other schemes in x1 axis.

Fig. 4. Displacement noise comparison between the baseline MRAC
scheme and other schemes in y1 axis.

Fig. 5. Displacement noise comparison between the baseline MRAC
scheme and other schemes in θ1 axis.

Fig. 6. Displacement noise comparison between the baseline MRAC
scheme and other schemes in y2 axis.

Fig. 7. Comparison of residual acceleration between the MRAC
scheme and other schemes in the sensitive axis.

Fig. 8. Displacement noise of the MRAC scheme in z1 axis.
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Fig. 9. Acceleration noise of the MRAC scheme in z1 axis.

Fig. 10. Displacement noise of the MRAC scheme in z2 axis.

Fig. 11. Acceleration noise of the MRAC scheme in z2 axis.

actuator loop. Then, a partial observation state feedback
MRAC scheme is designed in this paper, to achieve
the complex nonlinearity and noise suppression of the
closed-loop system under incomplete and inaccurate state
measurements. The numerical simulation verifies good
closed-loop control performance and fault-tolerant effect.
In future works, the rejection of acceleration noise from
the external resources will be considered, and the fault-
tolerant control scheme handling more complex fault with
time-varying or fast changing rate will also be explored.

APPENDIX

The proof of Theorem 4.2 is shown as follows. The
Lyapunov function is obtained as:

V =
1

2
(

M∑
i=2

θ̃i
T (t) Γ−1

θi
θ̃i+tr[Ψ̃

TΓ−1
Ψ Ψ̃]+tr[Θ̃SΘ̃T]).

(60)
Differentiate on both sides of (64) and denote:

V̇ = −
M∑
i=2

θ̃i
Tfffi (t)ηi (t)

m2 (t)
− [h (s) [ω̂]]T (t) Θ̃SDsfff (t)

m2 (t)

−

[[
Θ̂T
]
h (s) [ω̂]− h (s)

[
Θ̂Tω̂

]]
TΨ̃Tfff (t)

m2 (t)

= −fffT (t)fff (t)

m2 (t)
+ [DsSh (s) [εu]]T (t)f (t)

≤ −fffT (t)fff (t)

m2 (t)
+ γfffT (t)fff (t)

+
γ−1

4
[DsSh (s) [εu]]T (t)DsSh (s) [εu] (t)

= −1−m2γ

m2
fffT (t)fff (t)

+
γ−1

4
[DsSh (s) [εu]]T (t)DsSh (s) [εu] (t) .

(61)
where γ is a parameter which is set to satisfy 1−m2γ

m2 < 0.
It can be proved that each adaptive estimation parameter
θi(t),Θ(t),Ψ(t) is uniformly ultimately bounded, as the
boundedness of V̇ is ensured from (61),and θ̇i(t) ∈ L2 ∩
L∞, Θ̇(t) ∈ L2 ∩L∞, Ψ̇(t) ∈ L2 ∩L∞, and fff(t)/m(t) ∈
L∞ are also obtained.

After getting the boundedness conclusion of parame-
ters and closed-loop estimation errors, taking into account
the influence of ŷ0 (t) = C0x̂ (t) on the convergence of
other closed-loop signals and the tracking error of the
system. Utilizing the output y (t) to represent ŷ0 (t) =
C0x̂ (t), a set of filters is introduced as

sHi (s) = 1−Ki (s) ,Ki (s) =
admi

(s+ ai)
dm
, i = 1, 2, 3

(62)
where ai > 0, which selection principle is sufficiently
large and limited, dm is the maximum dimension of
ξm (s). This set of filters will be introduced to verify the
boundness of closed-loop input, output and partial states
based on controllable standard type and closed-loop sys-
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Fig. 12. Fault estimation by observer (15).
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Fig. 13. Fault estimation by the proposed sequence Lyapunov scheme based observer.
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Fig. 14. Comparison of FTC performance.

tem characteristics. Express hi (t) as the impulse response
function of the transfer function Hi (s), according to [23],
the L1 operator norm form of hi (t) is given as follows:

‖hi (·)‖1 =

∫ ∞
0

hi (t) dt =
dm
ai
, ai > 0, i = 1, 2, 3 (63)

According to (65), for the bounded signal after shaping
by filter Hi (s), there exists a0

i > 0 to make the shape
signal stable , for each finite ai > a0

i denoting a finite
gain.

Note the feedback controller given by (48), utilizing
the full-state output, ω1 (t) = F 1 (s) [uT + dTM ] (t) =
A1(s)
Λ(s) [uT + dTM ] (t) is rewritten by Hi (s) ,Ki (s) as:

F 1 (s)G−1 (s) [y] (t) = K1
−1 (s) [ω1 −H1 (s) s [ω1]] (t)

(64)
To convert the partial observation output ŷ0 (t) to the

full state output y (t), according to the state expression
given by the constant gain vector L ∈ Rn×M in the output

matching, the nominal partial state y0 (t) = C0x (t) is
denoted as:

y0 (t) = Q1 (s) [uT + dTM ](t) +Q2 (s) [y] (t) (65)

where, Q1 (s) = C0
N01(s)
Λ0(s) ,Q2 (s) = C0

N02(s)
Λ0(s) is

stable, and y0 (t) ∈ L∞ can be obtained.
Then the controller input analyzed. The controllable

realization (Ac,Bc) of ω1 (s) = F 1 (s) (uT (t) + dTM )
is expressed as:

ω̇1 (t) = Acω1 (t) +Bc (uT (t) + dTM ) (66)

Note that Ac is stable, shape (68) with the filter
Hi (s) ,Ki (s) and substitute the following partial obser-
vation state feedback, it can be obtained:

ω̂2 (t) = F 2 (s) [ŷ0] (t) =
A2 (s)

Λ (s)
[ŷ0] (t)

ŷ0 (t) = Q1 (s) [uT + dTM ](t) +Q2 (s) [y] (t) + ỹ0 (t)
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Fig. 15. FTC performance of the proposed sequence Lyapunov method in the drag-free axes.

Then ω1 (t) is expressed as

ω1 (t) = K1 (s)F 1 (s)G−1 (s) [y] (t) +H1 (s) [ω̇1] (t)

= K1 (s)F 1 (s)G−1 (s) [y] (t) +H1 (s) [Acω1] (t)

+H1 (s)Bc[Θ1
Tω1 + Θ2

TF 2 (s)Q1 (s) [uT + dTM ]

+ Θ2
TF 2 (s)Q2 (s) [y] + Θ2

TF 2 (s) [ỹ0]

+ Θ20
TQ1 (s) [uT + dTM ] + Θ20

TQ2 (s) [y]

+ Θ20
T [ỹ0] + Θ3r +

(
IM −Θ1

TF1

)
[d̃TM ]] (t)

(67)
Note that Θ1

T is bounded, then a0
i > 0 so that the

operator
(
I −H1 (s)

(
Ac +BcΘ1

T (t)
))−1

shaped by
H1 (s) is stable, for any finite ai > a0

i denoting finite
gain. For 0 < a0

1 < a1, organizing (69) as

ω1 (t) = G1 (s, ·) [uT + dTM ] (t) +G2 (s, ·) [y] (t)

+G3 (s, ·) [r] (t) + T 1 (s, t) [
(
Θ2

TF 2 (s) + Θ20
T
)

[ỹ0]

+
(
IM −Θ1

TF1

)
[d̃TM ]] (t)

(68)
For T 1 (s, t) ≡

(
I −H1 (s)

(
Ac +BcΘ1

T (t)
))−1

,

G1 (s, t) = T 1 (s, t) (H1 (s)BcΘ2
T (t)F 2 (s)Q1 (s)

+H1 (s)BcΘ20
T (t)Q1 (s)),G2 (s, t) = T 1 (s, t)

× (K1 (s)F 1 (s)G−1 (s) +H1 (s)BcΘ20
T (t)Q2 (s)),

G3 (s, t) = T 1 (s, t)H1 (s)BcΘ3
T (t)

are also stable operators with finite gain. Introducing
the disturbance observation error into ω1 (t), ω̂ (t) is
expressed as

ω̂ (t) =
[
ω̂1

T (t) , ω̂2
T (t) , ŷ0

T (t) , rT (t)
]
T (69)

where ω̂1 (t) = ω1 (t) + ω̃1 (t) = F 1 (s) [uT +
d̂TM ] (t) , ω̂2 (t) = F 2 (s) [ŷ0] (t). Then ω̂ (t) is further
rewritten as
ω̂ (t) = G4 (s, ·) [uT + dTM ] (t) +G5 (s, ·) [y] (t)

+G6 (s, ·) [r] (t) +D
(70)

where,

G4 (s, t) = [G1 (s, t) ,F 1 (s)Q1 (s) ,Q1 (s) ,0]T,

G5 (s, t) = [G2 (s, t) ,F 2 (s)Q2 (s) ,Q2 (s) ,0]T,

G6 (s, t) = [G3 (s, t) ,0,0, I]T,

D = G4 (s, t) [d̃TM ] (t) + [T 1 (s, t) [
(
Θ2

TF 2 (s) + Θ20
T
)

× [ỹ0] +
(
IM −Θ1

TF1

)
[d̃TM ]] (t) ,F 2 (s) [ỹ0] (t) ,

[ỹ0] (t) ,0]T

Utilizing ω̂ (t) to further establish the corresponding
relationship between partial and full state output, and
deducing the boundedness of y (t). Denote the first-order
differential form of (60):

ẏ (t) = ẏm (t) + sWm (s) Θ∗−1
3 [Θ̃Tω̂ + εu] (t) (71)

Multiply both sides of (73) by H2 (s). Note that sH2 (s) =
1−K2 (s), rewrite (73) as

y (t) = K2 (s) [ȳ] (t)+H2 (s) sWm (s) [r] (t)

+H2 (s) sWm (s) Θ∗−1
3 [Θ̃T[G4 (s, ·) [uT +dTM

+G5 (s, ·) [y] +G6 (s, ·) [r] +D + εu] (t)

(72)

Similar to T 1 (s, t), (I − H2(s)sWm (s) Θ∗−1
3 Θ̃T ×

G5(s, t))−1 is also considered as a stable operator. For
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any finite a2 > a0
2, there exists a0

2 > 0. For 0 < a0
2 < a2,

it can be denoted
y (t) = G7 (s, ·) [uT + dTM ] (t) +G8 (s, ·) [ȳ] (t)

+G9 (s, ·) [r] (t) +D1

(73)

where, for T 2 (s, t)=(I−H2 (s)sWm(s)Θ∗−1
3 Θ̃TG5)−1,

G7 (s, t) = T 2 (s, t)H2 (s) sWm (s) Θ∗−1
3 Θ̃TG4 (s, ·)

G8 (s, t) = T 2 (s, t)K2 (s)h−1 (s)

G9 (s, t)=T 2 (s, t)H2 (s) sWm (s)
(
I + Θ∗−1

3 Θ̃TG6

)
D1 = T 2 (s, t)H2 (s) sWm (s) Θ∗−1

3

[
Θ̃TD + εu

]
(t)

is a stable operator with finite gain, and denote y (t) ∈
L∞, which is utilized to derive the boundness of ω̂ (t).
Organize ω̂ (t) as
ω̂ (t) = (G4 (s, ·) +G5 (s, ·)G7 (s, ·)) [uT + dTM ] (t)

+G5 (s, ·)G8 (s, ·) [ȳ] (t) +G5 (s, ·)D1 +D

+ (G6 (s, ·) +G5 (s, ·)G9 (s, ·)) [r] (t)
(74)

Then it is obtained ω̂ (t) ∈ L∞.
Introduce (76) into uT (t) to deduce its boundedness:

uT = G10 (s, ·) Θ̂T (t)G5 (s, ·)G8 (s, ·) [ȳ] (t)

+G10 (s, ·) Θ̂T (t) (G6 (s, ·) +G5 (s, ·)G9 (s, ·)) [r] (t)

+G10 (s, ·) (Θ̂T (t) (G5 (s, ·)D1 +D) + Θ̂T (t)

× (G4 (s, ·) +G5 (s, ·)G7 (s, ·))d̃TM )− d̂TM (t)
(75)

where G10(s, t) = (IM − Θ̂
T

(t)(G4 +G5G7))−1 is a
stable operator with finite gain. Then uT (t) ∈ L∞ is
obtained. Review the output expression of the closed-loop
system with the introduction of shaper h (s):

ȳ (t) = ȳm (t) +Wm (s)
[
fff− σ − Ψ̂ξ

]
(t) (76)

where,

σ =
[
0, θ̂2

Tη2 (t) , θ̂3
Tη3 (t) , ..., θ̂M

TηM (t)
]

T

ξ (t) = Θ̂T (t)h (s) [ω̂] (t)− h (s)
[
Θ̂Tω̂

]
(t)

ȳm (t) = h (s) [ym] (t)

According to
ξ (t) = [ξ1 (t) , . . . , ξM (t)]T,

Θ (t) =
[
θ̄1

T (t) , . . . , θ̄M
T (t)

]
T,

f (s) = sdm + âdms
dm−1 + · · ·+ â1s+ â0

Expanding the i-th column of ξ (t) as follows:

ξi (t) =
sdm−1 + âdm−1s

dm−2 + · · ·+ â1

f (s)

[
˙̄θi

T [ω̂]

f (s)

]
(t)

+
sdm−2 + âdm−1s

dm−2 + · · ·+ â2

f (s)

[
˙̄θi

T s

f (s)
[ω̂]

]
(t)

+ · · · 1

f (s)

[
˙̄θi

T s
dm−1

f (s)
[ω̂]

]
(t)

(77)
Then the boundedness of ξ (t) can be denoted. According
to (75) and (78), ‖ȳ (t)‖ is expressed as

‖ȳ (t)‖ ≤ ‖T 3 (s, ·) ς1T 4 (s, ·)‖ ‖ȳ‖+ ς0 + h (s) ‖D1‖
(78)

For some ς0 (t) ∈ L∞, h (s) ‖D1‖ ∈ L∞,ς1 (t) ∈ L∞ ∩
L2 ≥ 0. Similar to the operator T 1 (s, t), some operator
T 3 (s, t) ,T 4 (s, t) are strictly stable, and the operator
T 4 (s, t) has a non-negative impulse response function.
According to [22], it is known that ȳ (t) is bounded.

After the above-mentioned closed-loop signal has
been proved to be bounded, the convergence of the output
tracking is derived. For ē (t) = ξm (s)h (s) [e] (t), it is
obtained

e (t) = Wm (s) Θ∗−1
3

[
Θ̃Tω + εu

]
(t)

= H3 (s) sWm (s) Θ∗−1
3

[
Θ̃Tω + εu

]
(t)

+Wm (s)K3 (s)h−1 (s) [ē] (t)

(79)

According to

lim
t→∞

sup
∥∥Wm (s)K3 (s)h−1 (s) [ē] (t)

∥∥
= lim
t→∞

sup ‖Wm (s)K3 (s)DsS [εu] (t)‖

≤ ‖Wm (s)K3 (s)DsS (ρd + ‖K∗
1‖ ρx)‖

(80)

Then the filter parameters a3 > 0 in the filter K3 (s) are
finite, it is determined that

sWm (s) Θ∗−1
3

[
Θ̃Tω + εu

]
(t) ∈ L∞,

yields

lim
t→∞

sup ‖e (t)‖ ≤ c3
dm
a3

+ ‖Wm (s)K3 (s)DsS (ρd + ‖K∗
1‖ ρx)‖

where c3, dm are constants. Considering a3 can take any
large value, the steady-state accuracy of ‖e (t)‖ can be
obtained as

lim
t→∞

sup‖e (t)‖ ≤ ‖Wm (s)K3 (s)DsS (ρd + ‖K∗
1‖ ρx)‖

When the system has actuator faults, the designed
reconfiguration controller is introduced to compensate
the actuator bias. The part of compensation effect will
produce a bounded estimation error ρr. Therefore, the
nominal system input error εu is corrected as follows:

εuc (t) = d̃TM +K1
∗Tx̃ (t) + ˜̄u (81)

Therefore, in the fault-tolerant system, the tracking error
accuracy ec (t) is corrected to:

lim
t→∞

sup ‖ec (t)‖ ≤ |Wm (s)K3 (s)DsS

× (ρd + ρr + ‖K∗
1‖ ρx)‖

Since the actuator fault compensation error ˜̄u is con-
tinuously bounded, it can be denoted that when the
system has actuator faults, the closed-loop tracking er-
ror ec (t) is still continuously bounded, and the up-
per bound of the L2 vector norm is not greater than
‖Wm (s)K3 (s)DsS (ρd + ρr + ‖K∗

1‖ ρx)‖. ∇
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