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Abstract

Aiming at the requirement of bounded disturbance suppression for low-frequency space gravitational wave detection satellite, a robust model
reference adaptive drag-free control scheme is proposed in this paper via linear matrix inequalities (LMIs) approach. The multivariable model
reference adaptive control (MRAC) scheme is applied to the drag-free control system with parameter uncertainties, which realizes the adaptive
tracking to the reference state. The LMI system is established as an adaptive compensation term, which provides robustness against nonlinear
disturbances. To reduce the communication burden of the actuation information and further save the total energies, an event-triggered mechanism
(ETM) is introduced, with both the actuation inputs and the adaptive laws of the feedback gains updated only at the triggering time instants.
The ultimately uniformly boundedness of the closed-loop signals is proved by Lyapunov analysis, with each system state convergence. From the
feasibility analysis, Zeno behavior can be further proved to be strictly excluded. The numerical simulation verifies that the proposed scheme has
efficient robustness to nonlinear disturbances with low energy cost, and achieves good effect in response to the requirements of space gravitational
wave detection mission.
© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction1

In a mission of space gravitational wave detection, the de-2

tection spacecraft is required to have strong robustness to en-3

sure the successful detection of low-frequency gravitational4

wave signals (Fichter et al., 2005). Drag-free control is a main5

scheme applied for the spacecraft platform with the internal test6

masses (TMs) (Mobley et al., 1975). The TMs in the detection7

spacecraft are utilized as the key payload to provide an inertial8

reference for the spacecraft’s on-orbit motion and to achieve9

ultra-high precision and accurate tracking of the spacecraft at-10

titude dynamics (Fichter et al., 2007).11
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Email addresses: sunxiaoyun@sjtu.edu.cn (Xiao-yun Sun),
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A typical example of the mission is the low-frequency space 12

gravitational wave detection mission (Luisella et al., 2013). In 13

the millihertz frequency band, the desired residual perturba- 14

tion acceleration of the sensitive axis is better than the order 15

of 10−15m/s2/
√

Hz, and the displacement control accuracy of 16

the spacecraft is better than the order of 1nm/
√

Hz (Enrico 17

et al., 2009; Wu & et al., 2011). These desired performance 18

indexes provide necessary technical support for the generation 19

of next space gravitational wave detection projects (Enrico., 20

2008). However, these performance requirements are extremely 21

challenging for the design of the control scheme due to the ex- 22

istence of system uncertainties and disturbances for near-Earth 23

satellites (Wu & et al., 2010). 24

Various drag-free control schemes and satellite attitude con- 25

trol schemes are developed to deal with those uncertainties and 26

disturbances such as nonlinear control schemes (Shen et al., 27

2018; Shen & et al., 2020; Li et al., 2019, 2017; Gui., 2021) 28
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and linear control schemes (Wu & Fertin., 2008; Lian & et al.,29

2021). In nonlinear control schemes, system uncertainties and30

disturbances are often estimated and suppressed by the model31

approximation or prediction capability, such as adaptive con-32

trol (Shen et al., 2018; Shen & et al., 2020; Li et al., 2019,33

2017) and sliding mode control (Gui., 2021). In linear control34

schemes, controllers are designed based on approximate small-35

disturbance linearization dynamics. In Wu & Fertin. (2008),36

a controller is designed based on quantitative feedback theory37

(QFT) in the decoupled drag-free control loop. In Lian & et al.38

(2021), a hybrid sensitivity H∞ control scheme based on a fre-39

quency separation strategy is proposed, which can meet the40

drag-free control requirements under measurement constraints41

in Scientific Mode.42

Event-triggered control (ETC) has been recently suggested43

as an alternative to conventional periodic sampling control due44

to its distinctive advantages. The key idea of ETC is that the45

control update is not performed as long as the performance of46

the closed-loop system is satisfactory, unlike conventional peri-47

odic sampling control where the sampling period is determined48

by considering the worst scenario, and thus many unnecessary49

samplings have to be carried out (Liu et al., 2020; Wang et al.,50

2018; Qiu et al., 2019; Wang et al., 2022; Xing & et al., 2016;51

Zhang & Yang., 2018; Liang & et al., 2020; Long & Wang.,52

2021). In the field of satellite control, event-triggered control53

would be able to reduce the communication burden and save54

the energy consumption of payloads and actuators with satis-55

factory performance (Wang & Chen., 2020; Qian et al., 2021;56

Zhang & et al., 2021). A distributed event-triggered adaptive57

control law is proposed to study the consensus of a group of58

multiple uncertain rigid spacecraft systems in Liu et al. (2020),59

and an event-triggered observer is designed to solve the for-60

mation tracking control problem of multiple spacecraft systems61

limited by communication resources in Wang et al. (2018).62

Motivated by the above discussions, a novel event-triggered63

robust model reference adaptive control (ETRMRAC) scheme64

is developed for the drag-free satellite in the mission of low-65

frequency space gravitational wave detection. The major con-66

tributions of this paper in comparison to those existing works67

are summarized as follows.68

Firstly, an enhanced robust model reference adaptive control69

(MRAC) method is proposed combining with the linear ma-70

trix inequalities (LMIs) and firstly applied to a drag-free con-71

trol system. Compared with the aforementioned robust control72

scheme for the drag-free system (Wu & Fertin., 2008; Lian &73

et al., 2021), the nonlinearities are concerned through the com-74

pensator modified by the LMI approach, and the closed-loop75

signals can adaptively track the reference model. The LMIs76

are introduced to drive the Lyapunov candidate function so that77

each closed-loop signal can converge to a bound.78

Secondly, a novel event-triggered mechanism (ETM) is de-79

signed for the LMI-based MRAC scheme, which can guaran-80

tee the robustness of the sensitive axis response while strictly81

avoiding the Zeno behavior. The controller is updated only82

at each triggering time, which can deal with nonlinear exter-83

nal disturbances with low actuation and communication costs.84

Compared with the event-triggered approach reported in (Wang85

TM1 TM2

Detection satellite

Fig. 1. The multi-body configuration of the TMs and the detection satellite.

et al., 2018; Qiu et al., 2019; Wang et al., 2022), extra robust- 86

ness is provided to behave effective performance when there 87

exists parameter uncertainties and state-related disturbances. 88

The rest of the paper is organized as follows: in Section II, 89

the dynamic model and control framework is formulated, which 90

establishes the nonlinear dynamics of the drag-free satellites 91

with 6 degrees of freedom (DOFs) sensitive axis. In Section III, 92

the ETRMRAC scheme is designed, with the design of ETM 93

according to tracking errors, the LMIs are constructed by the 94

adaptive control synthesis, and the ultimate boundedness of the 95

closed-loop signal is analyzed based on the Lyapunov method. 96

In Section IV, numerical simulation is carried out to verify the 97

efficiency of the scheme, Section V gets the conclusion. 98

2. Problem Formulation 99

In this section, the multibody drag-free control dynamic 100

model of the proposed system is established, and the control 101

framework and the assumptions required are established. 102

2.1. Modeling of Drag-free Control Systems 103

Take the LISA Pathfinder gravitational wave detection mis- 104

sion as an example (McNamara & et al., 2008; Zanoni & Bor- 105

toluzzi., 2015; Grynagier et al., 2013; Ziegler et al., 2014) to 106

model the dynamics of the drag-free control system. The satel- 107

lite consists of two opposing inertial TMs named TM1 and 108

TM2, and the multi-body configuration of the TMs and the de- 109

tection satellite is given in Fig. 1. As shown in Fig. 1, o − xyz 110

denotes the body frame of the detection satellite, and O−XIYIZI 111

is the inertia frame. r, r1, r2 are the absolute motion of the satel- 112

lite and the TMs, ro1, ro2 represent the relative motion between 113

the satellite and the TMs. According to the analysis in Gry- 114

nagier et al. (2013), the multi-body dynamics equation can be 115

described as the following approximate second-order form: 116
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Mqq̈∗ = KLT Pq∗ + Khq + fstray + factuation + MuüS C , (1)

where, factuation is the nominal force of the low-frequency sus-117

pension, fstray is the total force or moment noise including var-118

ious sources. KLT P is the internal stiffness of the multi-body119

systems, Kh is the parasitic stiffness of the inertial sensor, q∗ is120

the satellite displacement relative to the mechanical deforma-121

tion of each TM with the consideration of housing and optical122

table of nLT P and the mechanical deformation nS C , q is the nom-123

inal displacement of TM relative to the satellite, Mq,Mu are the124

mass matrix and sensitivity matrix relative to the absolute satel-125

lite motion, üS C is the absolute motion of the satellite.126

Express the absolute motion of the satellite and the TMs as:127

q =
[
rT

1 , φ
T
1 , r

T
2 , φ

T
2

]T
, uS C =

[
rT, φT

S C

]T
,

where r = [xS C , yS C , zS C], φS C = [θS C , ηS C , ψS C], ri =128

[xi, yi, zi], φi = [θi, ηi, ψi], i = 1, 2. Considering a detailed repre-129

sentation of the sensitivity matrix expressed based on the nomi-130

nal position vector, the mass and the inertia moment of the TMs131

are given as:132

Mq =


m1E 0 0 0

0 I1 0 0
0 0 m2E 0
0 0 0 I2

 ,Mu =


−m1E m1r̃o1

0 −I1
−m2E m2r̃o2

0 −I2

 ,
where, E is the identity matrix, m1,m2, I1, I2 are the TM133

mass and inertia moment, r̃o1, r̃o2 are the obliquely symmetric134

crossover matrix defined by the nominal relative position vector135

ro1 =
[
ro1,x, ro1,y, ro1,z

]T
, ro2 =

[
ro2,x, ro2,y, ro2,z

]T
, expressed as136

r̃o1=

 0 −rO1,z rO1,y
rO1,z 0 −rO1,x
−rO1,y rO1,x 0

, r̃o2=

 0 −rO2,z rO2,y
rO2,z 0 −rO2,x
−rO2,y rO2,x 0

 .
Considering q∗ = q, and assuming that there are only small-137

angle rotations in the system dynamics, a further simplified138

form is given:139


IS C 0 0 0 0

−m1T1Br̃o1 m1E 0 0 0
I1T1B 0 I1 0 0

−m2T2Br̃o2 0 0 m2E 0
I2T2B 0 0 0 I2



φ̈S C

r̈1
φ̈1
r̈2
φ̈2

 =


t
f1 − m1

m T1B f
t1

f2 − m2
m T2B f
t2

 ,
(2)

where T1B,T2B are the transformation matrices from the satel-140

lite main body to the TMs at the nominal position. Define the141

accelerations of the satellite and TMs as:142

α = I−1t, a =
1
m

f , α1 = I−1
1 t1,

a1 =
1

m1
f1, α2 = I−1

2 t2, a2 =
1

m2
f2,

where m1,m1,m2, I, I1, I2 are the mass and inertia moment of143

the spacecraft and TMs respectively.144

According to the rules of the LISA Pathfinder mission, when 145

executing Scientific Mode 1 (or Test Mode M3), 3-DOF of 146

translational, 1-DOF of rotational in TM1, and 2-DOFs of rota- 147

tional in TM2 are selected to realize drag-free control, with the 148

other 6-DOF for electrostatic suspension control (Ziegler et al., 149

2014). According to the coordinate selection matrix DDF ,DS US 150

given in Li et al. (2019), the drag-free system dynamics are re- 151

formulated as: 152 φ̈S C

q̈DF

q̈S US

 =
 BATT 0

DDF B1 DDF B2
DS US B1 DS US B2


(
aS C

aT M

)
, (3)

where, qDF,qS US are the drag-free control and electrostatic sus- 153

pension control coordinates, qDF = DDFq, qS US = DS US q,q = 154[
rT

1 , φ
T
1 , r

T
2 , φ

T
2

]T
. B1, B2, BATT are the more compact parameter 155

matrices, which are defined as: 156

BATT =
[
0 x̃

]
, B1 =


−T1B T1Br̃o1

0 −T1B

−T2B T2Br̃o2
0 −T2B

 , B2 = E,

aS C , aT M are the combined external force and torque on 157

the spacecraft and the TMs, aS C =
(
aT αT

)T
, aT M = 158(

aT
1 αT

1 aT
2 αT

2

)T
. Considering that the total external force 159

and torque are input by the controller uT , uS , disturbance 160

dS C , dT M and TM stiffness deformation, the system dynamics 161

are finally expressed as: 162 φ̈S C

q̈DF

q̈S US

 =
BATT 0 0

BDF E 0
BS US 0 E



 uT

uS 1
uS 2

 +
 dS C

dT M1
dT M2




+

0 0 0
0 −Ω2

DF 0
0 −Ω2

C −Ω2
S US


 φS C

qDF

qS US

 ,
(4)

where, BDF = DDF B1, BS US = DS US B1, uS 1 = 163

DDF B2uS , uS 2 = DS US B2uS are controller inputs, dT M1 = 164

DDF B2dT M , dT M2 = DS US B2dT M are drag-free system input 165

noise. Ω2
DF ,Ω

2
S US andΩ2

C are stiffness matrices,Ω2
DF andΩ2

S US 166

are diagonal matrices. Only analyze the drag-free loop, the state 167

is defined as x =
[
qDF , q̇DF

]T, then the drag-free loop consider- 168

ing input disturbance can be expressed as: 169

ẋ = Ax + B (uT + dT M) ,
y = Cx,

(5)

where, dT M = B−1 (uS 1 + dT M1) + dS C is the total noise, A, B,C 170

are the state parameter matrices, A =
[

0 E
−Ω2

DF 0

]
, B =

[
0

BDF

]
. 171

Assuming that A, B are slowly time-varying, y is the output. The 172

feedback controller is designed to satisfy the following model 173

matching conditions (Li et al., 2017): 174

ẋm (t) = Amxm + Bmr(t), Am = A + Bk∗x
T, Bm = Bk∗r , (6)

where Am, Bm are the reference model parameter matrices, ym 175

is the reference output, k∗x, k
∗
r are the nominal feedback gain, 176
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Reference model

Dynamics ETM

Adaptive laws

LMIs

Fig. 2. Control framework.

assuming k∗r has an upper bound k̄∗r . The following assumptions177

are given:178

Assumption 2.1: The disturbance term dT M (t) is continuous179

and bounded, which satisfies the following inequality:180

∥dT M∥ ≤ d̄T M + L ∥x̃∥ + L1∥x̃∥1+η + L2∥x̃∥1+θ, (7)

where d̄T M , L, L1, L2 ∈ R+ is assumed to be known, the state181

tracking error x̃ (t) = x (t) − xm (t), xm is the reference state,182

η ∈ (0, 1) , θ > 1. The assumption of disturbance characteristics183

is related to the strong nonlinearities of the actual conditions in184

the space detection missions (Franco et al., 2021).185

Assumption 2.2: The chosen of the reference state matrix186

Am needs to be mentioned. The control objective of this work187

is to drive the drag-free system to a stable linear decoupled sys-188

tem, which is similar to the goal in (Wu & Fertin., 2008), so189

that the closed-loop signals can converge to a bound and the190

system is stable. The chosen result of Am can be found in the191

section of Simulation Results and Analysis, which implies Am192

is a diagonal stable matrix.193

2.2. Control Framework194

The control framework is shown in Fig. 1. Under the195

premise of precise control in the drag-free system, to realize the196

approximation and feedback of continuous and bounded addi-197

tional disturbances, and improve the information transmission198

efficiency and system robustness, the ETRMRAC framework is199

established. The feedback correction term based on the LMI200

approach is modified in the controller design, to enhance the201

global robustness in the interevent time. The ETM is introduced202

in the MRAC law of the multi-variable drag-free control sys-203

tem, to guarantee the parameter adaptive laws are only updated204

at each triggering time instant.205

3. Drag-free Control System Design by ETRMRAC206

In this section, the ETM is given first, the control law and207

adaptive law are designed with the LMIs constructed based208

on the stability analysis, and the global boundedness of each 209

closed-loop signal and Zeno behavior are then analyzed. 210

3.1. ETM Design 211

To design the ETM, the closed-loop system is firstly divided 212

into unequally time intervals, and under the k-th time transient 213

tk with k ∈ N, an event-triggered parameter adaptation law is 214

carried out, and the control law is updated accordingly. Define 215

the sampling errors as: 216

ε1(t) = x(t) − x(tk), ε2(t) = φ(t) − φ(tk) (8)

where φ is defined in (12). and it is assumed that the first event 217

occurs at t0 = 0. The ETM is to sample the state of the plant (5) 218

at each triggering instant. Without loss of generality, the initial 219

value of the sample time is t0 = 0. The length of time interval 220

between each two consecutive trigger time instants is defined 221

as the interevent time. and the event-triggered transient state is 222

called the instant state (Lu et al., 2019). Define the ETM as: 223

tk+1 = inf{t > tk |ι (Φ − µL) ∥x̃(t)∥2 − 8γ∥x(t)∥2 − ∥x(t)∥4

− ∥φ (t)∥4 − 2γ∥ε1(t)∥2 − 2ϖ∥ε2(t)∥2 − 8ϖ∥φ (t)∥2

− ι (Φ − µL) m0e−m1t = 0},

(9)

where, m0 > 0,m1 > 0, other parameters to be designed are 224

given by Theroem 3.1. 225

3.2. Controller Design 226

Substituting (6) into the plant (5) and rewriting the closed- 227

loop system as: 228

ẋ = Amx + Bmk∗−1
r

(
uT + dT M − k∗x

Tx
)
. (10)

The nominal robust state feedback control input u∗T (t) is 229

given as: 230

u∗T (t) = k∗x
Tx (t) + k∗r r (t) + k∗r KT f (x̃) , (11)

where, f (x̃) =
[
f T
0 (x̃) , f T

1 (x̃) , f T
2 (x̃)

]T
, f0 (x̃) = ∥x̃∥0sgn (x̃), 231

f1(x̃) = ∥x̃∥ηsgn (x̃) , f2 (x̃) = ∥x̃∥θsgn (x̃) , η ∈ (0, 1) , θ > 1, K 232
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is the robust feedback gain. When there are uncertainties in233

the system state, the nominal feedback gain k∗x, k
∗
r will not be234

accurately obtained. Let φ (r, x̃) = r + KT f (x̃), rewrite (9) as235

ẋ = Amx + Bmr + Bmk∗−1
r

×
(
uT − k∗xx − k∗rφ (x̃, r) + k∗r

(
d̄0 + KT f (x̃)

))
,

(12)

where d̄0 = k∗−1
r dT M , which is obviously bounded and satisfies236

Assumption 2.1. First, under the time interval [tk, tk+1), the237

interevent controller is applied as:238

uT (t) = k̂T
x x (tk)α (x (tk)) + k̂rφ (tk)ω (x (tk)) (13)

where,239

α (x (tk)) = tanh
(

1
ϵ

k̂T
x x (tk)

(
x̃T (tk) P + f T (x̃ (tk))Λ

)
Bm

)
,

ω (x (tk)) = tanh
(

1
ϵ

k̂rφ (x (tk) , r)
(
x̃T (tk) P + f T (x̃ (tk))Λ

)
Bm

)
,

(14)
Λ = [Λ0,Λ1,Λ2]T,Λ j = diag

{
λ ji

}
, λ ji ∈ R+, i = 1, ..., n, ϵ is a240

small positive constant, ϵ ∈ R+, P = PT ∈ Rn×n, P ≥ 0, k̂x, k̂r241

are the parameters to be estimated that are updated only in the242

triggering time, that is, in the interevent state, the parameter243

adaptive update law is given as244

˙̂kx =
˙̂kr = 0. (15)

While in the instant state, k̂x, k̂r are transient at each tk to com-245

plete one step of adaptive update. The adaptation law at the246

instant tk is expressed as247

k̂+x = k̂x −
τ1xTPBm

a1 + ∥P∥ ∥x∥
− σ1k̂x, k̂+r = k̂r −

τ2xTPBm

a2 + ∥P∥ ∥x∥
− σ2k̂r,

(16)
where a1 > 0, a2 > 0 are small positive constants, τ1, τ2 are the248

positive adaptive gains, σ1, σ2 are the modification term gains,249

satisfying 0 < σ j <
1
2 , j = 1, 2. Define parameter estimation250

error k̃x = k∗x − k̂x, k̃r = k∗r − k̂r, the full-time adaptive law is251

obtained as:252

˙̃kx = 0, t ∈ [tk, tk+1), k̃+x = k̃x +
τ1xTPBm

a1 + ∥P∥ ∥x∥
+ σ1k̂x, t = tk,

˙̃kr = 0, t ∈ [tk, tk+1), k̃+r = k̃r +
τ2xTPBm

a2 + ∥P∥ ∥x∥
+ σ2k̂r, t = tk.

(17)
According to the above adaptive law (17), plant (5) and con-253

troller (12), the closed-loop stability analysis is carried out in254

the next subsection.255

Remark 3.1: Note that the excitation condition persists on256

the reference input r, that is, the regression term φ (x̃, r) also257

satisfies the Persistent Excitation (PE) condition. Considering258

the existence of disturbance d̄0 in plant (5), according to As-259

sumption 2.1, d̄0 can be denoted as260 ∥∥∥d̄0
∥∥∥ ≤ L∗0 + L∗ ∥x̃∥ + L∗1∥x̃∥

1+η + L∗2∥x̃∥
1+θ, (18)

where L∗0, L
∗, L∗1, L

∗
2 ∈ R+ is considered to be known. Note that261

due to the power term of the convergence error, it means that262

the general linear control method cannot suppress this part of 263

the disturbance, which further illustrates the necessity of the 264

nonlinear anti-disturbance controller design. 265

3.3. Stability Analysis 266

To analyze the system stability, the following theorem is for- 267

mulated: 268

Theorem 3.1: In the drag-free system (5) based on an 269

ETRMRAC scheme, when the input disturbances satisfy (18), 270

there exists 0 < XT = X ∈ Rn×n,Y j ∈ R1×n,Φ = diag {ϕi} > 0 271

and Ω j = diag
{
ω ji

}
> 0, i = 1, ..., n, j = 0, 1, 2, so that the 272

following linear matrix inequalities: 273

1T
n

[
δ
(
BmY0 + XAT

m

)
+ χ

(
Bm
−1Y0 + XAT

m

)
+ Ω0

]
≤ 0,

1T
n

 (1 + η) δ
(
BmY1 + XAT

m

)
+ (1 + η)Ω

+ ηχ
(
BmY1 + XAT

m

)
+ χT

(
BmY1 + XAT

m

) ≤ 0,

1T
n

 (1 + θ) δ
(
BmY2 + XAT

m

)
+ (1 + θ)Ω

+ θχ
(
BmY2 + XAT

m

)
+ χT

(
BmY2 + XAT

m

) ≤ 0,

Φ > µLIn, 2Ωs − µLsLn > 0, s = 1, 2, Q̃ ≤ 0

(19)

holds, where for a fixed 0 < Λ j = diag
{
λ ji

}
, 274

Q̃ =



AmX + XAT
m + Φ + 6 0

∗ BmY0 + YT
0 BT

m +
µL∗0

n
Λ−2

0 + 6Ψ0

∗ ∗

∗ ∗

∗ ∗

0 0 Bm

BmY1 + YT
0 BT

m BmY2 + YT
0 BT

m Bm

BmY1 + YT
1 BT

m + 6Ψ1 BmY2 + YT
1 BT

m Bm

∗ BmY2 + YT
2 BT

m + 6Ψ2 Bm

∗ ∗ −µIn

 ,
(20)

µ ∈ R+, Ψi = Λ
T
pi
Λpi , Λpi = P−1Λi, i = 0, 1, 2. 1T

n denotes a 275

column vertor of ones with the dimension n, χ(M) is the matrix 276

calculated by χ(M) = |M − δ(M)| and the definition of δ(M) 277

is given according to (Franco et al., 2021). Choose k1,k2 > 0, 278

kT
j+3 = Y jΛ j, P = X−1, after introducing the adaptive law (17), 279

the controller (12) and the ETM 280

tk+1 = inf{t > tk |ι (Φ − µL) ∥x̃(t)∥2 − 8γ∥x(t)∥2 − ∥x(t)∥4

− ∥φ (t)∥4 − 2γ∥ε1(t)∥2 − 2ϖ∥ε2(t)∥2 − 8ϖ∥φ (t)∥2

− ι (Φ − µL) m0e−m1t = 0},

(21)

all closed-loop signals are guaranteed to be ultimately uni- 281

formly bounded (UUB). 282

Proof: In the stability analysis, the parameter boundedness 283

in the interevent state and instant state will be firstly discussed, 284

and then the feedback gain estimation error will be analyzed. In 285

the interevent state, the following Lyapunov function is given: 286

Vk = Vkx + Vkr = k̃T
x k̃x + k̃T

r k̃r, t ∈ [tk, tk+1). (22)
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It is obvious that V̇k = 2k̃T
x

˙̃kx + 2k̃T
r

˙̃kr = 0. Therefore, only287

the boundedness of the parameters under instant time needs to288

be considered. At each time instant, due to the system discon-289

tinuity, according to the establishing method of the Lyapunov290

function for discontinuous systems in Lu et al. (2019), a gener-291

alized gradient is utilized to establish Lyapunov-like functions292

∆Vkx ,∆Vkr . At each time instant tk, the boundedness of the state293

feedback gain k̂x is firstly analyzed, and ∆Vkx is organized as:294

∆Vkx = V+kx
− Vkx = k̃T+

x k̃+x − k̃T
x k̃x

=

(
k̃x+

τ1xTPBm

a1+∥P∥ ∥x∥
+σ1k̂x

)T(
k̃x+

τ1xTPBm

a1+∥P∥ ∥x∥
+σ1k̂x

)
−k̃T

x k̃x

≤
τ2

1

(
xTPBm

)2

(a1 + ∥P∥ ∥x∥)2 + σ
2
1k̂T

x k̂x

+ 2σ1k̃T
x k̂x +

2τ1
∣∣∣xTPBm

∣∣∣ ∥∥∥σ1k̂T
x + k̃T

x

∥∥∥
a1 + ∥P∥ ∥x∥

.

(23)
Note that 0 ≤ |x

TPBm|
a1+∥P∥∥x∥

≤ ∥Bm∥, (23) is further derived as295

∆Vkx ≤ τ
2
1B2

m + σ
2
1k̂T

x k̂x + 2σ1k̃T
x k̂x + 2τ1k̃T

x + 2σ1τ1k̂T
x . (24)

Utilizing k̃x = k∗x − k̂x, it can be derived that296

∆Vkx ≤ τ
2
1B2

m +
(
2σ2

1 + σ1

) ∥∥∥k∗x
∥∥∥2
+

(
2σ2

1 − σ1

) ∥∥∥k̃x

∥∥∥2

+ (2σ1τ1 + 2τ1)
∥∥∥k̃x

∥∥∥ + 2σ1τ1
∥∥∥k∗x

∥∥∥ ≤ −ζ1
∥∥∥k̃x

∥∥∥2
+ δ1,

(25)

where ζ1 =
σ1−2σ2

1
2 > 0, δ1 = τ2

1 +
(
2σ2

1 + σ1

) ∥∥∥k∗x
∥∥∥2
+297

2τ1σ1
∥∥∥k∗x

∥∥∥ + 2(τ1+σ1τ1)2

σ1−2σ2
1

.298

Thus, when
∥∥∥k̃x

∥∥∥ ≥ √
2δ1
ζ1

, ∆Vkx < 0 is satisfied, that is, Vkx299

is monotonically decreasing within the interval
{∥∥∥k̃x

∥∥∥ ≥ √
2δ1
ζ1

}
.300

Since Vkx ≥ 0, the bounded conclusion of Vkx ensures that k̃x301

is bounded, and will eventually converge to a radius of B1 =302 √
2δ1
ζ1

.303

Similarly, the bounded conclusion of the reference input304

feedback gain estimation error k̃r can also be obtained. Estab-305

lish the Lyapunov-like function ∆Vkr . At each time transient tk,306

note that 0 ≤ |x
TPBm|

a2+∥P∥∥x∥
≤ ∥Bm∥ and k̃r = k∗r − k̂r, organize ∆Vkr307

as:308

∆Vkx = V+kx
− Vkx = k̃T+

x k̃+x − k̃T
x k̃x

≤
τ2

2

(
xTPBm

)2

(a2+∥P∥ ∥x∥)2 +σ
2
2k̂T

r k̂r+2σ2k̃T
r k̂r+

2τr

∣∣∣xTPBm

∣∣∣ ∥∥∥σrk̂T
r k̃T

r

∥∥∥
a2+∥P∥ ∥x∥

≤ τ2
2B2

m +
(
2σ2

2 + σ2

) ∥∥∥k∗r
∥∥∥2
+

(
2σ2

2 − σ2

) ∥∥∥k̃r

∥∥∥2

+ (2σ2τ2 + 2τ2)
∥∥∥k̃r

∥∥∥ + 2σ2τ2
∥∥∥k∗r

∥∥∥ ≤ −ζ2
∥∥∥k̃r

∥∥∥2
+ δ2,

(26)
where ζ2 =

σ2−2σ2
2

2 > 0, δ2 = τ2
2 +

(
2σ2

2 + σ2

) ∥∥∥k∗r
∥∥∥2
+309

2τ2σ2
∥∥∥k∗r

∥∥∥ + 2(τ2+σ2τ2)2

σ2−2σ2
2

.310

According to (26), it can also be concluded that Vkr is 311

bounded so that k̃r is bounded and will eventually converge to a 312

radius of B2 =

√
2δ2
ζ2

. 313

Secondly, under the event-triggered mechanism, the state er- 314

ror boundedness is analyzed. In the time sequence [tk, tk+1), the 315

following Lyapunov function is denoted: 316

V = Vx + Vkx + Vkr

= x̃TPx̃ + 2
2∑

j=0

n∑
i=1

λ ji

∫ xi

0
f ji (s) ds+k̃T

x k̃x + k̃T
r k̃r.

(27)

Note that k̃T
x k̃x + k̃T

r k̃r = 0 and Lyapunov equation (14), take the 317

first-order differential on both sides of (27): 318

V̇ = −x̃TQx̃ + 2x̃TPBmk∗−1
r

(
uT + d̄0 − k∗x

Tx − k∗r r
)

+ 2
2∑

j=0

(
x̃TAT

mΛ j f j (x̃) +
(
uT + d̄0 − k∗Tx x − k∗Tr r

)T

×k∗Tr BT
mΛ j f j (x̃)

) (28)

Substituting the control law (12) into (28), and it is further de- 319

rived as 320

V̇ = −x̃TQx̃ + 2x̃TPBmk∗−1
r (k̂T

x x(tk)α(tk) − k∗x
Tx

+ k̂rr(tk)ω(tk) − k∗r r + k̂r(tk) f (tk)ω(tk) + d̄0)

+ 2
2∑

j=0

((k̂T
x x(tk)α(tk) −

(
k̂T

x + k̃T
x

)
x

+ k̂r(tk)r(tk)ω(tk) −
(
k̂r + k̃r

)
r + k̂r(tk) f (tk)ω(tk)

+ d̄)Tk∗T−1
r BT

mΛ j f j + x̃TAT
mΛ j f j)

≤ −x̃TQx̃ + 2
2∑

j=0

x̃TAT
mΛ j f j + 2

(
x̃TP + f T (x̃)Λ

)
× Bmk∗−1

r (k̂T
x x(tk)α(tk) − k̂T

x x + k̂r(tk)φ(tk)ω(tk)

− k̂rφ + k∗r f + d̄) + 2 (∥x̃∥ ∥P∥ + ∥ f (x̃)∥ ∥Λ∥)

× ∥Bm∥
∥∥∥k∗−1

r

∥∥∥ (∥k̃T
x x∥ + ∥k̃rφ∥).

(29)

Some items in (29) are analyzed separately: 321

2
(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r

(
k̂T

x x (tk)α (x (tk)) − k̂T
x x

)
= 2

(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r

(
−k̂T

x x + k̂T
x x (tk)

× tanh
(

1
ϵ

k̂T
x x (tk)

(
x̃T (tk) P + f T (x̃ (tk))Λ

)
Bm

))
= 2

(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r k̂T
x (−x + x tanh

(
1
ϵ

×k̂T
x x

(
x̃TP + f T (x̃)Λ

)
Bm

))
+ 2

(
x̃TP + f T (x̃)Λ

)
× Bmk∗−1

r k̂T
x

(
x (tk) tanh

(
1
ϵ

k̂T
x x (tk)

(
x̃T (tk) P

+ f T (x̃ (tk))Λ
)

Bm

)
− x tanh

(
1
ϵ

k̂T
x x

(
x̃TP + f T (x̃)Λ

)
Bm

))
.

(30)
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According to Wang & Chen. (2020), (30) is further rewritten as:322

2
(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r

(
k̂T

x x (tk)α (x (tk)) − k̂T
x x

)
≤ 0.557k∗−1

r ϵ+2
∥∥∥∥(x̃TP+ f T (x̃)Λ

)
Bmk∗−1

r

∥∥∥∥ ∥∥∥k̂T
x

∥∥∥ (∥x∥ + ∥x (tk)∥)

≤ 0.557k∗−1
r ϵ+2

∥∥∥∥(x̃TP+ f T (x̃)Λ
)

Bmk∗−1
r

∥∥∥∥ ∥∥∥k̂T
x

∥∥∥ (2 ∥x∥+∥ε∥)

≤ 0.557k∗−1
r ϵ + 2∥x̃∥2 + 2

∥∥∥P−1 f T (x̃)Λ
∥∥∥2

+ 2∥Bm∥
2
∥∥∥k∗−1

r

∥∥∥2
∥P∥2

∥∥∥k̂T
x

∥∥∥2 (
4 ∥x∥2 + ∥ε1∥

2
)
,

(31)
where, the fact of |tanh (β/ξ)| ≤ 1 is applied to the derivation.323

Similarly, it can be obtained that324

2
(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r

(
kT

r φ (tk)ω (x (tk)) − kT
r φ

)
≤ 0.557k∗−1

r ϵ + 2∥x̃∥2 + 2
∥∥∥P−1 f T (x̃)Λ

∥∥∥2

+ 2∥Bm∥
2
∥∥∥k∗−1

r

∥∥∥2
∥P∥2

∥∥∥k̂T
r

∥∥∥2 (
4∥φ∥2 + ∥ε2∥

2
)
.

(32)

After processing the remaining terms in (29), it can be derived:325

2
(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r k̃T
r φ

≤ ∥x̃∥2 +
∥∥∥P−1 f T (x̃)Λ

∥∥∥2
+ ∥P∥4∥Bm∥

4
∥∥∥k∗−1

r

∥∥∥4∥∥∥k̃r

∥∥∥4
+ ∥φ∥4,

2
(
x̃TP + f T (x̃)Λ

)
Bmk∗−1

r k̃T
x x

≤ ∥x̃∥2 +
∥∥∥P−1 f T (x̃)Λ

∥∥∥2
+ ∥P∥4∥Bm∥

4
∥∥∥k∗−1

x

∥∥∥4∥∥∥k̃x

∥∥∥4
+ ∥x∥4.

Substituting the above inequalities into (29), it can be further326

organized as:327

V̇ ≤


x̃
f0
f1
f2
d̄0


T



PAm + AT
mP + 6 PA0 + AT

mΛ0

∗

Λ0A0 + AT
0Λ0

+
µL∗0

n
In + 6Ψ0

∗ ∗

∗ ∗

∗ ∗

PA1 + AT
mΛ1 PA2 + AT

mΛ2 PBm

Λ1A1 + AT
0Λ0 Λ2A2 + AT

0Λ0 BT
mΛ0

Λ1A1 + AT
1Λ1

+ 6Ψ1
Λ2A2 + AT

1Λ1 BT
mΛ1

∗ Λ2A2 + AT
2Λ2 + 6Ψ2 BT

mΛ2
∗ ∗ −µ




x̃
f0
f1
f2
d̄0


−
µL∗0

n
f T
0 f0 + µd̄T

0 d̄0 + W̄ + ∥x∥4 + ∥φ (x̃, r)∥4

+ 8γ∥x∥2 + 8ϖ∥φ (x̃, r)∥2 + 2γ∥ε1∥
2 + 2ϖ∥ε2∥

2,

(33)

where, Ψ j = PT−1P−1Λ jΛ
T
j , j = 0, 1, 2,A0 = Bmk3, A1 =328

Bmk4, A2 = Bmk5, γ = ∥Bm∥
2
∥∥∥k̄∗−1

r

∥∥∥2
∥P∥2

∥∥∥k̂T
x

∥∥∥2
,329

ϖ = ∥Bm∥
2
∥∥∥k∗−1

r

∥∥∥2
∥P∥2

∥∥∥k̂r

∥∥∥2
, W̄ = sup

t∈[0,+∞)
{W},330

W = ∥P∥4∥Bm∥
4
∥∥∥k∗−1

x

∥∥∥4
×

∥∥∥k̃x

∥∥∥4
+ ∥P∥4∥Bm∥

4
∥∥∥k∗−1

r

∥∥∥4∥∥∥k̃r

∥∥∥4
+331

1.114
∥∥∥k∗−1

r

∥∥∥ ϵ. Then V̇ can be denoted as332

V̇ = ξTQbξ −
µL∗0

n
f T
0 f0 + µd̄T

0 d̄0 + ∥x∥4 + ∥φ (x̃, r)∥4

+ W̄ + 2γ∥x∥2 + 2ϖ∥φ (x̃, r)∥2 + 2γ∥ε1∥
2 + 2ϖ∥ε2∥

2,

(34)

where 333

Qb =



AmX + XAT
m + 6P−2 BmY0 + XAT

m

∗

BmY0 + YT
0 BT

m

+
µL∗0

n
Λ−2

0 + 6Ψ0Λ
−2
0

∗ ∗

∗ ∗

∗ ∗

BmY1 + XAT
m BmY2 + XAT

m Bm

BmY1 + YT
0 BT

m BmY2 + YT
0 BT

m Bm

BmY1 + YT
1 BT

m + 6Ψ1Λ
−2
0 BmY2 + YT

1 BT
m Bm

∗
BmY2 + YT

2 BT
m

+ 6Ψ2Λ
−2
0

Bm

∗ ∗ −µ


.

(35)

To ensure that Qb is semi-negative definite, some items in the 334

matrix 335

Qb12 = Qb21 = BmY0 + XAT
m,

Qb13 = Qb31 = BmY1 + XAT
m,

Qb14 = Qb41 = BmY2 + XAT
m,

(36)

and their symmetric counterparts are processed as in Ge & Tao. 336

(2021). Taking these terms out of Qb, then (33) can be ex- 337

pressed as 338

V̇ = ξTQ̃ξ − x̃TΦx̃ − 2
2∑

j=0

x̃TΩ j f j (x̃)−
µL∗0

n
f T
0 f0

+ 2
2∑

j=0

x̃T
(
BmY j + XAT

m + Ω j

)
f j (x̃) + µd̄T

0 d̄ + ∥x∥4

+ ∥φ (x̃, r)∥4 + W̄ + 8γ∥x∥2 + 8ϖ∥φ (x̃, r)∥2

+ 2γ∥ε1∥
2 + 2ϖ∥ε2∥

2,

(37)

where the form of Q̃ has been given by (20). Therefore, to 339

guarantee the stability of the system, it is necessary to select the 340

main diagonal elements of BmY j+XAT
m+Ω j to be semi-negative 341

definite. Then the above-mentioned matrix cross terms can be 342

processed according to Wang et al. (2022): 343

x̃i f0 (x̃k) ≤ |x̃i| ,

x̃i f1 (x̃k) ≤
|x̃i|

1+η

1 + η
+
α|x̃i|

1+η

1 + η
,

x̃i f2 (x̃k) ≤
|x̃i|

1+θ

1 + θ
+
γ|x̃i|

1+θ

1 + θ
,

(38)

where i , k. Take Qb13 as an example to analyze the upper 344

bound of BmY j+XAT
m+Ω j, it is obtained by applying the above 345

inequalities: 346

1T
nδ (Qb13) |x̃|η+1 + 1T

n
ηχ (Qb13)

1 + η
|x̃|η+1

+ 1T
n
χT (Qb13)

1 + η
|x̃|η+1 + 1T

nΩ1|x̃|η+1 ≤ 0.
(39)

Utilizing the LMIs availability in (19) and (20) 347

to analyze the above equation, the corresponding 348
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x̃T
(
BmY j + XAT

m + Ω j

)
f j (x̃) ≤ 0 can be obtained. Thus,349

the upper bound of V̇ is expressed as:350

V̇ ≤ −x̃TΦx̃ − 2
2∑

j=0

x̃TΩ j f j (x̃)−
µL∗0

n
f T
0 f0 + µd̄T

0 d̄

+ ∥x∥4 + ∥φ (x̃, r)∥4 + W̄ + 8γ∥x∥2 + 8ϖ∥φ (x̃, r)∥2

+ 2γ∥ε1∥
2 + 2ϖ∥ε2∥

2.

(40)

According to Assumption 2.1, it is further derived that351

V̇ = −x̃T (Φ − µL) x̃ −
2∑

s=1

x̃T
(
2Ω j − µLs

)
fs (x̃)

+ ∥x∥4 + W̄ − 2x̃TΩ0 f0 (x̃) + ∥φ (x̃, r)∥4

+ 8γ∥x∥2 + 8ϖ∥φ (x̃, r)∥2 + 2γ∥ε1∥
2 + 2ϖ∥ε2∥

2.

(41)

Substituting the ETM (21), further analysis is expressed as:352

V̇ = −x̃T (Φ − µL) (1 − ι) x̃ + W̄ + (Φ − µL) ιm0e−m1t

−

2∑
s=1

x̃T
(
2Ω j − µLs

)
fs (x̃) − 2x̃TΩ0 f0 (x̃),

(42)

where 0 < ι < 1. Correct the designed Lyapunov function as:353

Vr = V +
(Φ − µL) ι

m1
m0e−m1t. (43)

Then the first-order differential of Vr in each interevent state354

[tk, tk+1) satisfies355

V̇r = x̃T (Φ − µL) (1 − ι) x̃ + W̄

−

2∑
s=1

x̃T
(
2Ω j − µLs

)
fs (x̃) − 2x̃TΩ0 f0 (x̃).

(44)

That is, there is always an interval of ∥x̃∥ ≥ W∗, such that356

V̇r ≤ 0. When considering triggering time, note that V+r − Vr =357

V+kx
+ V+kr

− Vkx − Vkr , system state does not change. Combin-358

ing (25) and (26), it can be concluded that when ∥x̃∥ ≥ W∗,359 ∥∥∥k̃x

∥∥∥ ≥ B1,
∥∥∥k̃r

∥∥∥ ≥ B2, Vr monotonically decreases. Thus it360

can be proved that, under the arbitrarily selected initial value,361

the global closed-loop signals can achieve stable tracking to the362

reference model and are guaranteed to be ultimately uniformly363

bounded (UUB), the system state converges to a set around the364

origin.365

3.4. Feasibility Analysis366

The feasibility analysis is shown to exclude the Zeno behav-367

ior, which presents the phenomenon of infinite triggering in a368

finite time interval. Assume that Zeno behavior occurs at tk,369

then it is extended that lim
k→+∞

tk = T0, with the constant T0 ∈ R+.370

That is,371

tk ∈ [T0 − ε0,T0] ,∀k ≥ N0, (45)

where N0 ∈ N+, ε0 ∈ R+, which is selected as372

ε0 =
1

2 ∥Am∥
ln

(
∥Am∥

Θ

(√
m0e−

1
2 m1T0 −C

)
+ 1

)
> 0, (46)

where Θ,C is defined later in this subsection. Recalling (11) 373

and calculating the derivation of ∥x̃∥ as: 374∥∥∥ ˙̃x
∥∥∥ = ∥Am x̃ + Bmk∗−1

r (uT − k∗xx − k∗rφ (x̃, r)

+ k∗r
(
d̄0 + KT f (x̃)

)
)∥

≤ ∥Am∥ ∥x̃∥ + Bmk∗−1
r (uT − k∗xx − k∗rφ (x̃, r)

+ k∗r
(
d̄0 + KT f (x̃)

)
)

≤ ∥Am∥ ∥x̃∥ + Θ,

(47)

where Θ ∈ R+, ∥Bm∥
∥∥∥k∗−1

r

∥∥∥ (∥uT ∥ −
∥∥∥k∗x

∥∥∥ ∥x∥ − ∥∥∥k∗r
∥∥∥ ∥φ (x, r)∥ + 375∥∥∥k∗r

∥∥∥ ∥∥∥d̄0 + KT f (x̃)
∥∥∥) ≤ Θ holds during t ∈ [0,∞). Define 376

∥x̃ (tk)∥ = c, according to the lemma given in Wang et al. (2018), 377

for t ∈ [tk, tk+1), ∥x̃∥ is derived as 378

∥x̃∥ ≤
Θ

∥Am∥

[
e∥Am∥(t−tk)

− 1
]
+ c. (48)

It can be obtained thatlim
t→∞

sup ∥c∥ ≤ C from the bounded- 379

ness of x̃, and tk+1 − tk can represent the evolution time for 380

∥x̃∥ from c2 to ι (Φ − µL) ∥x̃∥2 − 8γ∥x∥2 − ∥x∥4 − ∥φ (x̃, r)∥4 − 381

8ϖ∥φ (x̃, r)∥2 − ι (Φ − µL) m0e−m1t. Thus, the lower bound τk of 382

tk+1 − tk can be obtained by the following equation: 383

Θ

∥Am∥

[
e∥Am∥(t−tk)

− 1
]
=
√

m0e−
1
2 m1T0 −C. (49)

From selecting the suitable parameters, it can be guaranteed 384
√

m0e−
1
2 m1T0 −C, τk = 2ε0 can be obtained, and tk+1 ≥ tk + τk ≥ 385

T0 + ε0 can also be found. The derivation above contradicts the 386

hypothesis (44), thus Zeno behavior is excluded. 387

4. Simulation Results and Analysis 388

Numerical simulation verification is presented based on the 389

sample drag-free control nonlinear dynamic system (Fichter 390

et al., 2007). In the simulation, the closed-loop performance 391

of the ETRMRAC scheme for displacement noise suppression 392

in 2-DOFs of the sensitive axis is shown, and the triggering 393

interval under the ETM is compared with the time triggering 394

mechanism (TTM) (Basu et al., 2017). For the general TTM, 395

the controller is derived as a continuous-time form, while in the 396

simulation verification, the control input is updated with a fixed 397

sampling step, and the updating frequency is set to be 10Hz ac- 398

cording to Fichter et al. (2007); Basu et al. (2017). According 399

to Wu & Fertin. (2008), for the dynamic modeling of the drag- 400

free control system, the stiffness matrix with perturbation is set 401

as 402

ΩDF
2 = 10−7 × (1 ± 10%)

×



11.19 1.35 1.35 0.00425 0 0
1.35 9.55 1.35 0.00425 0 0
1.35 1.35 24.12 0.00425 0 0

26.087 26.087 26.087 30.64 0 0
0 0 0 0 9.55 1.35
0 0 0 0 1.35 24.12


,

and the input matrix is set as 403
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Fig. 3. Comparison of time-triggered response and interevent response under
ETM in x1 axis.

BDF =



−1 0 0 0 0 0
0 −1 0 0.45 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


.

The control parameter are choosen as η = 0.89, θ =404

1.12, τ1 = τ2 = diag(1000, 500, 1000, 5000), σ1 =405

σ2 = 0.2,Q = diag(8 × 10−7, 8 × 10−7, 8 × 10−7, 8 ×406

10−7), Am = diag(8 × 10−4, 8 × 10−4, 8 × 10−4, 8 × 10−4),m0 =407

1 × 10−56,m1 = 0.4. The bounded disturbances are given in408

Mobley et al. (1975). Simulation continues 1500 s, and the409

sample step under TTM is set to 0.1 s. Simulation results are410

shown in Fig. 3 to Fig. 15.411

Fig. 3 and Fig. 4 show the comparison of state feedback412

for input signals before and after being triggered by the ETM.413

The ETM has a certain reduction effect on the control ampli-414

tude when dealing with high-frequency bounded disturbances.415

In the control signal comparison shown in Fig. 5 and Fig.416

6, the average amplitude of the control signal under ETM is417

smaller than TTM, which is effective for the realization of the418

low cost of actuator energy. In Fig. 7 and Fig. 8, the compar-419

ison of closed-loop signal state responses based on two differ-420

ent mechanisms shows that the closed-loop signal disturbance421

suppression effect under time triggered controller is stronger422

than that of an event-triggered controller, but the displacement423

noise under event-triggered control scheme is still within the424

performance requirements of the sample mission of space grav-425

itational wave detection. Fig. 9 and Fig. 10 show the com-426

parison of the triggering time interval under the ETM and the427

triggering times of the TTM. Under a total of 15,000 sampling428

steps, the ETM only triggers 456 times to ensure the stability429

of the closed-loop system and a reasonable closed-loop control430

effect, which intuitively reflects the superiority of ETM for the431

triggering numbers.432

Fig. 11 and Fig. 12 show the control performance compar-433

ison between the ETRMRAC scheme and the time-triggered434

control scheme (Wu & Fertin., 2008) with QFT for displace-435

ment disturbance suppression. The simulation results show that436

in the detection frequency band, although the event-triggered437
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scheme does not update the control input all the time, due to the 438

strong nonlinear uncertainty suppression ability and additional 439
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Fig. 11. Comparison of state response under various scheme in x1 axis.

robustness, under the presence of continuous high-frequency440

nonlinear disturbances, it still provides better control perfor-441

mance than the QFT scheme.442
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0 500 1000 1500

time/s

-6

-4

-2

0

2

4

6

8

d
is

p
la

c
e
m

e
n
t 
re

s
p
o
n
s
e
 o

n
 

1
 a

x
is

/r
a
d 10

-13

general MRAC scheme

LMI-based MRAC scheme

Fig. 14. Comparison of state response with parameter perturbation under gen-
eral MRAC and LMI-based MRAC in θ2 axis.

0 500 1000 1500

time /s

0

1

2

3

4

5

6

e
n
e
rg

y
 c

o
s
t 
o
f 
a
c
tu

a
to

rs

10
-19

ETM

TTM

0 500 1000
0

1

2

10
-21

Fig. 15. Comparison of energy cost of actuators under ETM and TTM.



Xiao-yun Sun. etal / Advances in Space Research xx (2023) xxx-xxx 11

Fig. 13 and Fig. 14 show the comparison of state re-443

sponses on the simulated axes, between the proposed LMI-444

based MRAC scheme and general adaptive control scheme (Ah-445

madi et al., 2020) under the time-triggering mechanism. The446

simulation results show that under the 10% perturbation of the447

stiffness matrix, the LMI-based MRAC scheme can perform448

more efficient anti-disturbance ability than the general MRAC449

scheme, which clarified the effectiveness of the proposed LMI-450

based robust compensator.451

Fig. 15 shows the control energy consumption reduction of452

the proposed event-triggered mechanism, to reflect the saving453

of controller information burden, since the control input re-454

mains constant during the triggering interval, which does not455

require energy to drive the actuators and does not exchange456

any information. We utilize the following energy calculation457

method to implement the comparison:458

E =
T∑

t=0

∆uT
T (t)∆uT (t)

where =uT (t) − uT (t − t0) denotes the derivative of uT (t), t0 is459

the sampling step. According to the simulation results, the en-460

ergy consumption of the TTM case is much higher than the cost461

of the ETM case, which verifies the control energy consumption462

reduction of the proposed event-triggered mechanism. Com-463

bined with Fig. 10, it can be concluded that the saving of con-464

troller information burden achieves through the TTM approach.465

5. Conclusion466

In this paper, a novel event-triggered MRAC scheme based467

on the LMI approach is designed, which is applied for the drag-468

free control problem in the mission of low-frequency space469

gravitational wave detection, to reduce the communication bur-470

den and realize the low cost of the actuator energies, with the471

Zeno behavior being strictly excluded. In the event-triggered472

MRAC scheme, an LMI approach is introduced, which en-473

hances the system stability margin compared with the general474

control scheme (Basu et al., 2017) while ensuring the track-475

ing performance. The Lyapunov analysis proves the ultimate476

boundedness of each closed-loop signal, and the numerical477

simulation verifies the good control performance of the event-478

triggered robust MRAC scheme.479
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