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a b s t r a c t

This paper considers the model discrimination problem among a finite number of models
in safety–critical systems that are subjected to constraints that can be disjunctive and
where state and input constraints can be coupled with each other. In particular, we
consider both the optimal input design problem for active model discrimination that
is solved offline as well as the online passive model discrimination problem via a
model invalidation framework. To overcome the issues associated with non-convex and
generalized semi-infinite constraints due to the disjunctive and coupled constraints,
we propose some techniques for reformulating these constraints in a computationally
tractable manner by leveraging the Karush–Kuhn–Tucker (KKT) conditions and intro-
ducing binary variables, thus recasting the active and passive model discrimination
problems into tractable mixed-integer linear/quadratic programming (MILP/MIQP) prob-
lems. When compared with existing approaches, our method is able to obtain the
optimal solution and is observed in simulations to also result in less computation time.
Finally, we demonstrate the effectiveness of the proposed active model discrimina-
tion approach for estimating driver intention with disjunctive safety constraints and
state–input coupled curvature constraints, as well as for fault identification.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to interact with the physical world through communication and control is a key enabler for future
echnology developments in cyber–physical systems (CPS). However, the models or behaviors of other physical systems in
he shared environment may not be accessible or may only be partially observed and measured, such as intentions, faults
nd modes of operation. To improve CPS safety, robustness and resilience, model discrimination is used to determine the
rue system behavior from a set of possibilities quickly and accurately despite uncertainties, disturbances and noise.

Literature Review: Model discrimination is a widely used tool in safety–critical systems, such as CPS, robotics, chemical
rocesses, etc., for detecting faults, attacks, and system operating modes. The methods for model discrimination can
e generally categorized as either passive or active. Passive approaches, also known as model (in)validation methods,
eparate models by exploiting the input–output data and priori information of the system [1–7]. In [2], the definition
f input-distinguishability of two linear models in a fixed time horizon was proposed and the necessary and sufficient
onditions for the distinguishability were also presented. In [3], the strict residual distinguishability of continuous-time
witched linear systems with deterministic disturbances was studied by defining an index for quantifying the degree
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Fig. 1. Coordinate frame for an overtaking scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

of residual distinguishability. In [4], a distinguishability index that measures the separation between normal models
and faulty models was introduced by formulating a T -distinguishability optimization problem. In [5], by abstracting the
nonlinear system as a piecewise linear inclusion system, the model invalidation problem identifying the true intention
of nonlinear models is solved as a mixed-integer linear program (MILP). Novel frameworks of the biochemical reaction
networks with sparse noisy experimental data [6] and combining qualitative information and semi-quantitative data [7]
were also introduced in the area of passive model discrimination. Although passive approaches are broadly studied and
often effective, they are limited to problems with specific system properties and may require a long time for discrimination
since only observations are used regardless of inputs [8,9].

On the other hand, active approaches synthesize an optimal input with minimal intervention to the system dynamics
such that behaviors or outputs of all models are differentiated. In the context of active fault detection, [10–12] proposed
a framework for active model discrimination that obtains the small excitation that has a minimal effect on the desired
behavior of the system and guarantees the isolation of different fault models. In contrast to previous approaches in [10,11],
our approach does not require or compute an explicit set representation of states, while recent works that consider
implicit representations of convex polyhedrons [13–16] cannot handle disjunctive and coupled constraints considered in
this paper. Moreover, the stochastic approach in [12] also does not apply to the polyhedral constraints that we consider.
Although we found that [17] can handle disjunctive and coupled constraints for safety–critical systems, this method is
iterative and leverages a sequence of restrictions and can only obtain a suboptimal solution with the additional condition
that the first restriction iteration is feasible.

Contributions: We propose optimization-based methods for active and passive model discrimination among a finite
number of affine models subject to safety constraints that can be disjunctive and where constraints on states and inputs
can be coupled with each other. These more general constraints in safety–critical systems can be used to represent
coupled piecewise state–input constraints and disjunctive constraints. However, they often lead to generalized semi-
infinite constraints (cf. [18] and references therein), which, in turn, leads to a bilevel optimization problem or a Stackelberg
game. In this paper, we reformulate these constraints in a computationally tractable manner, so that the active and passive
model discrimination problems can be cast into a tractable MILP problems (or MIQP when we have a quadratic objective
function). The contributions of this paper are as follows:

1. Comparing with standard frameworks of both passive model discrimination [1,4] and active model discrimina-
tion [13,15], the proposed approaches are applicable to systems with disjunctive and coupled constraints. These
more general and practical constraints can represent (coupled) state-dependent input constraints, e.g., curvature
constraints or input saturation, as well as disjunctive state constraints, e.g., non-convex safety restrictions or
collision-free regions.

2. By leveraging the KKT conditions and introducing binary variables, our proposed approach formulates a single
tractable MILP/MIQP program to solve the non-convex active model discrimination problem optimally, while the
existing approach in [17] is iterative and has no optimality nor feasibility guarantees.

Finally, we demonstrate the effectiveness of the proposed active and passive model discrimination approaches to
discern the intentions of other human-driven or autonomous vehicles in an overtaking scenario subject to state-dependent
input constraints and disjunctive (non-convex) safety constraints, as well as to detect and identify fault models of a
permanent magnet DC motor.

2. Motivating example

While our proposed approach is applicable to a broad range of model discrimination problems, including for fault
diagnosis, we begin with a motivating example of intention estimation that also serves as an example for elucidating
the modeling framework with disjunctive and coupled constraints that we will introduce in Section 3.2. In particular, we
consider an overtaking scenario (see Fig. 1) where the ego car (in blue) is overtaking the other car (in red). The other car’s
2
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ntention (representing its driving behavior) is unknown to the ego car. The equations of motion for this two-car system
re given by

vxe(k+ 1) = (1− Cdδt)vxe(k)+ uxe(k)δt + wxe(k)δt,
ye(k+ 1) = ye(k)+ vye(k)δt + wye(k)δt,
h(k+ 1) = h(k)− vxe(k)δt + vxo(k)δt,
vxo(k+ 1) = (1− Cdδt)vxo(k)+ uxo(k)δt + wxo(k)δt,

(1)

where vxe is ego car’s longitudinal velocity, ye is the lateral position of the ego car’s geometric center, h is the headway
between both cars, vxo is the other car’s longitudinal velocity, uxe and vye are ego car’s longitudinal acceleration inputs
and lateral velocity inputs, uxo is other car’s longitudinal acceleration input, wxe, wye and wxo are process noises, Cd is the
rag coefficient, and δt is the sampling time.
As shown in Fig. 1, to ensure safety of the two cars and avoid entering into the unsafe zone, when the ego car attempts

o overtake the other car, the headway h and the ego car’s lateral position ye must satisfy the following disjunctive safety
onstraint:

S = {(h, ye) ∈ R× R : h > hmin ∨ ye >
1
2
wcar + ylane}, (2)

here wcar and ylane are car and lane widths. The above disjunctive safety constraint requires that the ego car stays behind
he other car and maintains a safe headway (i.e., h > hmin) or drives to the side of the other car while maintaining a safe
lateral distance (i.e., ye > 1

2wcar + ylane).
In addition, to make the car model more realistic, the velocity of the ego car in the lateral direction is required to

satisfy the following constraints:

vye ∈

{
{0}, vmin

e ≤ vxe ≤ vdz
xe ,

{vye : β1(vxe − vdz
xe ) ≤ vye ≤ β2(vxe − vdz

xe )}, vdz
xe ≤ vxe ≤ vmax

e ,
(3)

where vdz
xe is a dead-zone threshold (to emulate the more realistic setting where cars cannot move laterally without moving

longitudinally), and β1 and β2 are slopes that mimic the curvature constraints of real cars. Since vxe is the state of the ego
car, this input constraint turns out to be state-dependent, i.e., there is a coupled state–input constraint.

Moreover, the other car may have one of the following two intentions that determine the choice of their inputs uxo:

• An annoying driver who speeds up to prevent being overtaken;
• A cautious driver who slows down such that the ego car can overtake more easily.

To improve the ego car’s driving safety and performance, the problems of active and passive model discrimination
for inferring the intention of the other car in an overtaking scenario are considered. The objective of active model
discrimination is to design a separating input offline/at design time for the ego car to identify other car’s unknown intention
over a fixed horizon, while satisfying disjunctive and coupled constraints. Then, the real-time input–output data generated
by applying the separating input from active model discrimination is leveraged to (passively) identify the other car’s true
intention at run time.

3. Preliminaries

In this section, we introduce some notations, definitions and useful constraint reformulations, as well as describe the
modeling framework we consider.

3.1. Notation and definitions

Let x ∈ Rn denote a vector andM ∈ Rn×m a matrix, with transposeMT andM ≥ 0 denotes element-wise non-negativity.
he set of positive integers up to n is denoted by Z+n , and the set of non-negative integers up to n is denoted by Z0

n. The
iag and vec operators are defined for a collection of matrices Mi, i = 1, . . . , n and matrix M as:

diagnk=i{Mk} =

⎡⎢⎣Mi
. . .

Mn

⎤⎥⎦ ,
n

vec
k=i
{Mk} =

⎡⎢⎣Mi
...

Mn

⎤⎥⎦ ,

diag
k={i,j}
{Mk} =

[
Mi 0
0 Mj

]
, vec
k={i,j}
{Mk} =

[
Mi
Mj

]
,

diag
n
{M} = In ⊗M, vec

n
{M} = 1n ⊗M,

here ⊗ is the Kronecker product, while 0, 1n and In represent the matrix of zeros of appropriate dimensions, the vector
f ones and the identity matrix of dimension n, respectively. The binomial coefficient is denoted by

(n
k

)
, which is the

umber of combinations of n items taken k at a time.
3
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We will also make use of Special Ordered Set of degree 1 (SOS-1) constraint,1 which is defined as follows:

efinition 1 (SOS-1 Constraint [19]). A special ordered set of degree 1 (SOS-1) constraint is a set of integer, continuous
or mixed-integer scalar variables for which at most one variable in the set may take a value other than zero, denoted as
SOS-1: {v1, . . . , vN}. For instance, if vi ̸= 0, then this constraint imposes that vj = 0 for all j ̸= i, i.e., v1 = · · · = vi−1 =

i+1 = · · · = vN = 0.

.2. Modeling framework

Consider N discrete-time affine time-invariant models Gi = (Ai, Bi, Bw,i, Ci,Di, fi, gi) over a time horizon of length T
ith model indicator i ∈ Z+N , each with states xi ∈ Rn, measurements/outputs zi ∈ Rnz , inputs ui ∈ Rm, process noise
i ∈ Rmw , measurement noise vi ∈ Rmv , constant fault or additive bias fi ∈ Rn, gi ∈ Rnz . The models evolve according to

the following state and output equations:

xi(k+ 1) = Aixi(k)+ Biui(k)+ Bw,iwi(k)+ fi, (4)

zi(k) = Cixi(k)+ Diui(k)+ Dv,ivi(k)+ gi. (5)

n the context of the motivating example, each model can represent a two-car system in (1) with xi(k) ≜

vxe(k) ye(k) h(k) vxo(k)
]⊤ including both states of the ego car and the other car and different uxo corresponding

o different other car’s intentions. The states xi can be divided into the controlled states xi ∈ Rnx and uncontrolled states
i ∈ Rny with ny = n− nx (e.g., ego and other cars’ states in the motivating example, respectively) accordingly. Similarly,
he first mu components of ui are controlled inputs (i.e., to be designed as separating inputs), denoted as u ∈ Rmu that
are the same for all ui, while the other md = m−mu components of ui, denoted as di ∈ Rmd , are uncontrolled inputs that
are model-dependent. For instance, u represents the ego car’s inputs while di is the other car’s inputs. As a consequence,
we have

xi(k) ≜
[
xi(k)
yi(k)

]
, ui(k) ≜

[
u(k)
di(k)

]
. (6)

Dividing the states and inputs into controlled and uncontrolled parts, the state and output equations in (4) and (5)
become:

xi(k+ 1) =
[
Axx,i Axy,i
Ayx,i Ayy,i

]
xi(k)+

[
Bxu,i Bxd,i
Byu,i Byd,i

]
ui(k)+

[
Bxw,i
Byw,i

]
wi(k)+

[
fx,i
fy,i

]
, (7)

zi(k) = Cixi(k)+
[
Du,i Dd,i

]
ui(k)+ Dv,ivi(k)+ gi. (8)

The initial condition for the model i, denoted by x0i = xi(0), is constrained to a polyhedral set with c0 inequalities:

x0i ∈ X0 := {x ∈ Rn
: P0x ≤ p0}, ∀i ∈ Z+N . (9)

To have a realistic model, the states xi and yi satisfy polyhedral state constraints with cx and cy inequalities:

xi(k) ∈ Xx,i :={x ∈ Rnx : Px,ix ≤ px,i}, (10)

yi(k) ∈ Xy,i :={y ∈ Rny : Py,iy ≤ py,i}, (11)

or k ∈ Z+T . For example, (10) and (11) represent the individual constraints that the ego and other cars have to satisfy
heir own speed limits.

The controlled states xi must also satisfy ns disjunctive constraints, each with cs inequalities:

xi(k) ∈
ns⋁
j=1

(
S(j)
i := {x ∈ Rnx : P (j)

s,ix ≤ p(j)s,i}
)

. (12)

he disjunctive constraints (cf. (2) in the motivating example) are used to represent nonconvex safety restrictions or
ollision-free regions, where at least one constraint must be satisfied for safety, similar to logical ‘‘OR’’ statements.
In addition, the controlled input is subject to the following coupled state–input constraints (for k ∈ Z0

T−1 and i ∈ Z+N ):

u(k) ∈ U :=
{
u ∈ Rmu : {xi ∈ Xx,i,∀j ∈ Z+np,i : Q

(j)
ux,ixi + Q (j)

uu,iu ≤ q(j)u,i, if P (j)
ux,ixi ≤ p(j)ux,i}

}
, (13)

where xi is the controlled state satisfying xi ∈ Xx,i, P
(j)
ux,ixi ≤ p(j)ux,i is the jth partition of the polyhedral set Xx,i with⋃

j∈Z+np,i
{P (j)

ux,ixi ≤ p(j)ux,i}, np,i is the number of partitions, Q (j)
ux,i ∈ Rc(j)p1×nx , Q (j)

uu,i ∈ Rc(j)p1×mu , P (j)
ux,i ∈ Rc(j)p2×nx , q(j)u,i ∈ Rc(j)p1 , p(j)ux,i ∈

1 Off-the-shelf solvers such as Gurobi and CPLEX [19,20] can readily handle these constraints, which can significantly reduce the search space for

integer variables in branch and bound algorithms.

4
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c(j)p2 . These coupled state–input constraints can incorporate more realistic constraints, e.g., curvature constraints and input
aturation, with ‘‘IF-ELSE’’ statements. For example, considering the coupled constraint (3) in the motivating example
ith xi = vxe and u = vye, we have two partitions defined by Q (1)

ux,i = [β1;−β2], Q
(1)
uu,i = [−1; 1], q

(1)
u,i = [β1v

dz
xe ;−β2v

dz
xe ],

P (1)
ux,i = [1;−1], p

(1)
ux,i = [v

max
e ;−vdz

xe ], and Q (2)
ux,i = [0; 0], Q

(2)
uu,i = [−1; 1], q

(2)
u,i = [0; 0], P

(2)
ux,i = [1;−1], p

(2)
ux,i = [v

dz
xe ;−vmin

e ].
On the other hand, the uncontrolled input di must also satisfy the following polyhedral constraints (for k ∈ Z0

T−1) with
cd inequalities (e.g., other car’s input constraints):

di(k) ∈ Di := {d ∈ Rmd : Qd,id ≤ qd,i}. (14)

The process and measurement noises, wi and vi, are also polyhedrally constrained with cw and cv inequalities:

wi(k) ∈ W i := {w ∈ Rmw : Qw,iw ≤ qw,i}, (15)

vi(k) ∈ V i := {v ∈ Rmv : Qv,iv ≤ qv,i}. (16)

3.3. Concatenated models and constraints

Next, we will introduce some time-concatenated and pair-concatenated notions. The time-concatenated states and
outputs over the time horizon T are defined as

xi,T =
T

vec
k=0
{xi(k)}, xi,T =

T
vec
k=0
{xi(k)},

yi,T =
T

vec
k=0
{yi(k)}, zi,T =

T
vec
k=0
{zi(k)},

hile the time-concatenated inputs and noises are defined as

ui,T =
T−1
vec
k=0
{ui(k)}, uT =

T−1
vec
k=0
{u(k)},

di,T =
T−1
vec
k=0
{di(k)}, wi,T =

T−1
vec
k=0
{wi(k)},

vi,T =
T

vec
k=0
{vi(k)}.

To separate all models, we further introduce the model pair, which consists of two different models of Gi, ∀i ∈ Z+N .
onsidering N discrete-time affine models, i.e., G1, G2, · · · , GN , there are I =

(N
2

)
model pairs and let the mode ι ∈ {1, . . . , I}

enote the pair of models (Gi, Gj). Then, concatenating x0i , xi,T , xi,T , yi,T , di,T , zi,T , wi,T and vi,T for each model pair, we define

xι
0 = vec

k={i,j}
{x0k}, x

ι
T = vec

k={i,j}
{xk,T }, x

ι
T = vec

k={i,j}
{xk,T },

yι
T = vec

k={i,j}
{yk,T }, zι

T = vec
k={i,j}
{zk,T }, dι

T = vec
k={i,j}
{dk,T },

wι
T = vec

k={i,j}
{wk,T }, v

ι
T = vec

k={i,j}
{vk,T }.

Thus, the pair-concatenated dynamics, in which states and outputs over the entire time horizon for each model pair ι

are written as simple functions of the initial state xι
0, input vectors uT , dι

T , and noise wι
T , v

ι
T , is given by:

xι
T = M ι

xx
ι
0 + Γ ι

xuuT + Γ ι
xdd

ι
T + Γ ι

xwwι
T + f̃ ι

x , (17)

yι
T = M ι

yx
ι
0 + Γ ι

yuuT + Γ ι
ydd

ι
T + Γ ι

ywwι
T + f̃ ι

y , (18)

xι
T = Āιxι

0 + Γ ι
uuT + Γ ι

dd
ι
T + Γ ι

wwι
T + f̃ ι, (19)

zι
T = C̄ ιxι

T + D̄ι
uuT + D̄ι

ddT + D̄ι
vv

ι
T + g̃ ι, (20)

here the involved matrices and vectors, as well as the procedures for deriving them are given in Appendix A.
In addition, the uncertain variables for each model pair ι are concatenated as xι

= [xιT
0 dιT

T wιT
T vιT

T ]
T. Therefore, the

air-concatenated constraints on states † ∈ {x, y} and uncertainties can be rewritten as

H ι
†x

ι
≤ p̄ι

† − P̄ ι
† f̃

ι
† − P̄ ι

†Γ
ι
†uuT , H ι

xx
ι
≤ hι

x, (21)

here the definitions for the matrices and vectors H ι
†, P̄

ι
†, Γ

ι
†u, p̄

ι
†, H

ι
x and hι

x, as well as the procedures for their derivation
an be found in Appendix B.
Furthermore, to reformulate coupled state–input constraints, we define xi,k =

[
x0Ti dT

i,0:k−1 wT
i,0:k−1

]T satisfying
Hx,i,kxi,k ≤ hx,i,k, where

H = diag{P , ¯ ¯

x,i,k 0 Qd,i,k,Qw,i,k}, (22)

5
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hx,i,k = vec{p0, q̄d,i,k, q̄w,i,k}, (23)

ith Q̄d,i,k = diagk+1{Qd,i}, Q̄w,i,k = diagk+1{Qw,i}, q̄d,i,k = veck+1{qd,i}, q̄w,i,k = veck+1{qw,i}, di,0:k−1 = veck−1t=0{di(t)},
i,0:k−1 = veck−1t=0{wi(t)}, d0:−1 = 0, and w0:−1 = 0. Then, we rewrite the controlled and uncontrolled states, x and y, at
ime instant k ∈ Z0

T−1 for model Gi as

†i(k) = M
†i,k

xi,k + Γ†u,i,ku0:k−1 + f̃†,i,k, (24)

here † ∈ {x, y}, M
†i,k
=
[
M†,i,k Γ†d,i,k Γ†w,i,k

]
, u0:k−1 = veck−1t=0{u(t)}, and u0:−1 = 0. Defining Υ†k = bk ⊗ In† with

bk ∈ RT being the ith basis row vector in RT , we have M†,i,k = Υ†kM†,i,T , Γ†⋆,i,k = Υ†kΓ†⋆,i,T , f̃†,i,k = Υ†k f̃†,i,T .
Then, the coupled input–state piecewise constraints in (13) for each time instant k ∈ Z0

T−1 and model i ∈ Z+N with
respect to xi,k and uT are given by{

∀j ∈ Z+np,i :Q
(j)
ux,iMxi,k

xi,k +
[
Q (j)
ux,iΓxu,i,k Q (j)

uu,i 0
]
uT ≤ q(j)u,i − Q (j)

ux,i f̃x,i,k,

if P (j)
ux,iMxi,k

xi,k +
[
P (j)
ux,iΓxu,i,k 0

]
uT ≤ p(j)ux,i − P (j)

ux,i f̃x,i,k
}
. (25)

Furthermore, the state constraints in (12) for each time instant k ∈ Z0
T−1 and model i ∈ Z+N with respect to xi,k and uT are

ewritten as

ns⋁
j=1

(
P (j)
s,iMxi,k

xi,k ≤ p(j)s,i − P (j)
s,i f̃x,i,k − P (j)

s,iΓxu,i,kuT

)
. (26)

emark 1. It is important to ensure that the models are meaningful in the sense that for the range of time horizon T
nd for each model i ∈ Z+N , (11) holds for any given x0 ∈ X0 that satisfies yi(0) ∈ Xy,i for all i ∈ Z+N , and for any given

u(k) ∈ U for all k ∈ Z0
T−1. If the considered affine model satisfies these assumptions, we refer to it as well-posed [13]. We

shall assume throughout the paper that the given affine models are always well-posed.

3.4. Problem formulation

Using the framework above, we can state our active model discrimination problem as follows:

Problem 1 (Active Model Discrimination). Given N well-posed affine models Gi and a model separating threshold ϵ the
ctive model discrimination problem can be stated as follows:

min
uT ,xT ,zT

J(uT )

s.t.
∀i ∈ Z+N ,∀k ∈ Z0

T−1,

∀x0i , di,T , wi,T :

(4), (6)–(7), (9), (11), (14), (15) hold

⎫⎪⎬⎪⎭ :(10), (12), (13) hold, (27a)

∀i, j ∈ Z+N , i < j,∀k ∈ Z0
T−1,

∀x0i , di,T , wi,T , vi,T :

(4)–(9), (11), (14)–(16) hold

⎫⎪⎬⎪⎭ :{∃k
′
∈ Z0

T :

|zi(k′)− zj(k′)| ≥ ϵ}.
(27b)

In the above, the constraint (27a) means that for all possible realizations of initial states, uncontrolled states,
ncontrolled inputs, and process noise (on the left side of the brace), the controlled state constraint (10), safety constraint
12) and state-dependent input constraint (13) should hold over the entire horizon for each intention. Meanwhile,
onstraint (27b) defines the model separability condition, which means that for all possible realizations of initial states,
ncontrolled states, uncontrolled inputs, process noise and measurement noise, the output trajectories of all pairs of

odels have to differ by a threshold ϵ in at least one time instant.

6
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Moreover, the active model discrimination problem is intended to be solved offline to find the optimal discriminat-
ng/separating input for guaranteeing that the models are distinct, which is then used online in conjunction with a passive
odel discrimination algorithm for determining the true model at run time based on the observed input–output trajectory.
hus, a second problem of interest is as follows:

roblem 2 (Passive Model Discrimination). Given a sequence of run-time input–output trajectory {u(k), zm(k)}T−1k=0 (u(k) is
btained from solving Problem 1 and zm(k) is observed at run time) and N well-posed affine models Gi, determine which
odel is consistent with the given trajectory for all possible initial states x0i , uncontrolled inputs di,T , process noise wi,T

and measurement noise vi,T , where a model Gi is consistent or valid if the following is feasible:

Find x0i , di,T , wi,T , vi,T ,

s.t. (7)–(16) hold.
(28)

. Main approach

To solve Problems 1 and 2, we propose to reformulate constraints (27a), (27b) and (28) in a computationally tractable
anner. We begin by proving a few useful lemmas and propositions, and then we provide solutions to Problems 1 and 2
ia Theorems 1 and 2, respectively.

.1. Useful lemmas and propositions

For increased readability, the proofs for all the following lemmas and propositions are provided in the Appendices.

emma 1 (Generalized Semi-infinite Constraint Reformulation). The following generalized semi-infinite constraint

Ax ≤ b + Cy,∀x ∈ X(y) ≜ {x : Dx ≤ e + Fy, Gx ≤ h} (29)

ith variables x and y , matrices A, C , D, F and G, and vectors b, e and h with appropriate dimensions, can be recast as

(i) Bilinear Equivalence

ΠT

[
e + Fy

h

]
≤ b + Cy, ΠT

[
D
G

]
= A, Π ≥ 0, (30)

where Π is a dual matrix variable, and
(ii) Mixed-Integer Equivalence

pa ≤ 0, ν1,a ≥ 0, ν2,a ≥ 0, (31a)

∀b : 0 =
∑

i

ν1,a,iD(i, b)+
∑

j

ν2,a,jG(j, b)− A(a, b), (31b)

pa = A(a)xa − b(a) − C(a)y,

Dxa ≤ e + Fy, Gxa ≤ h,
(31c)

∀i : SOS-1 : {ν1,a,i, D(i)xa − e(i) − F(i)y},
∀j : SOS-1 : {ν2,a,j, G(j)xa − h(j)},

(31d)

for all a ∈ Z+na , where na is the number of rows of A, xa, ν1,a and ν2,a are additional slack variables for each a. We denote
as A(a), b(a) and C(a) the a-th rows of A, b and C , respectively, while D(i, b), G(j, b) and A(a, b) are the corresponding
elements of matrices D, G and A, respectively.

Remark 2. In Equivalence (i), if F = 0 (corresponding to standard semi-infinite constraints; cf. [18]), the constraints are
linear. However, when F ̸= 0 (corresponding to generalized semi-infinite constraints; cf. [18]), the constraints become
bilinear. To deal with these bilinear constraints, [17] proposed a sequence of restriction approach, but it can only find a
feasible suboptimal solution under the condition that the first restriction does not lead to infeasibility. By contrast, our
Equivalence (ii) that leverages slack variables and KKT conditions is exact for any F and avoids the bilinear constraint in
Equivalence (i), albeit with the introduction of SOS-1 constraints, which are integral constraints, leading to mixed-integer
linear constraints.

Lemma 2 (Disjunctive (‘‘OR’’) Constraint Reformulation). The disjunctive constraint,
⋁

i(q
(i)
≤ 0), is equivalent to

∀i : r (i) ∈ {0, 1}, q (i) ≤ s(i), SOS-1 : {r (i), s(i)}, (32a)∑
r (i) ≥ 1. (32b)
i

7
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emma 3 (Piecewise Constraint Reformulation). Given a partition {S(i)x + T (i)y ≤ β (i)
}, the following piecewise

onstraint:

∀i : Q (i)x + R (i)y ≤ α(i), if S(i)x + T (i)y ≤ β (i),

s equivalent to

∀i :

⎧⎨⎩
γ (i)
∈ {0, 1}, SOS-1 : {γ (i), t(i)},[

Q (i) R (i)

S(i) T (i)

][
x
y

]
≤

[
α(i)

β (i)

]
+ t(i)1,

(33a)

∑
i

γ (i)
= 1. (33b)

Next, by leveraging the lemmas above, we provide the following propositions for reformulating the controlled states
onstraints (10), disjunctive safety constraints (12), coupled state–input piecewise constraints (13) in (27a) and model
eparability condition in (27b) of Problem 1. Note that in each of the following propositions, we assume that the other
onstraints in Problem 1 are satisfied. Since we enforce all constraints simultaneously, they trivially hold in the uncertainty
ets of each other’s propositions and need not be explicitly included.

roposition 1 (Polytopic State Constraint Reformulation). The polytopic state constraint, i.e., the controlled state constraint
10), in (27a) of Problem 1 is equivalent to

∀i ∈ Z+N ,∀a ∈ Z+cx :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π i
r,a ≤ 0, ν i

1,r,a ≥ 0, ν i
2,r,a ≥ 0,

∀b : 0 =
∑

c ν i
1,r,a,cH

i
y(c, b)+

∑
d ν i

2,r,a,dH
i
x̄(d, b)− H i

x(a, b),

π i
r,a = (H i

x)(a)x̄
i
a − (p̄ix)(a) + (P̄ i

x)(a)Γ
i
xuuT ,

H i
yx̄

i
a ≤ p̄iy − P̄ i

y f̃
i
y − P̄ i

yΓ
i
yuuT ,H i

x̄x̄
i
a ≤ hi

x̄,

∀c : SOS-1 :
{
ν i
1,r,a,c, (H

i
y)(c)x̄

i
a − (p̄iy)(c) + (P̄ i

y)(c) f̃
i
y + (P̄ i

y)(c)ΓyuuT

}
,

∀d : SOS-1 : {ν i
2,r,a,d, (H

i
x̄)(d)x̄

i
a − (hi

x̄)(d)},

(34)

where the subscript r refers to polytopic state constraints.

Proposition 2 (Disjunctive State Constraints Reformulation). The disjunctive state constraints, i.e., (12), in (27a) of Problem 1
can be reformulated as

∀i ∈ Z+N ,∀j ∈ Z+ns,i ,∀k ∈ Z0
T−1,∀a ∈ Z+cs :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r (j)i,k ∈ {0, 1}, SOS-1 : {r
(j)
i,k, s

(j)
i,k},

∑
j r

(j)
i,k ≥ 1,

π
(j)
s,i,a ≤ 0, ν(j)

1,s,i,a ≥ 0, ν(j)
2,s,i,a ≥ 0,

∀b : 0 =
∑
c

ν
(j)
1,s,i,a,c(P

(j)
y,iMyi,k

)(c, b)+
∑
d

ν
(j)
2,s,i,a,d(Hx,i,k)(d, b)− (P (j)

s,iMxi,k
)(a, b),

π
(j)
s,i,a = (P (j)

s,i )(a)Mx
(j)
i,k
x
(j)
s,i,k,a + (P (j)

s,i )(a)Γxu,i,kuT − (p(j)s,i)(a) + (P (j)
s,i )(a) f̃x,i,k − s(j)i,k,

P (j)
y,iMyi,k

x
(j)
s,i,k,a + P (j)

y,iΓyu,i,kuT − p(j)y,i + P (j)
y,i f̃y,i,k ≤ 0,

Hx,i,kx
(j)
s,i,k,a − hx,i,k ≤ 0,

∀c : SOS-1 :
{
ν
(j)
1,s,i,a,c, (P

(j)
y,i)(c)Myi,k

x
(j)
s,i,k,a + (P (j)

y,i)(c)Γyu,i,kuT − (p(j)y,i)(c) + (P (j)
y,i)(c) f̃y,i,k

}
,

∀d : SOS-1 : {ν(j)
2,s,i,a,d, (Hx,i,k)(d)x

(j)
s,i,k,a − (hx,i,k)(d)},

(35)
where the subscript s refers to disjunctive state constraints.

8
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roposition 3 (Coupled State–input Constraints Reformulation). prop:piecewise he coupled state–input constraints, i.e., (13),
in (27a) of Problem 1 is equivalent to

∀i ∈ Z+N ,∀j ∈ Z+np,i ,∀k ∈ Z0
T−1,∀a ∈ Z+cp1+cp2 :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(j)
i,k ∈ {0, 1}, SOS-1 : {γ

(j)
i,k , t

(j)
i,k},

∑
j γ

(j)
i,k = 1,

π
(j)
t,i,a ≤ 0, ν(j)

1,t,i,a ≥ 0, ν
(j)
2,t,i,a ≥ 0,

∀b : 0 =
∑
c

ν
(j)
1,t,i,a,c(P

(j)
y,iMyi,k

)(c, b)+
∑
d

ν
(j)
2,t,i,a,d(Hx,i,k)(d, b)−

([
Q (j)
ux,iMxi,k

P (j)
ux,iMxi,k

])
(a, b),

π
(j)
t,i,a =

([
Q (j)
ux,iMxi,k

P (j)
ux,iMxi,k

])
(a)

x
(j)
t,i,k,a −

([
q(j)u,i − Q (j)

ux,i f̃x,i,k

p(j)ux,i − P (j)
ux,i f̃x,i,k

])
(a)

+

⎛⎝⎡⎣
[
Q (j)
ux,iΓxu,i,k Q (j)

uu,i 0
]

[
P (j)
ux,iΓxu,i,k 0

]
⎤⎦⎞⎠

(a)

uT − t (j)i,k,

P (j)
y,iMyi,k

x
(j)
t,i,k,a + P (j)

y,iΓyu,i,kuT − p(j)y,i + P (j)
y,i f̃y,i,k ≤ 0,

Hx,i,kx
(j)
t,i,k,a − hx,i,k ≤ 0,

∀c : SOS-1 :
{
ν
(j)
1,t,i,a,c, (P

(j)
y,i)(c)Myi,k

x
(j)
t,i,k,a + (P (j)

y,i)(c)Γyu,i,kuT − (p(j)y,i)(c) + (P (j)
y,i)(c) f̃y,i,k

}
,

∀d : SOS-1 : {ν(j)
2,t,i,a,d, (Hx,i,k)(d)x

(j)
t,i,k,a − (hx,i,k)(d)},

(36)

here the subscript t refers to coupled input–state constraints.

roposition 4 (Separability Condition [13]). The separability constraint in (27b) of Problem 1 is equivalent to

∀ι ∈ Z+I :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δι(uT ) ≥ ϵ, 0 = 1− µι
3
T
1,

∀m ∈ Z+η : 0 =
∑κ

i=1 µι
1,iH

ι
x̄(i,m)+

∑ξ

j=1 µι
2,jR

ι(j,m)+
∑ρ

k=1 µι
3,kR

ι(ξ + k,m),

∀i ∈ Z+κ : (H
ι
x̄)(i)x̄

ι
− (hι

x̄)(i) ≤ 0, µι
1,i ≥ 0,

∀j ∈ Z+ξ : (R
ι)(j)x̄ι

− (r ι)(j) + (Sι)(j)uT ≤ 0, µι
2,j ≥ 0,

∀k ∈ Z+ρ : (R
ι)(ξ+k)x̄ι

− δι
− (r ι)(ξ+k) + (Sι)(ξ+k)uT ≤ 0, µι

3,k ≥ 0,
∀i ∈ Z+κ : SOS-1 : {µ

ι
1,i, (H

ι
x̄)(i)x̄

ι
− (hι

x̄)(i)},

∀j ∈ Z+ξ : SOS-1 : {µ
ι
2,j, (R

ι)(j)x̄ι
− (r ι)(j) + (Sι)(j)uT },

∀k ∈ Z+ρ : SOS-1 : {µ
ι
3,k, (R

ι)(ξ+k)x̄ι
− δι
− (r ι)(ξ+k) + (Sι)(ξ+k)uT }.

(37)

where the matrix definitions can be found in Appendix C.

4.2. Active model discrimination

Using Propositions 1–4, it is straightforward to show that the active model discrimination problem in Problem 1 can
be recast into a tractable MILP/MIQP as follows:

Theorem 1 (Discriminating/Separating Input Design). Given a separability index ϵ, polytopic state constraints (10), disjunctive
state constraints (12), coupled input–state constraints (13), Problem 1 is equivalent to

u∗T = arg min
uT ,δι,x̄ι,µι

•,ν
(j)
◦,⋄,i,a,π

(j)
⋄,i,a,x̄ia,

x(j)
⋄,i,k,a,s(j)i,k,t(j)i,k,r(j)i,k∈{0,1},γ

(j)
i,k∈{0,1}

J(uT ) (38a)

s.t. (34), (35), (36), (37) hold. (38b)

for each • ∈ {1, 2, 3}, ◦ ∈ {1, 2}, and ⋄ ∈ {r, s, t}.

When compared with existing active model discrimination approaches [13,15], our approach can relax the rather
limiting assumption in these works (i.e., Assumption 1 in [13,15]) that the separating input does not affect the uncontrolled
state constraints, and hence, the proposed approach is applicable to more general systems.

The discriminating/separating input from the optimization problem in the above theorem that is solved offline will be
applied to the system of interest and the observed measurements/outputs are obtained at run time. The collected input–
output data will then be used at run time to determine the true system model using the passive model discrimination
algorithm, as described in the next subsection.
9
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.3. Passive model discrimination

Using the computed optimal input and the observed measurements (corresponding to the unknown true model), the
oal of passive model discrimination is to eliminate all models that are incompatible with the observed input–output
rajectory at run time. We propose to achieve this goal (i.e., to solve Problem 2) by using a model invalidation approach
o invalidate/eliminate each model that is inconsistent with the observed input–output trajectory, as described next:

heorem 2 (Model Invalidation). Given a discrete-time affine time-invariant model Gi, i ∈ Z+N , and an input–output sequence
{u(k), zm(k)}T−1k=0 , where u(k) is obtained from Theorem 1 and zm(k) is observed at run time, the model Gi is invalidated if the
ollowing problem is infeasible:

Find xi(k), di(k), wi(k), vi(k), γ (j)
s (k), α(j)(k), γ (t)

p (k), β (t)(k),

∀k ∈ Z0
T−1,∀j ∈ Z+ns ,∀t ∈ Z+np

s.t. ∀k ∈ Z0
T−1,∀j ∈ Z+ns ,∀t ∈ Z+np :

xi(k+ 1) = Aixi(k)+ Biui(k)+ Bw,iwi(k)+ fi, (39a)

zm(k) = Cixi(k)+ Diui(k)+ Dv,ivi(k)+ gi, (39b)

P (j)
s,ixi(k)− p(j)s,i ≤ α(j)(k), (39c)[
Q (t)
ux,i

P (t)
ux,i

]
xi(k) ≤

[
q(t)u,i − Q (t)

uu u(k)
p(t)ux,i

]
+ β (t)(k), (39d)

γ (j)
s (k) ∈ {0, 1}, SOS-1:(α(j)(k), γ (j)

s (k)),
ns∑
j=1

γ (j)
s (k) ≥ 1, (39e)

γ (t)
p (k) ∈ {0, 1}, SOS-1:(β (t)(k), γ (t)

p (k)),
np∑
j=1

γ (t)
p (k) = 1, (39f)

wi(k) ∈ Wi, vi(k) ∈ Vi, di(k) ∈ Di, (39g)

x0i ∈ X0, xi(k) ∈ Xx,i, yi(k) ∈ Xy,i, (39h)

here xi(k) =
[
xi(k)
yi(k)

]
and ui(k) ≜

[
u(k)
di(k)

]
, α(j)(k) and β (t)(k) are slack variables that are free when γ

(j)
s (k) and γ

(t)
p (k) are zero,

respectively. Otherwise, α(j)(k) and β (t)(k) are zero due to the special ordered set of degree 1 (SOS-1) constraint (cf. Definition 1).

Proof. By leveraging Lemmas 2 and 3, the disjunctive constraint (12) and the coupled state–input constraint (13) can
be constructed as (39c) with (39d) and (39e) with (39f), respectively. If the above optimization problem is infeasible,
it means that the input–output sequence {u(k), zm(k)}T−1k=0 cannot be consistent with the model Gi, hence the model is
invalidated. □

Then, to solve the passive model discrimination problem in Problem 2, we can leverage the model invalidation
approach in Theorem 2 to discard all inconsistent models. Here, the real-time T -length input–output trajectory can only
be consistent with one model, since we applied the optimal discriminating input from Theorem 1. Hence, the true model
can be identified once all other inconsistent models are eliminated, which is guaranteed by Theorem 1. This passive model
discrimination (or model selection) process is summarized in the following Algorithm 1.
Algorithm 1: Length-T Passive Model Discrimination

Data: Models {Gi}
N
i=1, Input-Output Trajectory{u(k), zm(k)}T−1k=0

1 function findModel({Gi}
N
i=1, {u(k), zm(k)}

T−1
k=0)

2 valid← {Gi}
N
i=1;

3 for i = 1 : N do
4 Check Feasibility of Theorem 2;
5 if infeasible then
6 Remove i from valid;
7 end
8 end
9 return valid
10
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Table 1
Complexity of the AMD and MI algorithms.

AMD MI

No. of CV O((c0 + cd + cw + cv + cx + cy +md +mw +mv + nscs +
np(cp1 + cp2))TN2)

(nx+ny+md+mw+mv+nscs+np(cp1+cp2))T

No. of IV O((ns + np)TN2) 2T

No. of SOS-1 constraints O((c0 + cd + cw + cv + cx + cy + np + ns)TN2) (nsnp(nx + ny)+ nscs + np(cp1 + cp2)+ c0 +
cx + cy + cd + cw + cv)T

4.4. Computational complexity

Finally, we analyze the computational complexity of proposed active model discrimination and (AMD) and model
nvalidation (MI) algorithms in terms of the number of continuous variables (CV), integer variables (IV) and SOS-1
onstraints, and they are given in Table 1, where the constants/parameters are defined in Section 3.2. From the table, it
s clear that the AMD algorithm is more complex and requires more computational resources than MI, since the number
f continuous variables, the number of integer variables and the number of SOS-1 constraints in AMD are of order TN2,
hile the number of continuous variables, the number of integer variables and the number of SOS-1 constraints in the MI
lgorithm are of order T . It is noteworthy this is not a huge problem since the AMD algorithm is typically solved offline/at
esign time, while the MI algorithm is solved at run time.

. Simulation examples

In this section, we apply our proposed approach to the motivating example of Section 2 and a permanent magnet DC
otor example. In both examples, we solve the active model discrimination problem in Problem 1 offline to generate
n optimal discriminating input, which is then implemented at run time and the resulting outputs/measurements are
btained. Using the collected input–output trajectory, we apply Algorithm 1 to identify the true model at run time. All the
xamples are implemented on a 1.3 GHz Dual-Core machine with 16 GB of memory. For the implementation of proposed
pproach, we utilized YALMIP [21] and Gurobi [19] in the MATLAB 2019b environment.

.1. Intention identification in an overtaking scenario

In this simulation example, we return to the motivating example in Section 2 of an overtaking scenario, where the
go car is initially behind the other car, and the other car has a constant lateral position yo. We begin by describing the
ntention models in detail and then demonstrate that our approach is indeed able to identify the true intention model. In
ddition, we show that our approach outperforms an approach from [17] that leverages a sequence of restrictions, which
e found to be also applicable in the presence of the disjunctive and coupled constraints.

.1.1. Intention models
Two driver intentions i ∈ {A, C} for the other car, corresponding to Annoying and Cautious drivers are defined as:

uxo,i = uxo,0 + Ki,1∆y+ Ki,2∆hi + δi, (40)

here ∆y = ye − yo, ∆hA = hmax − h with hmax being the maximal distance where the other car notices the overtaking
ehavior of the ego car, ∆hC = h, Ki,1 and Ki,2 are constants and δi is an input uncertainty accounting for non-deterministic
riving behavior. uxo,0 = −K0(vxo − vdes

xo ) + Cdv
des
xo is a baseline controller that represents other car’s default behavior to

maintain a desired speed vdes
xo . In (40), KA,1 > 0 and KA,2 > 0 are chosen such that the annoying driver drives aggressively

and speeds up to prevent being overtaken, while KC,1 < 0 and KC,2 < 0 for the cautious driver who slows down and
makes it easier for the ego car to overtake. The specific parameter values in (40) are chosen as: KA,1 = 0.1, KA,2 = 0.08,
δA ∈ [−0.147, 0.147] (m/s2), KC,1 = −0.1, KC,2 = −0.1, δC ∈ [−0.147, 0.147] (m/s2), K0 = 0.1, hmin = 6 (m), hmax = 32
(m), yo = 1.85 (m).

For the safety constraint (2) and the coupled state–input constraint (3), we chose wcar = 1.8 (m), ylane = 3.7 (m),
vdz
xe = 10 (m/s), and β1 = β2 = 1. The cost function is set as J(uT ) = ∥uT∥2, and the time horizon is T = 4 with a sampling

time δt = 0.3 (s). The ego car’s longitudinal velocity and the other car’s velocity are measured as the output, given by

z(k) =
[
ze(k)
zo(k)

]
=

[
vxe(k)+ νe(k)
vxo(k)+ νo(k)

]
with νe(k) and νo(k) being the measurement noise signals. The process and measurement noise signals are limited to the
range of [−0.01, 0.01]. Other parameters in the simulation are chosen as Cd = 0.15 (1/s), vxe ∈ [0, 34] (m/s), h ∈ [−32, 32]
(m), ye ∈ [0.9, 6.5] (m), vxo ∈ [10, 28] (m/s), uxe ∈ [−4.2, 4.2] (m/s2), vye ∈ [−2.5, 2.5] (m/s), vdes

xo = 22 (m/s), ϵ = 1
(m/s).
11
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Fig. 2. Intention estimation results when implementing the separating input obtained from the proposed active and passive model discrimination
pproaches for the overtaking scenario subject to different ego car’s initial positions. The corresponding animation can be found at https:
/youtu.be/BlboF40m4D8.

Fig. 3. Optimal inputs obtained by solving the proposed active model discrimination under different initial ego car positions.

5.1.2. Intention estimation with different initial ego car positions
In the following, we consider the intention estimation/identification problem using our proposed model discrimination

pproach for two different cases, which is also used in the following subsection when we compare our approach and [17]
hat leverages sequence of restrictions for tackling the coupled state–input constraints.

In the first case, the initial conditions of the ego car and the other car are vxe(0) ∈ [22, 26] (m/s), ye(0) ∈
[2, 2.8] (m), h(0) ∈ [10, 20] (m), vxo(0) ∈ [21, 23] (m/s). As seen in Fig. 2(a), the other car 1 is Annoying and attempts to
speed up so that the ego car cannot overtake it, while the other car 2 is Cautious and slows down slightly to let the ego
car overtake it. Since the ego car’s initial position is far from the unsafe zone, the computed discriminating/separating
inputs (cf. Fig. 3(a)) led the ego car to perform overtaking. Furthermore, although our approach is based on an implicit
representation of the reachable sets of the system, for the sake of illustration, we explicitly compute the reachable output
sets by using the MPT toolbox [22] at each time instance under the optimal discriminating/separating input, as depicted
in Fig. 4, where the two intentions are completely separated at k = 4 despite the considered uncertainties, noise signals
and constraints.

In the second case, the ego car’s initial position is close to the unsafe zone. The initial conditions are vxe(0) ∈
[22, 26] (m/s), ye(0) ∈ [1.85, 2.8] (m), h(0) ∈ [9, 12] (m), vxo(0) ∈ [21, 23] (m/s). Similar to the first scenario, the

computed separating inputs discriminate the other car’s intention successfully. However, as observed in Fig. 2(b), the

12
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Fig. 4. Reachable output sets given the optimal separating input at k = 0, . . . , 4 in the case that the ego car’s initial position is far away from the
nsafe zone. The dark purple area is the overlap of the reachable output sets of the two models. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

go car does not overtake the other car while estimating other car’s intention. Since the initial position of the ego car is
lose to the unsafe zone, the ego car has to slow down (cf. Fig. 3(b)) to satisfy the safety constraint h > hmin. Meanwhile,
his action already reveals the intention of the other driver without performing an overtake. In addition, for illustration
urposes, the reachable output sets under the computed optimal discriminating/separating input in the case that the ego
ar’s initial position is close to the unsafe zone are also shown in Fig. 5, from which we observe that the two intentions
an be separated at k = 3.

.1.3. Comparisons with the approach leveraging a sequence of restrictions
We also compared our approach based on Equivalence (ii) of Lemma 1 with the approach leveraging a sequence of

estrictions from [17] in the overtaking scenario subject to the initial conditions in both of the cases above. Specifically, a
equence of restrictions is only applied to the controlled state constraints, resulting in a sequence of MIQPs, while safety
onstraints and separation conditions are still handled by using the KKT-based approach in Equivalence (ii) of Lemma 1.
he approach in [17] required a CPU time of 54.69 (s) and 53.37 (s) (2 iterations) for the two cases, while our approach only
eeded 37.96 (s) and 38.39 (s) to achieve the same cost. This demonstrates that the proposed approach required almost
0% less computational time to find the optimal solution in both cases. Moreover, when increasing the input uncertainty
evel in intention model (40) from δA, δC ∈ [−0.147, 0.147] (m/s2) to δA, δC ∈ [−0.210, 0.210] (m/s2) in the first case, the
ethod in [17] led to an infeasible solution, while our approach was able to obtain the optimal input with a CPU time of
8.49 (s).
Further, to test the effectiveness of our approach with more possible models, we also consider another intention

odel called Inattentive i = I , which means the inattentive driver/behavior fails to notice the ego vehicle and tries
to maintain the desired velocity. The inattentive intention is modeled by setting KI,1 = 0 and KI,2 = 0 in Eq. (40).
We consider the active model discrimination problem with the input uncertainty level δA, δC ∈ [−0.147, 0.147]
and the case, ego car’s initial position is close to the unsafe zone. In this case with three intent models, our pro-
posed approach is able to a feasible separating input that can separate the models within T = 8, i.e., {ux,e}T =

{−4.200,−4.200,−4.200,−4.200, 3.1324, 4.200,−4.200,−4.200} and {vy,e}T = {2.500, 2.500, 2.500,−2.500, 2.500,
−2.500, 2.500,−0.7874}, although the optimal solution was not yet found after running the optimization problem for
two days due to our limited simulation platform. However, since this problem is to be solved offline/at design time,
we anticipate that using a more powerful simulation platform can yield the optimal solution relatively quickly. More
importantly, while our proposed approach finds a (sub-optimal) separating input sequence, the existing method in [15]
failed to find any separating input for discriminating the three car intentions because the first subproblem in the sequence
of restrictions is already infeasible.

Based on these observations, we can conclude that our approach outperforms [17] in terms of completeness, optimality

and computational performance.

13
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Fig. 5. Reachable output sets given the optimal separating input at k = 0, . . . , 4 in the case that the ego car’s initial position is close to the unsafe
one. The dark purple area is the overlap of the reachable output sets of the two models. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Table 2
Fault model parameters.

Model Ra (�) L (10−3 H) Ke (10−2 Vrad
s ) J1 (10−4 Js2

rad ) fr (10−4 Js
rad )

1 1.2030 5.5840 8.1876 1.3528 2.3396
2 1.7725 5.5837 8.0203 1.3320 2.3769
3 1.7690 6.0798 8.7987 1.4964 2.3570

5.2. Permanent magnet DC motor

We further apply our proposed model discrimination approach to fault detection/identification of DC motors, based
n an example in [11]. The time-discretized dynamics of a permanent magnet DC motor is described in [11,23] and given
y

i(k+ 1) =
(
1−

Ra

L
δt
)
i(k)−

(
Ke

L
δt
)

ω(k)+
(
1
L
δt
)
u(k),

ω(k+ 1) =
(
Kt

J
δt
)
i(k)+

(
1−

fr
J1

δt
)

ω(k)+
(

1
J1

δt
)

τc(k),
(41)

here u is the armature voltage, i is the current, ω is the angular velocity of the rotor, τc is the Coulomb friction, Ra is
the resistance, L is the inductance, Ke is torque constant, Kt = 1.0005Ke is the back EMF constant, J1 is the motor inertia,
r is the viscous friction coefficient, and δt is the sampling time.

Note that in comparison to [11,23], we consider a slightly more realistic DC motor model with a dead-zone and a
oulomb friction term that is known to be nonlinear [24]. In particular, based on [24], we consider the value of the
oulomb friction to be state-dependent as follows (for all k):

τc(k) =
{
α1, if ω(k) ≤ 0,
α2, if ω(k) ≥ 0,

(42)

nd additionally, we consider a symmetric dead-zone threshold ωdz (where the rotor does not rotate) and to ensure that
he rotor does not stop, we impose a disjunctive constraint (cf. (12)) that the angular velocity ω(k) must satisfy:

{ω(k) ≤ −ωdz
} ∨ {ω(k) ≥ ωdz

}, (for all k ≥ 1). (43)
14
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Fig. 6. Optimal input obtained by solving the proposed active model discrimination under different cost functions.

As described in Table 2, three models are considered based on the model parameters in Table 2 of [11]. Model 1 is
fault-free, while the fault model 2 is due to the increase of armature resistance by +0.5 (�) and the fault model 3 is due
to the wearing of the brush, leading to insufficient brush pressure.

The initial conditions are assumed to satisfy i(0) ∈ [0.54, 0.66] (A) and ω(0) ∈ [0.02, 0.07] (rad/s) and we consider
ωdz
= 0.1 (rad/s). Since our initial rotor angular velocity is set in the dead zone and is positive, τc(0) = α2. Moreover, the

current is constrained by i(k) ∈ [−10, 10] (A) and the rotor angular velocity is constrained by ω(k) ∈ [−150, 150] (rad/s)
for all k ∈ Z+T , while the input armature voltage is bounded by u(k) ∈ [−12, 12] (V). The other parameters are chosen
as ϵ = 0.0001, α1 = 0.001, and α2 = −0.005. Moreover, we consider two cost functions, i.e., J(uT ) = ∥uT∥∞ and
J(uT ) = ∥uT∥1 with uT = {u(k)}T−1k=0 , and the time horizon is T = 2 with a sampling time δt = 0.005 (s).

In order to account for parameter uncertainties, similar to [11], the state dynamics in (41) were augmented with the
term Bw,iw(k), where

Bw,1 =

[
−0.0254 −0.0778
−0.3996 0.3026

]
, Bw,2 =

[
−0.0231 −0.0471
−0.3470 0.2798

]
, Bw,3 =

[
−0.0242 −0.0537
−0.3516 0.2797

]
,

and the process noise is limited by w(k) ∈ W = {w : ∥w∥∞ ≤ 1}. The current and rotor angular velocity are measured as
the output, given by

y(k) =
[

i(k)+ νi(k)
ω(k)+ νω(k)

]
with νi(k) and νω(k) being the measurement noises, both being limited to the range of [−0.06, 0.06]. Fig. 6 shows the
separating inputs computed in Theorem 1 that can successfully discriminate the fault models at T = 2 with different cost
functions. Similar to the intention estimation example, for the sake of illustration, we also explicitly depict the output
reachable sets for the case with J(uT ) = ∥uT∥∞ in Fig. 7 by using the MPT toolbox [22] to verify the effectiveness of
the computed separating input. Further, to demonstrate that our approach can scale to problems with more models, we
increased the number of the fault models to 5 with the parameters for the two additional models corresponding to Models
5 and 6 in [11]. Our simulation results show that our proposed approach can obtain a separating input for discriminating
among all five fault modes within T = 2, although this result is sub-optimal given that we terminated the optimization
problem on our limited simulation platform after 2 days.

Furthermore, we also applied our proposed method to the fault detection example of DC motors in [11] that does
not consider the velocity dead-zone and the Coulomb friction, and specifically, we considered models 1, 2, 4 and 6. The
optimal separating input is shown in Fig. 8, and the corresponding output reachable sets are depicted in Fig. 9. It is clear
from Fig. 9 that our proposed method can successfully separate fault models within 2 time steps.

6. Conclusion

In this paper, we considered the active and passive model discrimination problems among a finite number of models
subject to disjunctive and coupled constraints. These general constraints can be used to represent state-dependent
piecewise input constraints, e.g., curvature constraints or input saturation, and disjunctive state constraints, e.g., non-
convex safety restrictions or collision-free regions. We proposed to reformulate these constraints by leveraging KKT
conditions and introducing binary variables, thus converting the model discrimination problems into tractable MILP/MIQP
problems. Finally, we illustrated the effectiveness of the proposed approach with simulation examples for identifying
driver intention in an overtaking scenario and for discriminating/identifying fault in an example with a permanent
magnetic DC motor. Future works would include the consideration of piecewise intention models in the context of passive
and active model discrimination. In addition, how to further reduce the computational complexity of our proposed model
discrimination approach to make it applicable to examples with a high number of models is also an interesting future
direction.
15
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Fig. 7. Reachable output sets given the optimal separating input at k = 0, 1, 2 for the case with J(uT ) = ∥uT∥∞ . The dark blue area is the overlap
of the reachable output sets of the three models. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Optimal input obtained by solving the proposed active model discrimination for the DC motor example in [11].

Fig. 9. Reachable output sets given the optimal separating input at k = 0, 1, 2 for the case with J(uT ) = ∥uT∥∞ for the DC motor example in [11].

RediT authorship contribution statement

Qiang Shen: Conceptualization, Methodology, Investigation, Software, Writing – original draft, Writing – review &
diting. Ruochen Niu: Investigation, Validation, Software, Writing – original draft, Writing – review & editing. Sze Zheng
ong: Supervision, Conceptualization, Methodology, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgments

This work is partially supported by the Defense Advanced Research Projects Agency (DARPA), USA grant D18AP00073,

he National Science Foundation, USA grants CNS-1943545 and CNS-1932066, the National Natural Science Foundation of

16



NAHS: 101217

Q. Shen, R. Niu and S.Z. Yong Nonlinear Analysis: Hybrid Systems xxx (xxxx) xxx

C
S

A

a
v

T

hina grants U20B2054 and 62103275, the Natural Science Foundation of Shanghai grant 20ZR1427000 and the Shanghai
ailing Program grant 20YF1421600.

ppendix A. Matrices and vectors pair-concatenated dynamics in (17)–(20)

The pair-concatenated dynamics in (17)–(20) can be obtained in two steps. In the first step, we concatenate the states
nd outputs in (7) and (8) over the time horizon T , and re-write the time-concatenated model in terms of the uncertain
ariables including the time-stacked initial state x0, input vectors uT , dT , and noise wT , vT , as follows:

xi,T = Mx,i,Tx0i + Γxu,i,TuT + Γxd,i,Tdi,T + Γxw,i,Twi,T + f̃x,i,T , (A.1)

yi,T = My,i,Tx0i + Γyu,i,TuT + Γyd,i,Tdi,T + Γyw,i,Twi,T + f̃y,i,T , (A.2)

xi,T = Āi,Tx0i + Γu,i,TuT + Γd,i,Tdi,T + Γw,i,Twi,T + f̃i,T , (A.3)

zi,T = Eix0i + Fu,iuT + Fd,idi,T + Fv,ivi,T + g̃i,T . (A.4)

o obtain the above, we first define the operator Θi,T (Ω) =

⎡⎢⎢⎣
Ω 0 · · · 0
AiΩ Ω · · · 0

...
...

. . .

AT−1
i Ω AT−2

i Ω · · · Ω

⎤⎥⎥⎦, as well as Ai,T =

⎡⎢⎢⎢⎣
Ai
A2
i
...

AT−1
i

⎤⎥⎥⎥⎦,

† = {x, y} and ⋆ = {u, d, w}. The involved matrices and vectors in (A.1)–(A.4) can then be constructed as follows:

1. In (A.1)–(A.2), M†,i,T = A†,d,i,T

[
I

Ai,T−1

]
with A†,d,i,T = diagT

{[
A†x,i A†y,i

]}
;

2. In (A.1)–(A.2), Γ†⋆,i,T = A†,d,i,T

[
0 0

Γ⋆,i,T−1 0

]
+ B†⋆,d,i,T with Γ⋆,i,T−1 = Θi,T−1

([
Bx⋆,i
By⋆,i

])
and B†⋆,d,i,T = diagT {B†⋆,i};

3. In (A.1)–(A.2), f̃†,i,T = A†,d,i,T

[
0

f̃i,T−1

]
+ f †,i,T with f̃i,T−1 = Θi,T−1(I)f i,T−1, f i,T−1 = vecT−1{fi} and f †,i,T = vecT {f†,i};

4. In (A.3), Γ⋆,i,T = Θi,T

([
Bx⋆,i
By⋆,i

])
, f̃i,T = Θi,T (I)f i,T with f i,T = vecT {fi};

5. In (A.4), Ei = diagT {Ci}, F⋆,i = vecT {D⋆,i}, g̃i,T = vecT {gi}.

Next, in the second step, building upon the time-concatenated dynamics (A.1)–(A.4) from the first step, we further
concatenate the time-concatenated dynamics for each model pair ι = (Gi, Gj), ∀i, j ∈ Z+N with i ̸= j. Let † = {x, y}
and ⋆ = {u, d, w}. For pair ι = (Gi, Gj), the matrices and vectors in the pair-concatenated dynamics (17)–(20) can be
constructed as follows:

1. In (17)–(18), M ι
† = diagk={i,j}{M†,k,T }, Γ ι

†u = veck={i,j}{Γ†u,k,T }, Γ ι
†d = diagk={i,j}{Γ†d,k,T }, Γ ι

†w = diagk={i,j}{Γ†w,k,T },
f̃ ι
† = veck={i,j}{f̃†,k,T };

2. In (19), A
ι
= diagk={i,j}{Ak,T }, Γ ι

u = veck={i,j}{Γu,k,T }, Γ ι
d = diagk={i,j}{Γd,k,T }, Γ ι

w = diagk={i,j}{Γw,k,T }, f̃ ι
=

veck={i,j}{f̃k,T };
3. In (20), C

ι
= diagk={i,j}{Ek}, D

ι

u = veck={i,j}{Fu,k}, D
ι

d = diagk={i,j}{Fd,k}, D
ι

v = diagk={i,j}{Fv,k}, g̃ ι
= veck={i,j}{g̃k,T }.

Appendix B. Matrices and vectors in (21)

Similar to Appendix A, the matrices and vectors of the pair-concatenated state constraints and uncertainty constraints
defined in (21) can also be obtained in two steps. Let † = {x, y} and ⋆ = {u, d, w}. In the first step, the state constraints
(i.e., (10) and (11)) and uncertainty constraints (i.e., (14), (15) and (16)) of model Gi over a time horizon of T are
stacked/concatenated as follows:

H†,i,T xi,T ≤ p̄†,i,T − P̄†,i,T f̃†,i,T − P̄†,i,TΓ†u,i,TuT , Hx,i,T x ≤ hx,i,T , (B.1)

where the time-concatenated uncertainties are denoted as xi,T = [x0,Ti dT
i,T wT

i,T vT
i,T ]

T, P̄†,i,T = diagT {P†,i}, p̄†,i,T =

vecT {p†,i}, H†,i,T = P̄†,i,T
[
M†,i,T Γ†d,i,T Γ†w,i,T 0

]
, Hx̄,i,T = diag{P0, Q̄d,i,T , Q̄w,i,T , Q̄v,i,T } with Q̄⋆,i,T = diagT {Q⋆,i},

hx,i,T = vec{p0, q̄d,i,T , q̄w,i,T , q̄v,i,T } with q̄⋆,i,T = vecT {q⋆,k}.
Then, in the second step, stacking the time-concatenated state and uncertainty constraints (B.1) for each model pair

ι = (Gi, Gj), ∀i, j ∈ Z+N with i ̸= j, we obtain the pair-concatenated state and uncertainty constraints in terms of uncertain
xι
= [xιT dιT wιT vιT

]
T), i.e., (21), where the involved matrices and vectors can be
variables for each model pair ι (cf. 0 T T T

17
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onstructed as follows:

P̄ ι
† = diag

k={i,j}
{P̄†,k,T }, p̄ι

† = vec
k={i,j}
{p̄†,k,T }, H ι

† = P̄ ι
†

[
M ι

† Γ ι
†d Γ ι

†w 0
]
,

H ι
x̄ = diag{P̄ ι

0, Q̄
ι
d, Q̄

ι
w, Q̄ ι

v} with P̄ ι
0 = diag

2
{P0} and Q̄ ι

⋆ = diag
k={i,j}
{Q⋆,k,T },

hι
x̄ = vec{p̄ι

0, q̄
ι
d, q̄

ι
w, q̄ι

v} with p̄ι
0 = vec

2
{p0} and q̄ι

⋆ = vec
k={i,j}
{q⋆,k,T }.

ppendix C. Matrices and vectors in Proposition 4

For ∗ = {d, v} : F
ι

∗
=

[
F∗,i −F∗,j
−F∗,i F∗,j

]
. E

ι
=

[
Ei −Ej
−Ei Ej

]
,

Λι
= E

ι [
A

ι
Γ ι
d Γ ι

w 0
]
+
[
0 F

ι

d 0 F
ι

v

]
.

For † = {x, y} : Γ ι
†u = vec

k={i,j}
{Γ†u,k,T }, Γ ι

†d = diag
k={i,j}
{Γ†d,k,T },

Γ ι
†w = diag

k={i,j}
{Γ†w,k,T },M ι

† = diag
k={i,j}
{M†,k,T }, f̃ ι

† = vec
k={i,j}
{f̃†,k,T }.

F
ι

u =

[
Fu,i − Fu,j
Fu,j − Fu,i

]
, g ι
=

[
g̃i − g̃j
−g̃i + g̃j

]
, Rι
=

[
H ι

y

Λι

]
,

r ι
=

[
pι
y − P

ι

y f̃
ι
y

−Ēι f̃ ι

]
, Sι
=

[
P

ι

yΓ
ι
yu

ĒιΓ ι
u + F ι

u

]
.

ppendix D. Proof of Lemma 1

The generalized semi-infinite constraint in (29) can be viewed as introducing a bilevel structure [18] and is equivalent
o maxx∈X(y) p ≤ 0, where p ≜ Ax − b− Cy , and X(y) ≜ {x : Dx ≤ e+ Fy, Gx ≤ h}. Using this, Equivalence (i) can be obtained
s the robust counterpart of the lower level problem using duality tools from robust optimization [25,26]. On the other
and, to obtain Equivalence (ii), since each row of p must be maximized, we introduce a slack variable pa for each row and
onvert the semi-infinite constraint into finitely many linear constraints p∗a ≤ 0, where p∗a is the maximum pa satisfying
onstraints in X , i.e.,

p∗a = argmin
pa,xa
−pa

s.t. Dxa ≤ e + Fy, Gxa ≤ h, pa = A(a)xa − b(a) − C(a)y.

hen, applying KKT conditions and rewriting the complementary slackness constraints as SOS-1 constraints, we obtain
quivalence (ii). □

ppendix E. Proof of Lemma 2

By introducing the binary variables r (i) and slack variables s(i), by the definition of SOS-1 constraints, the constraint
32b) guarantees that at least one r (i) must be 1, thus, at least one s(i) must be zero, i.e., q (i) ≤ s(i) = 0. □

ppendix F. Proof of Lemma 3

The binary variable γ (i)
= 1 implies that S(i)x + T (i)y ≤ β (i) holds and by the piecewise constraint, Q (i)x + R (i)y ≤ α(i)

olds, while the SOS-1 constraint ensures that t(i) = 0. Combining them, we have (33a) with t(i) = 0. Otherwise, γ (i)
= 0

implies that t(i) is free and (33a) holds trivially. Finally, since we consider a partition, i.e., only one γ (i) can be 1, (33b)
must hold. □

Appendix G. Proof of Proposition 1

Using the concatenated notations in Section 3.2, this reformulation follows directly from Lemma 1 with A ≜ H i
x,

¯ i ¯ i ˜ i ¯ i i i ¯ i ¯ i ˜ i ¯ i i i i
b ≜ px − Pxfx , C ≜ −PxΓxu, D ≜ Hy, e ≜ py − Pyfy , F ≜ −PyΓyu and G ≜ Hx̄, h ≜ hx̄. □
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ppendix H. Proof of Proposition 2

By leveraging Lemma 2, the conditional ‘‘OR’’ state constraints in (27a) can be reformulated as

∀i ∈ Z+N ,∀j ∈ Z+ns,i ,∀k ∈ Z0
T−1 :⎧⎪⎪⎪⎨⎪⎪⎪⎩

r (j)i,k ∈ {0, 1}, SOS-1 : {r
(j)
i,k, s

(j)
i,k},

∑
j

r (j)i,k ≥ 1,

P (j)
s,iMxi,k

x
(j)
s,i,k + P (j)

s,iΓxu,i,kuT − p(j)s,i + P (j)
s,i f̃x,i,k ≤ s(j)i,k,

∀x
(j)
s,i,k ∈ {x

(j)
s,i,k : P

(j)
y,iMyi,k

x
(j)
s,i,k + P (j)

y,iΓyu,i,kuT − p(j)y,i + P (j)
y,i f̃y,i,k ≤ 0,Hx,i,kx

(j)
s,i,k − hx,i,k ≤ 0}.

Then, we obtain (35) by applying Equivalence (ii) in Lemma 1 with the following corresponding matrices: A ≜ P (j)
s,iMxi,k

,
≜ p(j)s,i − P (j)

s,i f̃x,i,k, C ≜ P (j)
s,iΓxu,i,k, D ≜ P (j)

y,iMyi,k
, e ≜ p(j)y,i − P (j)

y,i f̃y,i,k, F ≜ −P (j)
y,iΓyu,i,k, G ≜ Hx,i,k, h ≜ hx,i,k. □

Appendix I. Proof of Proposition 3

By leveraging Lemma 3, the coupled state–input constraints in (27a) can be reformulated as

∀i ∈ Z+N ,∀j ∈ Z+np,i ,∀k ∈ Z0
T−1 :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ
(j)
i,k ∈ {0, 1}, SOS-1 : {γ

(j)
i,k , t(j)i,k},

∑
j

γ
(j)
i,k = 1,⎡⎣Q (j)

ux,iMxi,k

[
Q (j)
ux,iΓxu,i,k Q (j)

uu,i 0
]

P (j)
ux,iMxi,k

[
P (j)
ux,iΓxu,i,k 0

] ⎤⎦[x(j)i,k
uT

]
≤

[
q(j)u,i − Q (j)

ux,i f̃x,i,k

p(j)ux,i − P (j)
ux,i f̃x,i,k

]
+ t (j)i,k,

∀x
(j)
i,k ∈

{
x
(j)
i,k : P

(j)
y,iMyi,k

x
(j)
i,k + P (j)

y,iΓyu,i,kuT − p(j)y,i + P (j)
y,i f̃y,i,k ≤ 0,Hx,i,kx

(j)
i,j − hx,i,k ≤ 0

}
,

where the following corresponding matrices in Lemma 3 are used: xi,k ≜ xi,k, y ≜ uT , Q (j)
i,k ≜ Q (j)

ux,iMxi,k
, R (j)

i,k ≜

Q (j)
ux,iΓxu,i,k Q (j)

uu,i 0
]
, S(j)

i,k ≜ P (j)
ux,iMxi,k

, T (j)
i,k ≜

[
P (j)
ux,iΓxu,i,k 0

]
, α

(j)
i,k ≜ q(j)u,i − Q (j)

ux,i f̃x,i,k, and β
(i)
i,k ≜ p(j)ux,i − P (j)

ux,i f̃x,i,k.

We further utilize Equivalence (ii) in Lemma 1 to reformulate the coupled input–state piecewise constraints above to
obtain (36), where the following matrices in Lemma 1 are used to get the result in Proposition 3: A ≜

[
Q (j)T
i,k S(j)T

i,k

]T
,

b ≜
[
α
(j)T
i,k β

(i)T
i,k

]T
+t (j)i,k1, C ≜

[
−R (j)T

i,k −T (j)T
i,k

]T
, G ≜ Hx,i,k, h ≜ hx,i,k, D ≜ P (j)

y,iMyi,k
, e ≜ p(j)y,i−P

(j)
y,i f̃y,i,k and F ≜ −P (j)

y,iΓyu,i,k. □

Appendix J. Proof of Proposition 4

This is obtained using the same steps in Theorem 1 of [13]. Similar to the previous result, the (non-convex) input,
responsibility and safety constraints are enforced in the outer problem by Propositions 1–3; thus, they trivially hold in
the inner problem of the separability condition and need not be explicitly included. □
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