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Fault Modeling, Estimation, and Fault-Tolerant Steering Logic Design for
Single-Gimbal Control Moment Gyro

Qiang Shen , Chengfei Yue , Xiang Yu , and Cher Hiang Goh

Abstract— This brief addresses the single-gimbal control
moment gyro (SGCMG) fault modeling, estimation, and tolerant-
control steering logic design problem, aiming at enhancing the
reliability and safety of spacecraft attitude control systems. The
SGCMG is modeled as a two-loop system, including a wheel speed
control loop and a gimbal rate control loop. Each loop contains
an electrical motor (EM) and its corresponding variable speed
drive (VSD), which may suffer from faults. By analyzing and
modeling potential faults of the EM-VSD system, the SGCMG
fault model is further developed. Then, a local adaptive fault
estimator is proposed to reconstruct the total time-varying fault
effects of each SGCMG. It is proven that the gimbal angle
estimation error and fault estimation error converge to small
compact sets containing zero. Moreover, leveraging estimated
fault effects, a fault-tolerant steering logic is further developed
to allocate the commanded attitude control torque properly such
that the gimbal rate constraints are satisfied, and fault effects
are compensated. To verify the proposed fault estimator and
fault-tolerant steering logic, numerical simulations are carried
out on an SGCMG-actuated spacecraft.

Index Terms— Control moment gyro (CMG), fault modeling,
fault-tolerant control, steering law.

I. INTRODUCTION

IN PRACTICAL space missions, redundant momentum
exchange devices, such as reaction wheels (RWs) and

control moment gyro (CMG), are equipped in spacecraft
to enhance the reliability, maneuverability, and survivability.
However, if a fault occurs in momentum exchange devices,
their output torques acting on the spacecraft may be different
from commands required by the attitude controller, which may
lead to performance deterioration or even instability of the
whole system. For instance, the Mars Odyssey (launched in
2001) came into protective standby mode in 2014 due to the
failure of an RW. How to avoid space mission failure and
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the economic losses caused by faults in momentum exchange
devices have attracted a great deal of interest in the field of
spacecraft control.

To enhance the system reliability and compensate for the
adverse effect induced by actuator faults in spacecraft mis-
sions, a proper fault model representing most of the potential
faults for momentum exchange devices is crucial. In [1],
the mechanism of RW fault is analyzed, but a mathematical
model is not given explicitly. In [2]–[4], a mathematical
model consisting of an effectiveness gain matrix and a bias
vector is proposed to represent four different kinds of RW
faults. In contrast to RW, since CMG has a complex structure
and working principle, it is not straightforward to develop a
proper fault model representing most of CMG fault modes.
Although general motor faults in CMGs of the small satellite
are analyzed in [5], the CMG fault model is not developed.
In [6], a fault model is proposed to describe the loss of effec-
tiveness and bias in the gimbal rate control loop. However,
the mechanism of CMG fault is not clearly analyzed and the
general CMG fault model is not established in [6].

After developing a proper actuator fault model, fault recon-
struction and fault-tolerant control need to be addressed. Many
results have been proposed for tackling RW faults. Using a
radial basis function neural network to estimate RW fault, an
adaptive control allocation method is proposed to redistribute
control effects to fault-free RWs in [7]. In [8], a local adaptive
observer and a finite-time fault-tolerant controller are designed
to estimate and accommodate RW fault, respectively. Based on
the reconstructed fault from an indirect fault estimator, a fault-
tolerant backstepping controller is synthesized to compensate
fault effects despite actuator saturation constraints in [9]. In
contract to the RW-based fault-tolerant control design, there
are very few fault-tolerant control results on CMG. In [10], the
skew angle of a pyramid CMG configuration is tuned through
a genetic algorithm to handle CMG failures. In [6], the sliding
mode control approach is adapted to change the CMG gimbal
rate directly to avoid singularities and deal with CMG faults
without fault estimation. Since the worst case fault is consid-
ered for designing the sliding mode controller, this method is
conservative from the perspective of control performance.

In this brief, a fault-tolerant control system consisting of
fault modeling, estimation, and fault-tolerant steering logic is
proposed for single-gimbal CMG (SGCMG)-actuated space-
craft. The SGCMG is considered to be an integration of two
electric motor and variable speed drive (EM-VSD) systems.
By analyzing potential faults and their corresponding effects,
a multiplicative effectiveness factor and an additive offset are
introduced to represent faults in an EM-VSD system. Then,
an SGCMG fault model in a cascade multiplication form of
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Fig. 1. Schematic of an SGCMG.

two EM-VSD systems is established. Inspired by the results in
[8] and [11], we design local adaptive estimators to reconstruct
total fault effects in gimbal rate control loop for each SGCMG.
In contrast to existing fault estimators, such as [3] and [9],
which only obtain the resultant effect caused by all actuator
faults, the developed local fault estimator aims to obtain a
more accurate fault estimation by distinguishing and estimat-
ing the fault effect on each individual actuator. Moreover,
leveraging the obtained fault information, we proposed a
Karush–Kuhn–Tucker (KKT) condition-based fault-tolerant
SGCMG steering logic, which not only compensates the fault
influences but also avoids/escapes the SGCMG singularity
by selecting suitable weighting matrices. To the best of our
knowledge, this is the first attempt to accommodate SGCMG
fault in the actuator level by constructing a fault-tolerant
steering logic instead of in attitude controller design. When
compared with the general singular robust (GSR) steering
logic in [12] and [13], the proposed approach has advantages
of fault accommodation and guaranteed gimbal rate constraints
while dealing with singularities. Finally, the effectiveness
of the proposed SGCMG fault estimator and fault-tolerant
steering logic is demonstrated through numerical simulation.

The remaining part of this brief is organized as follows.
Section II introduces the mathematical models of the EM-VSD
system and SGCMG. Section III develops a local fault estima-
tor. The fault-tolerant steering logic is proposed in Section IV.
In Section V, numerical simulation on a rigid spacecraft using
four SGCMGs is carried out to verify the proposed fault
estimator and fault-tolerant steering logic. Finally, this brief
ends with the conclusion in Section VI.

II. SGCMG FAULT MODEL

Due to the advantages of simple structure and high torque
amplification capability, the SGCMG is frequently used as an
actuator in agile spacecraft to ensure fast attitude maneuver
and high pointing precision. As shown in Fig. 1, the SGCMG
is a constant-speed rotor mounted on a gimbal frame such
that the direction of angular momentum keeps changing, but
its magnitude is a constant. The SGCMG can be considered as
an integration of a gimbal rotation control system and a wheel
speed control system from its mechanical structure. Since
either the gimbal control loop or wheel speed control loop can
be modeled as an EM-VSD system, the SGCMG is regarded as
a cascade combination of two independent EM-VSD systems

[14], which describe dynamics of the rotor control loop and the
gimbal frame control loop, respectively. The potential faults
of an SGCMG may occur in the mechanical and/or electrical
system of the EMs and the sensors and actuators of the VSDs
in both the rotor control loop and the wheel speed control
loop. In this section, we develop an SGCMG fault model that
generalizes the existing fault models used in [2]–[6].

A. Fault Model of EM-VSD System

The detailed faults in an EM-VSD system are given in
[15]–[18]. Specifically, for the EM, potential faults are cat-
egorized into [17]: bearing faults, stator or mature faults,
broken rotor bar and end ring faults of induction machines,
and eccentricity-related faults. With regard to VSD, faults are
classified into mechanical and electrical faults, actuator faults
(actuator in VSD), and sensor faults.

In general, mechanical faults (e.g., faulty bearings, brush
wear, shaft misalignment, eccentric rotor, and so on) and
electrical faults (e.g., broken rotor bars, windings short-circuit,
and so on) in an EM-VSD system are induced by mechanical
wearing, harsh working environment, aging, and severe voltage
stresses. These faults belong to multiplicative faults that can be
represented by the change of output effectiveness. In addition,
actuator fault in VSD would cause insufficient voltages or
currents to drive an EM. The sensors in VSD may also suffer
from faults such that the physical phenomenon cannot be
characterized properly. These faults are considered as additive
faults [18], [19], which have effects similar to measurement
bias or external disturbances.

According to a recent work in [14], fault models of the two
EM-VSD systems in an SGCMG are given by{

Ω = ηΩΩc + Ωa, Rotor speed control loop

δ̇ = ηδ δ̇c + δ̇a, Gimbal rate control loop
(1)

where Ω and Ωc are rotating speed of flywheel and its com-
mand input, δ̇ and δ̇c are gimbal rate output and its command
from SGCMG steering law, ηΩ and ηδ denote effectiveness
gains satisfying 0 ≤ ηΩ ≤ 1 and 0 ≤ ηδ ≤ 1, and Ωa and δ̇a

are bounded offsets.

B. SGCMG Fault Model

As shown in Fig. 1, the torque generated by an SGCMG is
proportional to the plane spanned by the angular momentum
vector and gimbal angular rate vector and is computed as:

τ = −h0δ̇t̂ (2)

where h0 denotes the constant angular momentum of the
spinning rotor, and t̂ denotes a unit vector in the direction
of output torque. The negative sign in (2) implies the output
torque lies in the opposite direction of t̂.

The potential faults in an SGCMG may exist in the rotor
speed control loop and/or gimbal angle control loop. For the
rotor control system, the angular momentum is the product of
its inertia JΩ and the rotor angular velocity Ω, i.e., h0 = JΩΩ.
With consideration of the possible faults in rotor speed control
loop, which is modeled in (1), the rotor momentum subject to
faults is described as:

h0 = JΩ(ηΩΩc + Ωa). (3)
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Fig. 2. Overall attitude control system with local fault estimators.

Moreover, in the light of the fault model of gimbal rate
control loop in (1), the output torque generated by an SGCMG
in the presence of faults is given by

τ = −JΩ(ηΩΩc + Ωa)(ηδ δ̇c + δ̇a)t̂. (4)

To this end, we develop the SGCMG fault model consid-
ering potential faults in both the rotor speed control loop and
the gimbal control loop. From (4), different combinations of
ηΩ, Ωa, ηδ , and δ̇a represent different SGCMG working con-
ditions, including fault modes and nominal situation. Noting
that the constraints on the maximum output of the rotor speed
and the gimbal rate are not considered in (4) since they are
physical limitations of SGCMG rather than faults.

III. FAULT ESTIMATION FOR SGCMG

In Section II, we consider SGCMG as a cascade com-
bination of two EM-VSD systems and then develop fault
models for the rotor speed control loop and gimbal rate control
loop, respectively. If a fault occurs in the rotor, the undesired
rotor speed can be recognized easily through rotational speed
measurement as the rotor is supposed to rotate at a constant
speed. Therefore, the rotor fault is not considered in this
section, and we only propose a fault estimation scheme for the
SGCMG gimbal control loop. In practical missions, multiple
SGCMGs are employed to generate the commanded torques
from an attitude controller. Here, we assume that N SGCMGs
are equipped in the spacecraft, and each of N SGCMGs
may encounter faults. To obtain the fault information in each
SGCMG, we develop a local fault estimator for each SGCMG.
The overall attitude control system with local fault estimation
is demonstrated in Fig. 2.

Recalling (1), the gimbal fault model can be written as

δ̇ = δ̇c + f (5)

where f = (ηδ − 1)δ̇c + δ̇a represents the total fault effect
lumping the loss of effectiveness fault and additive offset. The
commanded gimbal rate δ̇c is computed from the SGCMG
steering logic, which is assumed to be known in fault estimator
design and will be given in Section IV.

Assumption 1: The total fault effect f in each SGCMG is
differentiable, and its time derivative is bounded such that
|ḟ | ≤ f , where f is a positive constant.

In the proposed fault estimation approach, we estimate the
total fault effect f in each SGCMG rather than each individual
gains ηδ and δ̇a. If we proceed to estimate individual actuator
fault, the fault estimation approach may become complicated
and time consuming, especially when several kinds of fault
occur concurrently in an SGCMG.

To estimate the total fault effect f in an SGCMG, we first
define an auxiliary variable as [9], [20]

ξ = f − kδ (6)

where k is a positive constant. Next, the local adaptive
estimator for fault estimation is proposed as follows:

˙̂
δ = δ̇c + α(δ − δ̂) + f̂ (7)
˙̂
ξ = −kδ̇c − kξ̂ − k2δ̂ (8)

where α is a positive design parameter chosen by the designer.
Define estimation errors δ̃ = δ − δ̂ and ξ̃ = ξ − ξ̂. Based on
(6), fault estimation error is expressed as f̃ = ξ̃ + kδ̃. Thus,
estimation error dynamics can be derived as

˙̃δ = −(α − k)δ̃ + ξ̃ (9)
˙̃
ξ = −kξ̃ − k2δ̃ + ḟ . (10)

Theorem 1: Considering the gimbal fault model in (5) with
loss of effectiveness fault and additive bias fault satisfying
Assumption 1, applying the proposed local adaptive estimator
consisting of a state estiamtion (7) and an auxiliary variable
estimation (8) with the parameter constraints defined in (13)
and (14), the gimbal angle estimate error and fault estimate
error ultimately converge to small compact sets containing
zero.

Proof: Consider the following Lyapunov candidate:

V =
1
2
δ̃2 +

1
2
ξ̃2. (11)

Taking time derivative of V along with (9) and (10) yields

V̇ = −(α − k)δ̃2 − kξ̃2 − (k2 − 1)δ̃ξ̃ + ḟ ξ̃

≤ −(α − k)δ̃2 −
(
k − ε

2

)
ξ̃2 − (k2 − 1)δ̃ξ̃ +

1
2ε

f
2
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where the inequality ḟ ξ̃ ≤ ε/2ξ̃2 + 1/2εf
2

and Assumption 1
are used. The foregoing inequality can be further written as

V̇ ≤ − [
δ̃ ξ̃

]
P

[
δ̃ ξ̃

]T
+ �, (12)

where P =
[
α − k 1

2 (k2 − 1)
∗ k − ε

2

]
and � = 1/2εf

2
. If

parameters α, k, and ε are selected to satisfy

k − α < 0 (13)

k4 + 2k2 − (2α + ε)k + αε + 1 < 0 (14)

then the matrix P is positive-definite. Consequently, we have
V̇ < −κV + ρ with κ = 2λmin(P ). Moreover, it is clear that
V̇ < 0 when

|δ̃(t)| >

√
�

λmin(P )
or |ξ̃(t)| >

√
�

λmin(P )
. (15)

Therefore, δ̃ and ξ̃ exponentially converge to compact sets Sδ̃

and Sξ̃ with rates greater than e−κt, where

Sδ̃ =
{

δ̃

∣∣∣∣|δ̃| ≤
√

�

λmin(P )

}
(16)

Sξ̃ =
{

ξ̃

∣∣∣∣|ξ̃| ≤
√

�

λmin(P )

}
. (17)

In addition, since f̃ = ξ̃ + kδ̃, the fault estimation error
converges to the set Sf̃ defined as

Sf̃ =
{

f̃

∣∣∣∣|f̃ | ≤ (k + 1)
√

�

λmin(P )

}
. (18)

This completes the proof.

IV. FAULT-TOLERANT STEERING LOGIC

In this section, we proposed a fault-tolerant SGCMG steer-
ing logic to allocate the torque calculated from attitude con-
troller to each SGCMG while compensating effects caused by
gimbal faults.

A. Spacecraft Attitude Error Dynamics

To address the attitude tracking problem, the desired attitude
and the desired angular velocity of the spacecraft in the
desired reference frame Bd with respect to inertial frame I
are denoted by unit quaternion Qd =

[
qT

d qd0

]T ∈ R
3 × R

and ωd ∈ R
3, respectively. The attitude tracking error Qe =[

qT
e qe0

]T ∈ R
3 × R is defined as the relative orientation

between attitude Q =
[
qT q0

]T ∈ R
3 × R and target attitude

Qd and is computed as Qe = Q−1
d ⊗ Q, where Q−1

d is
the inverse or conjugate of the desired quaternion determined
by Q−1

d =
[−qT

d qd0

]T
, and “⊗” denotes the quaternion

multiplication operator of two unit quaternion. The angular
velocity error ωe ∈ R

3 describing the discrepancy between
the inertia angular velocity ω ∈ R

3 and the desired one
ωd is given by ωe = ω − Cωd, where C is the rotation
matrix that is defined as C = (q2

e0−qT
eqe)I3+2qeq

T
e−2qe0q

×
e

with I3 ∈ R
3×3 denoting a 3 × 3 identity matrix and

the notation x× ∈ R
3×3 representing the skew-symmetric

cross-product matrix for a vector x =
[
x1 x2 x3

]T ∈ R
3.

Then, the attitude tracking error system can be expressed by
the following equations [21]:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jω̇e = −(ωe + Cωd)×J(ωe + Cωd)
+J(ω×

e Cωd − Cω̇d) + τa + d

q̇e =
1
2
(q×

e + qe0I3)ωe

q̇e0 = −1
2
qT

eωe.

(19)

where J ∈ R
3×3 denotes the positive definite inertia matrix

of the spacecraft, τa ∈ R
3 denotes the internal control torque

produced by N identical SGCMGs, and d ∈ R
3 is the bounded

external disturbance.

B. SGCMG Steering Logic Design

The steering law is to be designed such that N SGCMGs
realize the commanded control torque u ∈ R

3 from the atti-
tude controller. Many attitude tracking controllers have been
proposed to achieve a stable attitude tracking with satisfac-
tory performance in the literature, for example, proportional-
derivative (PD) controller [21], adaptive controller [22], [23],
inverse optimal controller [24], and so on. Since the major
focus of this brief is not on attitude controller design, it is
assumed that there exists an attitude controller that provides
stable attitude tracking in the following steering logic design.

For a given control torque command u, the internal control
torque generated by N SGCMG should satisfy

τa = τ − ω×h = u (20)

where τ = −h0Aδ̇ ∈ R
3 is the total torque generated by N

SGCMGs, h0 is magnitude of nominal angular momentum,
A ∈ R

3×N is the Jacobian matrix of derivative of h, h ∈ R
3

is angular momentum produced by SGCMG cluster, and δ̇ =
[δ̇1, . . . , δ̇N ]T ∈ R

N is the actual gimbal rate.
Considering SGCMG gimbal fault modeled in (5), the actual

gimbal rate output δ̇ and the gimbal rate command δ̇c =
[δ̇c,1, . . . , δ̇c,N ]T ∈ R

N have the following relationship:

δ̇ = δ̇c + f . (21)

To compensate the total SGCMG fault effects, the estimated
fault information f̂ = [f̂1, . . . , f̂N ]T from Section III is used
to replace the actual fault f = [f1, . . . , fN ]T in steering
logic design. Then, substituting (21) into (20), the commanded
gimbal rate δ̇c of N SGCMGs in the presence of faults is
chosen such that

−h0A(δ̇c + f̂) − ω×h = u. (22)

Inspired by the work in [25], to distribute the command
torque to each individual SGCMG in the presence of faults,
a fault-tolerant steering logic is computed through solving the
following optimization problem:

min
δ̇c

J(δ̇c) =
1
2
‖h0A(δ̇c+f̂)+ω×h+u‖2

W +
1
2
‖δ̇c‖2

Q (23)

s.t. δ̇c − rmin ≥ 0, rmax − δ̇c ≥ 0 (24)

where ‖h0A(δ̇c + f̂) + ω×h + u‖2
W stands for (h0A(δ̇c +

f̂)+ω×h+u)TW (h0A(δ̇c + f̂)+ω×h+u), ‖δ̇c‖2
Q stands
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for δ̇T
c Qδ̇c, Q ∈ R

N×N and W ∈ R
3×3 are two symmetric

positive-definite matrices, and rmin and rmax are SGCMGs’
lower and upper bounds on the gimbal rate.

To reduce the notational burden, we define G = h0A and
v = −u − h0Af̂ − ω×h. Then, the proposed fault-tolerant
steering logic design problem can be written as

min
δ̇c

J(δ̇c) =
1
2
‖Gδ̇c − v‖2

W +
1
2
‖δ̇c‖2

Q (25)

s.t. δ̇c − rmin ≥ 0, rmax − δ̇c ≥ 0. (26)

To solve the minimization problem, a Lagrangian function
is defined as

L(δ̇c, λ1, λ2) = J(δ̇c)−λT
1(δ̇c−rmin)−λT

2(rmax−δ̇c) (27)

where the Lagrangian multipliers λ1 ∈ R
N and λ2 ∈ R

N are
nonnegative vectors. Based on the KKT condition, the optimal
solution δ̇∗

c with λ∗
1 and λ∗

2 satisfies [26]

GTW (Gδ̇∗
c − v) + Qδ̇∗

c − λ∗
1 + λ∗

2 = 0, (28)

λ∗
1,i

(
δ̇∗c,i − rmin,i

)
= 0, λ∗

2,i

(
rmax,i − δ̇∗c,i

)
= 0, (29)

δ̇∗
c − rmin ≥ 0, rmax − δ̇∗

c ≥ 0, (30)

λ∗
1 ≥ 0, λ∗

2 ≥ 0 (31)

where λ∗
1,i, λ∗

2,i, rmin,i, rmax,i, and δ̇∗c,i are the ith row of λ∗
1,

λ∗
2, rmin, rmax, and δ̇∗

c for i = 1, . . . , N , respectively.
Generally speaking, the KKT conditions are only the nec-

essary conditions for finding the global minima of nonlinear
programming problems. If both the objective function and the
constraints are convex, the KKT conditions are also sufficient
to obtain the global optimality. Otherwise, extra examinations
are required to exclude the local minima and the maximum.
Based on the constraints from KKT condition, we find that
the optimal gimbal rate δ̇∗

c,i are classified by the values of
Lagrangian multipliers λ∗

1 and λ∗
2. When the Lagrangian

multipliers λ∗
1 = 0 and/or λ∗

2 = 0, the optimal gimbal rate
δ̇∗

c is free from the complementary slackness and computed
within its boundaries by solving the algebraic equations (28).
When the Lagrangian multipliers λ∗

1 �= 0 and/or λ∗
2 �= 0,

the optimal gimbal rate δ̇∗
c is constrained to be the value of

rmin or rmax from the complementary slackness (29). As a
consequence, several local minima and the boundary values are
obtained from the earlier two classified steps. Finally, further
comparisons among these local minima and the boundary
values should be included to find the global minimum, which
produces the smallest value of cost function.

In summary, based on the KKT conditions, the algorithm
for solving the fault-tolerant steering logic design problem
formulated (25) and (26) is implemented as follows.
Inputs:

1) Calculate G and v based on gimbal angle measure-
ment, high-level controller, fault estimation scheme, and
SGCMG specification.

2) Choose the weighting parameters W and Q.

Steps:

1) Let λj,i be the elements of vectors λ1 and λ2 for j ∈
{1, 2} and i ∈ {1, . . . , N}.

2) Let k be the number of nonzero elements. Since λ1,i

and λ2,i cannot be nonzero at the same time, we have
k ∈ {0, . . . , N}.

3) Set k = 0.
4) Find all

(
N
k

)
2k combinations of (j, i) for k nonzero λj,i.

5) Corresponding to each combination of (j, i) in Step 4,
set k of λj,i to be nonzero and 2N − k remaining λj,i

to be zero, and consequently obtain δ̇∗
c,i (for instance,

for k = 2, if λ1,1 �= 0 and λ2,2 �= 0, then δ̇∗
c,1 = rmin,1

and δ̇∗
c,2 = rmax,2). The other δ̇∗

c,i in each combination,
when there are k nonzero elements in λj,i, can be
computed by solving the remaining algebraic equations
in (28).

6) Assign k := k + 1. If k ≤ N , then go to Step
4. Otherwise, compute the values of cost function for
all the δ̇∗

c (there are
∑N

k=0

(
N
k

)
2k = 3N different

combinations in total), and find the global optimal δ̇∗
c

by comparison.
Remark 1: In Step 5 of the earlier algorithm, we need

to solve an algebraic equation in (28). Define matrices
Π = GTWG + Q and Θ = GTWv + λ∗

1 − λ∗
2. Since

the weighting matrices W and Q are positive-definite, Π is
always nonsingular, and hence, the solution of (28) can be
given as δ̇∗

c = Π−1Θ. Moreover, to deal with the SGCMG
singularity, we need to select the weighting matrices W and
Q properly such that the proposed steering logic can avoid
or escape all kinds of singularities, while the existing control
allocation method in [25] cannot solve this problem directly.
Inspired by the singularity escape/avoidance steering logic in
[13], we select W = W−1

inv > 0 and Q = Q−1
inv > 0, where

Winv = γ

⎡
⎣ 1 ζ3 ζ2

ζ3 1 ζ1

ζ2 ζ1 1

⎤
⎦ , Qinv =

⎡
⎢⎢⎣

β1 γ γ γ
γ β2 γ γ
γ γ β3 γ
γ γ γ β4

⎤
⎥⎥⎦

ζi = ζ0 sin(�t + φi), γ = γ0exp[−μdet(A A
T
)]

for the case N = 4, i.e., there are four SGCMGs in attitude
control systems. The design parameters ζ0, �, φi (i = 1, 2, 3)
and βj (j = 1, . . . , N) need to be appropriately chosen such
that GT Wv �= 0 for any nonzero v [13].

V. NUMERICAL SIMULATION

To verify the effectiveness of the proposed fault identi-
fication method and fault-tolerant steering logic, numerical
simulations for attitude control of an SGCMG-actuated rigid
spacecraft subject to gimbal faults are performed.

A. Simulation Specifications

In the simulation, the spacecraft has an inertia
J =

[
10 1.2 0.5; 1.2 19 1.5; 0.5 1.5 25

]
kg·m2 [28].

The environmental disturbance model is d(t) =[−0.005 sin(t) 0.005 sin(t) −0.005 sin(t)
]T

N·m [29].
The initial attitude of the spacecraft is assumed to be
Q(0) =

[−0.5 0.3 −0.4 0.7071
]T

, while the initial angular

velocity is ω(0) =
[
0 0 0

]T
deg/s. Throughout the simulation,

we consider a rest-to-rest three-axis attitude maneuver, in
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Fig. 3. Attitude control performance under proposed control scheme using local adaptive fault estimator and KKT-based fault-tolerant steering logic.
(a) Attitude tracking error. (b) Angular velocity tracking error. (c) Actual and estimated gimbal angle. (d) Gimbal angle estimation error. (e) Actual and
estimated fault. (f) Fault estimation error. (g) Actual and commanded gimbal rate. (h) Torque error. (i) Singularity measure.

which the target attitude is Qd(0) =
[
0 0.8660 0 0.5

]T
.

Four identical SGCMGs in a regular pyramid configuration
with skew angle β = 54.74 deg are used as actuators. The
magnitude of nominal angular momentum of each SGCMG is
1 N·m·s, and gimbal rate constraints are rmin,i = −30 deg/s
and rmax,i = 30 deg/s (i = 1, . . . , 4). As the CMG systems
are generally spun up from a zero-momentum configuration
[30], initial gimbal angles are set as δ(0) =

[
0 0 0 0

]T
deg.

According to the gimbal fault model in (1), the fault in
SGCMG can be described by two parameters ηδ,i and δ̇a,i

for SGCMG #i (i = 1, . . . , 4). In the simulation, we assume
that the SGCMG #1 can only supply 50% of the commanded
gimbal rate after t = 2 s, the SGCMG #2 experiences additive
offset fault at t = 30 s with the size of δ̇a,2 = −3 deg/s,
the SGCMG #3 is assumed to suffer from partial loss of
effectiveness fault at t = 10 s with ηδ,3 = 0.3 and additive
offset fault at t = 20 s with δ̇a,2 = 2 deg/s, and the SGCMG
#4 is fault-free throughout the simulation. If the proposed

fault-tolerant attitude control system can handle these severe
SGCMG faults, it can also deal with the less-severe SGCMG
faults or fault-free situation.

To achieve three-axis attitude control, the quaternion feed-
back PD controller is applied, which is designed as [21]

u = −kpJqe−kdJωe+ω×Jω−J
(
ω×

e Cωd − Cω̇d

)
(32)

where control gains kp = 0.1422 and kd = 0.5333 are
selected such that the closed-loop attitude dynamics is critical
damping and the settling time of the attitude is around 30 s
in fault-free situation. In addition, the magnitude of the PD
controller is limited to be less than 1 N·m. The parameters in
the weighting matrices of the proposed fault-tolerant steering
logic are selected as: ζ0 = 0.01, � = 10, φ1 = 0, φ2 = π/2,
φ3 = π, β1 = 20, β1 = 30, β1 = 50, and β1 = 10. To have a
fast fault estimation, the fault estimator gains are selected as
α = 20 and k = 0.2, which satisfy the corresponding estimator
constraints defined in (13) and (14) when ε = 0.1.
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Fig. 4. Attitude control performance under control scheme using local iterative learning fault estimator [27] and KKT-based fault-tolerant steering logic.
(a) Gimbal angle estimation error. (b) Fault estimation error.

Fig. 5. Attitude control performance under control scheme using local adaptive fault estimator and fault-tolerant GSR steering logic [12]. (a) Commanded
gimbal rate. (b) Torque error. (c) Singularity measure.

B. Result Analysis

The simulation results of the proposed control scheme
using local adaptive fault estimator and KKT-based fault-
tolerant steering logic are shown in Fig. 3. It is observed from
Fig. 3(a) and (b) that attitude and angular velocity tracking
errors converge to a neighborhood of zero despite SGCMG
gimbal faults. Fig. 3(c)–(f) shows the responses of the gimbal
angle and fault estimation errors using the proposed local
adaptive fault estimator, from which it is clear that the time-
varying gimbal angle and SGCMG fault are estimated accu-
rately. Although the actual gimbal rate response in Fig. 3(g)
deviates from the gimbal rate command due to SGCMG
faults, the torque error reaches a small bounded region of
±2 × 10−4 N·m in 38.1 s, as observed in Fig. 3(h). In
addition, the magnitude of the commanded gimbal rate is less
than 30 deg/s throughout the simulation, which illustrates that
the proposed steering logic ensures gimbal rate constraints
effectively. The singularity measure det(AA

T
) is shown in

Fig. 3(i), from which we see that a saturated singularity is
encountered at 5.6 s due to the loss of effectiveness fault of
SGCMG #1. However, this saturated singularity is quickly
passed through. Moreover, the steering logic also avoids
another internal singularity observed around 90 s in Fig. 3(i)
so that the influence of the internal singularity on state tracking
and fault estimation could be tolerable.

To demonstrate the advantages of the proposed fault-tolerant
system, we also compare the proposed adaptive estimator with
the iterative learning observer developed in [27]. Both two esti-
mators are implemented locally for each SGCMG to estimate

time-varying gimbal faults. To make the comparison fair,
the same PD controller and KKT-based steering logic are used
in attitude control. Although both two estimators converge the
fault estimation error, the maximum transient error of gimbal
angle estimation and fault estimation (6.68 deg and 0.31) under
the iterative learning estimator shown in Fig. 4(a) and (b)
are larger than that (0.71 deg and 0.26) under the proposed
estimator shown in Fig. 3(d) and (f). In addition, the proposed
estimator also has a smoother error response than the one
using the method in [27]. Finally, we compare the proposed
KKT-based steering logic with the GSR steering logic in [12].
It is clear from Fig. 5 that the GSR steering logic cannot
ensure the gimbal rate constraint and takes a longer time to
escape the saturated singularity. Since the internal singularity
is not avoided by the GSR steering logic, an obvious torque
error around 90 s is observed in Fig. 5(b). Nevertheless,
the proposed KKT-based steering logic does not have these
disadvantages.

VI. CONCLUSION

In this brief, we designed a fault-tolerant control scheme for
spacecraft attitude control systems to handle SGCMG faults.
We consider SGCMG as a combination of two independent
EM-VSD systems, which describe the rotor speed control loop
and gimbal rate control loop separately. Then, the SGCMG
fault model is obtained by multiplying two EM-VSD fault
models together. Based on this SGCMG fault model, the
total fault effect instead of each individual fault is esti-
mated by a local adaptive estimator, which can exponentially
converge fault estimation error with satisfactory accuracy.
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Moreover, incorporating the estimated fault information, a
fault-tolerant steering logic is further proposed to accommo-
date SGCMG gimbal fault and singularity. Finally, the effec-
tiveness of the proposed SGCMG fault estimation approach
and fault-tolerant steering logic is demonstrated by numerical
simulations. As one of the future works, an experimental study
of the proposed fault-tolerant system is also important from
an application point of view.
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