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Abstract—This paper designs an active fault-tolerant
control system for spacecraft attitude control in the pres-
ence of actuator faults, fault estimation errors, and control
input constraints. The developed fault-tolerant control sys-
tem is able to detect the actuator fault without false alarms
caused by external disturbances, and also estimate the
total fault effects accurately through an indirect fault iden-
tification approach, in which an auxiliary variable is utilized
to build the relation between fault and system states. Once
the fault identification is completed with certain degree
of reconstruction accuracy, a fault-tolerant backstepping
controller using the nonlinear virtual control input is re-
configured to accommodate the detected actuator faults
effectively, in spite of actuator saturation limitations and
fault estimation errors. Numerical simulation is carried out
to demonstrate that the proposed active fault-tolerant con-
trol system is successful in fault detection, identification,
and controller reconfiguration for handling actuator faults
in attitude control systems.

Index Terms—Actuators, Fault detection and identifica-
tion, Fault-tolerant control, Saturation

I. INTRODUCTION

FOR safety critical systems such as spacecraft and aircraft,
it is important to possess a fault-tolerant control system

(FTCS) to enhance reliability and ensure survivability as even
a minor fault may lead to severe performance deterioration or
mission failure. An FTCS is a control system that is capable of
accommodating component faults automatically while main-
taining overall closed-loop stability and control performance
[1]–[3]. Recently, autonomous attitude control in the presence
of actuator faults has received a great deal of attention in both
aerospace engineering and academic communities due to the
increasing demand for performance and capability of future
spacecraft [4]. For spacecraft attitude control design in the
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absence of actuator faults, several nonlinear control strategies,
such as backstepping control [5]–[7], sliding mode control [8],
[9], PD-type controller [10], [11], etc., have been proposed. To
develop an FTCS for spacecraft attitude control system, two
design approaches are generally available: passive FTCS and
active FTCS [12].

In a passive FTCS for attitude control, a single fixed
controller is synthesized to achieve the required attitude ma-
neuvers not only in normal operating condition but also in
fault mode. In [13], distributed controllers were proposed to
solve attitude coordination control problem with consideration
of actuator failures for spacecraft formation flying. In [14],
integral sliding mode control strategy was employed to deal
with partial loss of effectiveness fault and additive bias fault
in spacecraft attitude stabilization. Based on fast terminal
sliding mode control technique, finite-time convergence of
the closed-loop trajectory and fault-tolerant capability were
achieved in [15] for spacecraft attitude stabilization in spite
of external disturbances, actuator saturation constraints, and
actuator faults or failures. In [16], finite-time fuzzy sampled-
data control for flexible spacecraft in the presence of stochastic
actuator failures was studied, where a fuzzy switching FTC
strategy was proposed to achieve H∞ control performance and
finite-time attitude stabilization. However, in comparison with
the active FTCS approach, the passive one has limited fault-
tolerant capacity as only specific pre-defined fault could be
handled, although it is simple for implementation. In addition,
most of passive FTCS strategies employ the upper bound
of the fault to design the fault-tolerant controller, which is
conservative from the control performance perspective and
prone to reach the actuator saturation limit.

In contrast to the passive FTCS, the active FTCS consists
of a fault detection and diagnosis (FDD) scheme providing
fault information, a fault-tolerant controller compensating fault
effects, and a decision mechanism deciding when and how to
put reconfiguration controller into action. In [17], a sliding-
mode observer was presented to estimate the angular velocity
and actuator fault in the attitude control system, and a velocity-
free attitude controller was further developed to stabilize the
attitude asymptotically. In [18], a precise fault estimation is
achieved via the nonlinear geometric approach with radial
basis function neural networks. Then, the obtained fault infor-
mation was used in an adaptive control allocation to handle
actuator faults and maintain the desired control performance.
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In [19], using an adaptive terminal sliding mode observer, the
designed controller was able to handle actuator fault, systems
uncertainties, and actuator saturation simultaneously despite
the immeasurable states. In [20], local adaptive observers
were designed to simultaneously identify two types of actuator
faults for each individual actuator. Then, an adaptive fault-
tolerant control approach consisting of a terminal sliding mode
controller and a control allocation algorithm was proposed to
achieve finite-time attitude stabilization.

In this paper, we focus on the active FTCS design for
spacecraft attitude control with consideration of actuator faults,
fault estimation errors, input saturation constraints, and ex-
ternal disturbances. To cope with potential actuator faults,
a fault detection observer is firstly presented to detect the
fault promptly, where the value of threshold for the detection
residual is given explicitly. Then, an auxiliary parameter is
introduced to establish the relation between angular velocity
and total actuator faults. Based on the estimated values of
angular velocity and auxiliary parameter from an indirect
fault identification approach, the total fault effects influencing
attitude control performance are obtained. Finally, despite
control input saturation and fault estimation imperfection, a
backstepping controller using a nonlinear virtual control signal
is presented to accommodate actuator faults and maintain
closed-loop stability. Comparing with the existing results, the
main contributions are as follows:

1) We propose to estimate the total effect of the multi-
plicative and additive actuator fault instead of each fault
individually. This makes the structure, computation, and
design procedure relatively simple comparing with the
existing result in [20], thus enhancing the availability
in practical implementation, especially when computing
power and onboard memory space are limited.

2) In view of the physical limitation of the actuator and the
fault estimation imperfection caused by the limited time
allocated to fault estimation in real spacecraft operation
[15], we also consider actuator saturation constraint and
the fault estimation error in fault-tolerant controller de-
sign.

3) Theoretically, a nonlinear virtual control input based
on hyperbolic function is first developed in the fault-
tolerant backstepping controller design. Comparing with
the traditional backstepping controller [5], [6] using a
linear virtual control input, it avoids the sluggish motion
when the system state is near the equilibrium point.

The remainder of this paper is organized as follows. Section
II briefly describes the spacecraft dynamics and introduces the
fault model. Section III presents the proposed fault detection
and estimation approaches. Section IV addresses the design
procedure of the fault-tolerant controller. Subsequently, per-
formance of the proposed FTCS is evaluated in Section V.
Finally, concluding remarks are given in Sec. VI.

II. PRELIMINARIES

The rigid spacecraft rotational equations are described math-
ematically by the kinematic and kinetic equations. In this
paper, the unit-quaternion representation is used to describe

the orientation of a spacecraft as it represents all attitudes of
a spacecraft globally and is well suited for onboard real-time
computation [21].

A. Spacecraft Attitude Dynamics
The equations of motion in terms of unit-quaternion for a

rigid spacecraft are given by [22]

Jω̇b = −S(ωb)Jωb +Du+ d (1)

Q̇ =
1

2

[
S(q) + q0I3

−qT
]
ωb, (2)

where J ∈ R3×3 denotes symmetric positive-definite inertia
matrix, the vector ωb ∈ R3 is the angular velocity in the body-
fixed frame, Q = [q1 q2 q3 q0]T = [qT q0]T ∈ R4 denotes
the unit-quaternion describing the orientation of the body-fixed
frame B with respect to inertial frame N , u ∈ Rn denotes the
control torque produced by n actuators about the body axes,
D ∈ R3×n is the actuator configuration matrix, d ∈ R3 is
the environmental disturbances. Noting that q and q0 are the
vector part and scalar part of the unit-quaternion satisfying
qTq + q2

0 = 1, and the matrix S(x) ∈ R3×3 represents a
skew-symmetric matrix for any vector x ∈ R3.

B. Actuator Fault Models
For spacecraft, reaction wheel and thruster are commonly

used actuators in attitude control. For example, the reaction
wheel is a flywheel attached with a motor, and fault may
occur in electronics, drive motor, bearing, and power supply
due to inadequate lubrication, aging, marginal failures, and
increased friction. The following are four typical kinds of
reaction wheel faults [14], [23]: (1) decreased reaction torque;
(2) increased bias torque; (3) failure to respond to control
signals; (4) continuous generation of reaction torque. These
fault may affect the actuator output in a multiplicative or
additive way. If one of these faults occurs, the reaction wheel
may have a slower response, become less effective, and even
undergo a complete breakdown.

Let uc ∈ Rn be a vector denoting the command control
torque. The relation between the command torque and the
actual torque acting on the spacecraft is modelled as

u = (In −E)uc + ua, (3)

where the matrix E = diag{e1, e2, . . . , en} ∈ Rn×n de-
scribes the effectiveness loss of the actuators and its diagonal
elements satisfies 0 ≤ ei ≤ 1, i ∈ {1, 2, . . . , n}. Noting
that 0 < ei < 1 indicates the ith actuator partially loses
its effectiveness, ei = 0 implies the actuator is healthy,
and ei = 1 implies the actuator totally failed. The variable
ua = [ua1 ua2 . . . , uan]T ∈ Rn represents the additive bias
fault. Substituting the fault model (3) into (1), the attitude
dynamics considering actuator faults is written as follows:

Jω̇b = −S(ωb)Jωb +Duc + f + d, (4)

where f = −DEuc +Dua denotes the total fault effects on
the system.

The following Assumptions are used in the FTCS design.
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Assumption 1: The inertia matrix J satisfies the condition
J
¯
≤ ‖J‖ ≤ J̄ , where J

¯
and J̄ are two positive constants. The

symbol ‖·‖ denotes the Euclidean norm and its induced norm.
Assumption 2: In practice, the environmental disturbances

due to gravitation, solar radiation pressure, magnetic forces
or aerodynamic drag are bounded. Therefore, there exists a
positive constant d̄ such that ‖d‖ ≤ d̄.

Assumption 3: It is assumed that the total fault effects
representing by f satisfy ‖ḟ‖ ≤ φ, where φ is a constant.

Remark 1: As indicated in Assumption 3, we consider
the slow-varying fault or incipient fault in this paper, which
represents one of the typical faults existing in actuators. For
example, faults causing by aging, temperature, lubrication or
operational wear and tear may generate a gradually increased
bias torque in reaction wheel [15]. It is also noted that the
magnitude of additive fault ua cannot be arbitrarily large and
is bounded at least by the physical limitation of actuators.

C. Problem Statement
This paper aims to provide an active FTCS for spacecraft

attitude maneuvers subject to external disturbances and actu-
ator faults. Fig. 1 shows the structure of the overall proposed
active FTCS. Regarding to the normal controller, there have
been many results that can be applied to attitude control
directly, for example controllers in [10], [24]. Therefore, we
do not consider normal controller design in this paper, and
only FDD and fault-tolerant controller are addressed. The
FDD scheme contains fault detection and fault identification,
which are utilized to obtain the actuator fault characterization
including existence of the fault, the time at which fault occurs,
and magnitude of the fault. The fault-tolerant controller is
designed based on the fault information from the FDD scheme
to accommodate actuator faults and maintain the control
performance.

III. FAULT DETECTION AND IDENTIFICATION

To get fault information with sufficient accuracy, both fault
detection and fault identification approaches are developed in
this section.

A. Fault Detection
Based on the attitude dynamics in (1), the fault detection

observer is designed as

J ˙̂ωb,d = −S(ω̂b,d)Jω̂b,d +Duc + Λ(ωb − ω̂b,d), (5)

where ω̂b,d is the estimate of the angular velocity ωb in fault
detection, and Λ ∈ R3×3 is a positive gain matrix. Let ω̃b,d =
ωb − ω̂b,d be the velocity estimation error, then it is obtained
that

J ˙̃ωb,d =− S(ωb)Jωb + S(ω̂b,d)Jω̂b,d −Λω̃b,d + f + d.
(6)

Assumption 4: The nonlinear term −S(ωb)Jωb +
S(ω̂b,d)Jω̂b,d in (6) is supposed to be known and satisfy the
Lipschitz condition with respect to ω̃b,d, i.e.,

‖ − S(ωb)Jωb + S(ω̂b,d)Jω̂b,d‖ ≤ `g‖ω̃b,d‖, (7)

where `g is the Lipschitz constant.
Remark 2: For practical functional spacecraft, the actual

angular velocity is continuous and within a certain range to
conduct some scientific missions. The attitude controller is
designed to ensure attitude stabilization and angular velocity
constraint, for example, attitude controllers in [25], [26]. Thus,
the estimation of the bounded angular velocity should also be
bounded. Therefore, the Lipschitz condition in Assumption 4
is reasonable, and the Lipschitz constant can be obtained in
advance from the bounds of angular velocity and spacecraft in-
ertia. Similar assumption of the Lipschitz condition in attitude
control can also be found in [27].

Next, the estimation error ω̃b,d is used to generate residual
for fault detection. The decision method for actuator fault
detection is stated in the following Theorem.

Theorem 1: The decision on the occurrence of actuator
fault is made when the estimation error ω̃b in (6) exceeds
the threshold defined as ξdt = d̄

λmin[Λ]−`g . That is, the actuator
fault is detected if the condition ‖ω̃b,d‖ > ξdt is satisfied.

Proof. Consider a Lyapunov candidate in the form of

V =
1

2
ω̃Tb,dJω̃b,d. (8)

The time derivative of (8) along (6) is given as

V̇ =ω̃Tb,d (−S(ωb)Jωb + S(ω̂b,d)Jω̂b,d −Λω̃b,d + f + d)

≤− (λmin[Λ]− `g) ‖ω̃b,d‖2 + d̄‖ω̃b,d‖+ ω̃Tb,df . (9)

The notation λmin[·] denotes the minimum eigenvalue of a
matrix. If there is no actuator fault in the system, the fault
does not affect the system, i.e., the total fault effect is f = 0.
In this case, the foregoing inequality becomes

V̇ ≤ − (λmin(Λ)− `g) ‖ω̃b,d‖2 + d̄‖ω̃b,d‖ (10)

It is clear that V̇ < 0 if ‖ω̃b,d‖ > d̄
λmin[Λ]−`g . Supposing the

initial condition of the fault detection observer is chosen to sat-
isfy ω̂b,d(0) = ωb(0), it is obtained that ‖ω̃b,d‖ ≤ d̄

λmin[Λ]−`g
for all the time, which indicates that the error ω̃b,d is upper
bounded by a constant in the fault-free situation.

If a fault occurs, i.e., ‖f‖ 6= 0, it is observed that

V̇ ≤ − (λmin[Λ]− `g) ‖ω̃b,d‖2 + (d̄+ ‖f‖)‖ω̃b,d‖. (11)

Following the similar analysis in fault-free case, it yields

‖ω̃b,d‖ ≤
d̄+ ‖f‖

λmin[Λ]− `g
, (12)

which implies that ‖ω̃b,d‖ may exceed its maximal value in
fault-free case. Therefore, a fault detection threshold can be
set as ξdt = d̄

λmin[Λ]−`g . The fault is detected if ‖ω̃b,d‖ > ξdt
is observed. This completes the proof. 444

Remark 3: Theorem 1 provides a sufficient condition for
fault detection. If the condition in Theorem 1 is satisfied, there
must exist a fault in the system. However, the converse of
this statement may not necessarily be true. Specifically, the
inequality ‖ω̃b,d‖ > ξdt may not hold even if actuator faults
do occur during the attitude maneuver.
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Fig. 1: Structure of the overall proposed active FTCS for attitude control system.

B. Fault Estimation

After the fault is detected, we need to identify fault sizes and
time characteristics subsequently. In this paper, we estimate
the total fault effects in place of individual fault itself, so that
the estimation algorithm is simple and requires less onboard
computing power and memory space. To identify the total
actuator faults f in (4), an indirect fault identification scheme
is proposed. First, introducing an auxiliary variable [28]:

ψ = f −GJωb, (13)

where G ∈ R3×3 > 0 is a gain matrix. Taking time derivative
of ψ, we have

ψ̇ = ḟ −G (−S(ωb)Jωb +Duc +GJωb +ψ + d) . (14)

Let ψ̂ and f̂ be the estimates of ψ and f respectively, the
indirect fault estimator is given as follows:

J ˙̂ωb,i = −S(ω̂b,i)Jω̂b,i +Duc + f̂ +L(ωb − ω̂b,i) (15)
˙̂
ψ = −Gψ̂ −G (−S(ω̂b,i)Jω̂b,i +Duc +GJω̂b,i) (16)

f̂ = ψ̂ +GJω̂b,i, (17)

where ω̂b,i is the angular velocity estimation in fault iden-
tification, and L ∈ R3×3 is a positive-definite gain matrix.
The term containing ωb − ω̂b,i in (15) is a feedback input to
ensure that the estimates converge to their true values. Define
ω̃b,i = ωb − ω̂b,i, ψ̃ = ψ − ψ̂, and f̃ = f − f̂ , respectively.
The error system is derived as

J ˙̃ωb,i = −S(ωb)Jωb + S(ω̂b,i)Jω̂b,i + f̃ + d−Lω̃b,i
(18)

˙̃
ψ = ḟ −Gψ̃ +G(S(ωb)Jωb − S(ω̂b,i)Jω̂b,i)−G2Jω̃b,i

(19)

f̃ = ψ̃ +GJω̃b,i. (20)

Based on the above error systems, the result for fault
identification is delineated in the following.

Theorem 2: Considering the attitude dynamics in (4) with
Assumptions 1-4. If there exist a matrix L and a constant
µ > 0 such that[

L−GJ −
(
`g + ε

2 + ε
2µ`

2
g

)
I3 ∗

1
2

(
µJT (G2)T − I3

)
µG− µ

εGG
T

]
> 0

for given matrix G > 0 and constant ε > 0, then the indirect
fault identification approach proposed in (15)-(17) ensures that
the total fault estimation error f̃ exponentially converges to a
invariant set containing the origin.

Proof. Premultiplying (18) by ω̃Tb,i leads to

ω̃Tb,iJ ˙̃ωb,i ≤− ω̃Tb,i
(
L−GJ −

(
`g +

ε

2

)
I3

)
ω̃b,i

+ ω̃Tb,iψ̃ +
1

2ε
d̄2, (21)

where the inequality ω̃Tb,id ≤ ε
2 ω̃

T
b,iω̃b,i + 1

2ε d̄
2 is utilized.

In addition, according to (19) and Assumption 4, we have

ψ̃T
˙̃
ψ ≤− ψ̃T

(
G− 1

ε
GGT

)
ψ̃ − ψ̃TG2Jω̃b,i

+
ε

2
`2gω̃

T
b,iω̃b,i +

ε

2
φ2 +

ε

2
d̄2, (22)

where the following inequalities

ψ̃T ḟ ≤ 1

2ε
ψ̃T ψ̃ +

ε

2
φ2 (23)

−ψ̃TGd ≤ 1

2ε
ψ̃TGGT ψ̃ +

ε

2
d̄2 (24)

ψ̃TG(S(ωb)Jωb−S(ω̂b,i)Jω̂b,i) ≤
1

2ε
ψ̃TGGT ψ̃ +

ε

2
`2gω̃

T
b,iω̃b,i (25)

are applied. Now, we construct a Lyapunov candidate as

V =
1

2
ω̃Tb,iJω̃b,i +

µ

2
ψ̃T ψ̃, (26)

where µ > 0 is a design constant. The time derivative of V
along with (21) and (22) is given as

V̇ ≤− ω̃Tb,i
(
L−GJ −

(
`g +

ε

2
+
ε

2
µ`2g

)
I3

)
ω̃b,i

− µψ̃T
(
G− 1

ε
GGT

)
ψ̃ − ω̃Tb,i

(
µJT (G2)T − I3

)
ψ̃

+
ε

2
µφ2 +

ε

2
µd̄2 +

1

2ε
d̄2. (27)

The foregoing inequality further results in

V̇ ≤ −[ω̃Tb,i ψ̃
T ]P [ω̃Tb,i ψ̃

T ]T + σ, (28)

where

P =

[
L−GJ −

(
`g + ε

2 + ε
2µ`

2
g

)
I3 ∗

1
2

(
µJT (G2)T − I3

)
µG− µ

εGG
T

]
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and σ = ε
2µφ

2 + ε
2µd̄

2 + 1
2ε d̄

2. If the matrix P is positive
definite, i.e., P > 0, then we have

V̇ ≤ −κV + σ, (29)

where κ = 2λmin[Q]
max{J̄,µ} . According to the Lyapunov stability

theory [29], it can be concluded from (29) that ω̃ and ψ̃ are
uniformly bounded. Define an invariant set S(ω̃b,ψ̃) as

S(ω̃b,i,ψ̃) =

{
(ω̃b,i, ψ̃)

∣∣∣∣ J¯2‖ω̃b,i‖2 +
µ

2
‖ψ̃‖2 ≤

√
σ

κ

}
, (30)

and its corresponding supplementary set is notated as
S̄(ω̃b,i,ψ̃). Considering (29) again, it is obtained that V̇ ≤ 0 if
(ω̃b,i, ψ̃) ∈ S̄(ω̃b,i,ψ̃). Therefore, it is clear that the estimation
errors (ω̃b,i, ψ̃) converge to the invariant set S(ω̃b,i,ψ̃) expo-
nentially at a rate greater than greater than e−κt. Moreover, in
view of (20) which indicates the fault estimation error f̃ is a
combination of ω̃b,i and ψ̃, the fault estimation error f̃ also
converges to an invariant set exponentially. This completes the
proof. 444

Remark 4: As seen from (18)-(20), larger estimator gains L
and G lead to faster convergence of estimation errors ω̃b,i and
ψ̃. However,G cannot be arbitrarily large due to the constraint
in Theorem 2.

Remark 5: In practical aerospace engineering, the time
allocated to fault identification is limited due to the mission
requirement. However, the fault estimate may not be able to
obtain the true value within this assigned time interval. A long
process of fault identification may lead to system instability
or severe performance degradation as no action is adopted to
compensate fault effects during the fault identification [12].
To cope with this issue, we introduce a decision mechanism,
where an identification threshold ξit is introduced to determine
the fault estimation accuracy. If ‖ω̃b,i(t)‖ + ‖f̂(t) − f̂(t −
T )‖ < ξit with sampling interval T , we conclude that the
fault identification is completed and switch to the fault-tolerant
controller from the normal controller. Otherwise, it is consid-
ered that the fault has not been estimated successfully. Noting
that the smaller the threshold is set, the longer identification
time is needed, but with a better fault estimation accuracy. The
fault estimation accuracy further affects the control accuracy
in fault-tolerant control design.

IV. FAULT-TOLERANT CONTROL

Once we have estimated faults successfully, a fault-tolerant
controller using the estimated fault information should be
proposed to compensate fault effects and recover the perfor-
mance. Although the developed fault identification approach
in the previous Section provides an accurate fault estimation,
there may still exist estimation errors in the system due to
the estimation threshold, measurement noises, and system
perturbations/uncertainties.

To improve the robustness of the fault-tolerant controller,
sliding mode control technique (see for example [30]–[32]) is
one of the potential and powerful design approaches. Besides,
if the commanded control torque is larger than the maximal
torque the actuator is able to produce, some unpredictable

control actions or damages to the actuator may come up
[33], especially when there exist actuator faults in the attitude
control system. Therefore, actuator saturation constraints and
fault estimation errors are taken into account in the fault-
tolerant controller design.

Assumption 5: It is assumed that the available control torque
generated by the actuator is limited by

|uci| ≤ umax, (i = 1, 2, . . . , n) (31)

where umax is a common saturation value for all actuators.
Let ∆f be the estimation errors, which is defined as ∆f =

f− f̂ . It is reasonable to assume that the estimation errors are
bounded [20] after successful fault identification, i.e., ‖∆f‖ <
δ with a constant δ > 0. Considering the fault estimation errors
and recalling actuator saturation constraint (|uci| ≤ umax) in
Assumption 5, the attitude dynamics in (4) is rewritten as

Jω̇b = −ω×b Jωb +Dusat
c + f̂ + ∆f + d, (32)

where usat
c denotes the constrained control input commanded

by the controller. Define the pseudoinverse of matrix D as
D+ = DT (DDT )−1, which satisfies DD+ = I3. Since D
is the assemble matrix decided by the spacecraft structure,
the matrix D is constant, and there exists a finite constant
ε0 such that ‖D+‖ ≤ ε0. As illustrated in equation (32), the
estimation error ∆f affects the control performance in a way
similar to external disturbances. We have to accommodate it
in fault-tolerant controller to improve robustness and control
performance.

To derive the fault-tolerant controller, the following Lemma
1 is also used.

Lemma 1: For x ∈ [−1, 1], if a positive constant β is
selected to satisfy β ≥ 1.5574, then we have

−αx arctan(βx) ≤ −αx2, (33)

where α is a positive constant.
Proof. See the Appendix A. 444
For the fault-tolerant controller design, the method of in-

tegrator backstepping is utilized. Considering the kinematics
subsystem in (2), the angular velocity ωb is regarded as a
virtual control input, which is designed as

ωc = −α arctan(βq). (34)

As a consequence, the virtual velocity error between ωb and
ωc is defined as

s = ωb − ωc = ωb + α arctan(βq). (35)

In contrast to works of [5], [6] with a linear virtual control
input, the nonlinear one given in (34) overcomes several
defects such as excessive torque demand at the beginning of
maneuver and sluggish motion when the system state is near
the equilibrium point [34].

Choosing a candidate Lyapunov function as

V1 = k0q
Tq + k0(1− q0)2. (36)

Applying Lemma 1, the derivative of V1 satisfies

V̇1 ≤ −k0α‖q‖2 + k0αq
Ts. (37)
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It is clear that V̇1 ≤ 0 if s = 0.
Next, the attitude dynamics with respect to virtual velocity

error s is derived as

Jṡ =Jω̇b + αβJ
(
I3 + β2Ξq

)−1
q̇

=− k0q + F (·) +Dusat
c + f̂ , (38)

where the nonlinear term F (·) is defined as

F (·) =k0q − ω×b Jωb + ∆f + d

+
1

2
αβJ

(
I3 + β2Ξq

)−1
(S(q) + q0I3)ωb (39)

with Ξq = diag(q2
1 , q

2
2 , q

2
3). According to Assumptions 1-2,

we have

‖ − ω×b Jωb‖ ≤ J̄‖ωb‖
2, (40)

‖k0q + ∆f + d‖ ≤ k0 + δ + d̄, (41)∥∥∥1

2
αβJ(I3 + β2Ξq)

−1(S(q) + q0I3)ωb

∥∥∥ ≤ 1

2
αβJ̄‖ωb‖.

(42)

In view of foregoing three inequalities, it is clear that

‖F (·)‖ ≤ J̄‖ωb‖2 +
1

2
αβJ̄‖ωb‖+ k0 + δ + d̄ ≤ hΩ, (43)

where h = max
{
J̄ , 1

2αβJ̄, k0 + δ + d̄
}

, and Ω = ‖ωb‖2 +
‖ωb‖2 + 1. Since J̄ and δ may be difficult to obtain, the
variable h is assumed to be unknown. As a result, h cannot
be used directly in fault-tolerant controller design.

Before we give the details of the fault-tolerant controller,
the following assumption is introduced first.

Assumption 6: The following inequality holds
umax

ε0
≥ hΩ + ‖f̂‖+ %0, (44)

where %0 is a small constant.
Remark 6: Assumption 6 implies that the functional actu-

ators (even in the event of severe faults) are able to produce
sufficient torque for the spacecraft to perform a required
maneuver. Similar Assumptions can also be found in [13],
[22], [30] when the actuation saturation is considered during
the controller design.

Now, it is ready to give the fault-tolerant controller as

usat
c = −umax

ε0
D+sat[Γ(·)s] (45)

with

Γ(·) = k +
sT f̂

‖s‖2 + ε2
1

+
ĥΩ

‖s‖+ ε2
, (46)

where k and ε1 are two positive constants, ε2 = ν
Ω with a

small positive constant ν, the function sat[Γ(·)s] is defined as

sat[Γ(·)s] =

{ s
‖s‖ , if ‖s‖ ≥ umax

ε0Γ(·)
ε0Γ(·)s
umax

, if ‖s‖ ≤ umax
ε0Γ(·)

(47)

The adaptive law of ĥ is given by

˙̂
h = −c1ĥ+

c2Ω‖s‖2

‖s‖+ ε2
, (48)

where c1 and c2 are two positive constants. Although the
function sat[Γ(·)s] defined in (47) is piecewise, it is continuous
everywhere including at the point ‖s‖ = umax

ε0Γ(·) . Therefore, the
proposed fault-tolerant controller in (45) is also continuous.

Theorem 3: Consider the attitude kinematics and dynamics
described by (1) and (2) subject to actuator faults modelled
in (3) and input saturation. If the fault-tolerant controller
developed in (45) to (48) is applied after successful fault iden-
tification, then the closed-loop system is uniformly ultimately
bounded stable, and the attitude and virtual velocity errors
converge to a small invariant set containing the origin.

Proof. To show the stability of the closed-loop under the
saturated FTC scheme in (45) with adaptive law in (48), two
cases in light of (47) need to be addressed.

Case I: ‖s‖ ≥ umax
ε0Γ(·) , the controller in (45) becomes

usat
c = −umax

ε0
D+ s

‖s‖
. (49)

Since ‖D+‖ ≤ ε0, it is clear that ‖usat
c ‖ ≤ umax. As

a consequence, the actuator saturation constraint in (31) is
satisfied. Considering the Lyapunov candidate as

V2 = V1 +
1

2
sTJs. (50)

Then, it follows that

V̇2 ≤k0ω
T
b qe + sT

(
− k0q + F (·)

−D
(
umax

ε0
D+ s

‖s‖

)
+ f̂

)
≤− k0α‖q‖2 −

umax

ε0
‖s‖+ hΩ‖s‖+ ‖f̂‖‖s‖. (51)

According to the inequality in Assumption 6, we have

V̇2 ≤− k0α‖q‖2 − %0‖s‖ < 0. (52)

Case II: ‖s‖ ≤ umax
ε0Γ(·) , the controller in (45) becomes

usat
c = −Γ(·)D+s. (53)

Another Lyapunov candidate is chosen as

V2 = V1 +
1

2
sTJs+

1

2c2
h̃2. (54)

The time derivative of (54) is

V̇2 ≤− k0α‖q‖2 + sT

(
F (·)−

(
ks+

sT f̂s

‖s‖2 + ε2
1

+
ĥΩs

‖s‖+ ε2

)
+ f̂

)
+

1

c2
h̃

˙̂
h

≤− k0α‖q‖2 − k‖s‖2 −
c1
2c2

h̃2 + η, (55)

where η = ε1
2 ‖f̂‖+ νh+ c1

2c2
h2 <∞ as ‖s‖2 + ε2

1 ≥ 2ε1‖s‖
and ε2 = ν

Ω . It follows from the foregoing inequality that

V̇2 ≤ −γV2 + ζ, (56)

where γ = min{k0α,
k
J̄
, c1} and ζ = ε1

2 ‖f̂‖+ νh+ c1
2c2
h2 +

k0α(1 − q2
0) < ∞. Therefore, the closed-loop system is

ultimately bounded stable and all the internal signals are
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bounded. Furthermore, according (55), it is clear that V̇2 < 0 if
‖q‖ >

√
η
k0α

or ‖s‖ >
√

η
k . As a consequence, we conclude

that the attitude q and the virtual velocity error s are ultimately
stabilized to invariant sets

Sq =

{
q

∣∣∣∣‖q‖ ≤√ η

k0α

}
and Ss =

{
s

∣∣∣∣‖s‖ ≤√η

k

}
,

respectively. This completes the proof. 444
Remark 7: According to the adaptive law in (48), the

positive constant c1 mainly determines the increasing rate
of the parameter ĥ(t) (the rising phase of ĥ(t) if the initial
value ĥ(0) is small), while c2 adjusts the decreasing rate (the
steady phase of ĥ(t)). To have a smooth variation of the ĥ(t),
the design parameters c1 and c2 should be selected as small
constants.

Remark 8: The closed-loop stability and control perfor-
mance can be ensured by adjusting the design parameters k0,
α, k, ε1, and ν. It is observed from stability analysis that
larger k0, α, and k may result in faster convergence rate
and smaller steady-state errors. Moreover, according to the
ultimate error sets, the steady-state errors could be further
reduced by decreasing design parameters ε1 and ν in η.
However, ε1 and ν cannot be too small as they are also used
for alleviating control chattering.

V. SIMULATION RESULTS

To demonstrate the effectiveness and performance
of the proposed FTCS design, numerical simulation
is performed to a rigid spacecraft in this section.
The inertia matrix of a rigid spacecraft is selected
as J = [10, 1.2, 0.5; 1.2, 19, 1.5; 0.5, 1.5, 25] [35].
External disturbance is assumed to be d(t) =
[−0.005 sin(t), 0.005 sin(t),−0.005 sin(t)]T N·m [36].
In the simulation, four reaction wheels in a pyramid
configuration are used to provide control torques for
attitude control, and the actuator distribution matrix is
D = [−1,−1, 1, 1; 1,−1,−1, 1; 1, 1, 1, 1]. Due to the
physical limitation of reaction wheel, the maximal control
torque is set to be 0.2 N·m. The spacecraft is assumed to have
the initial angular velocity ωb(0) = [0.005, 0.006, 0.004]T

rad/s and initial attitude Q(0) = [−0.5, 0.3,−0.4, 0.7071]T .
The measurement bias of gyro is assumed to be 1◦/h on
each axis. In addition, in light of the limited manufacturing
tolerances, we also consider the installation misalignments,
which are 0.005◦ and 0.1◦ for attitude sensor and angular
velocity sensor is , respectively. The fault scenario in the
simulation is that the first and the second reaction wheel
experience loss of effectiveness fault at t = 5 s with e1 = 0.6
and e2 = 0.2, while the additive bias fault happens to the
second and the third reaction wheels at t = 100 s with
ua2 = −0.03 N·m, ua3 = −0.04 N·m.

To detect the actuator fault, the gain matrix of fault detection
observer in (5) is selected as Λ = 5I3. In addition, the
fault detection threshold is chosen as ξ = 0.002. The design
parameters of the fault identification scheme in (15) to (17)
are selected as G = 0.5I3, ε = 5, and `g = 3. Sequentially,

solving the inequality in Theorem 2 via LMI toolbox in Matlab
yields

L =

 16.7621 0.2 0
1 21.2621 0.5

0.5 1 24.2621

 and µ = 0.2333.

To accommodate actuator faults, the control gains of adaptive
fault-tolerant controller in (45) to (48) are chosen as α = 0.2,
β = 1.8, k = 100, ε1 = 0.1, ν = 0.01, c1 = 0.01, and
c2 = 0.1. The initial value for the adaptive parameter is chosen
as ĥ(0) = 0.1. In the simulation, we set the fault detection
threshold as ξdt = 0.002, which is obtained through trail and
error to ensure the threshold is proper for fault detection.

Recalling the overall FTCS structure in Fig. 1, the normal
controller for healthy-actuator case in simulation is design as

uc = −D+(kpJq + kdJωb), (57)

where control gains are selected as kp = 0.1422 and kd =
0.5333 such that the closed-loop attitude control system in
healthy condition is critical damping. It is noted that the
normal controller given in (57) is a proportional-derivative
(PD) controller with pseudoinverse-based control allocation.
To satisfy the actuator saturation constraint, we also limit the
magnitude of the normal controller to less than 0.2 N·m.

As illustrated in Fig. 2a, the fault detection residual is less
than the threshold ξ before fault occurs but increases conspic-
uously beyond the threshold once actuator faults occur at 5 s
and 100 s. It is observed that the partial loss of effectiveness
fault and additive bias fault are detected at 6.8 s and 100.6
s, respectively. In this simulation, we set the identification
threshold as ξit = 0.002. According to Remark 5, we switch
to the fault-tolerant controller from the normal controller if
the condition ‖ω̃b,i(t)‖+‖f̂(t)− f̂(t−T )‖ < ξit is satisfied.
According to Figs. 2b and 2c, both the fault estimation error
and angular velocity estimation error converge to a vicinity
of zero ultimately. Noting that there is a small increase in
the responses of fault and angular velocity estimation error
after 100 s, which is due to the occurrence of the additive
faults. To compensate the additive faults, as shown in Fig.
2f, the proposed fault-tolerant controller keeps commanding
a non-zero control torque after 100 s. The responses of
spacecraft attitude and angular velocity are shown in Figs.
2d and 2e, from which it is observed that fairly good control
performance is achieved with the pointing accuracy 0.2 deg
and stabilization accuracy 6.6× 10−5 rad/s. Referring to Fig.
2f, the control torque commanded by the proposed controller
is also constrained to less than 0.2 N·m. It is obvious that the
fault-tolerant controller compensates the actuator fault effects
especially after the occurrence of additive bias faults.

For comparison purposes, the PD controller designed in (57)
and the traditional backstepping controller with a linear virtual
input [6] are also performed. The traditional backstepping
controller is designed to have the same structure as the
proposed fault-tolerant controller except that the nonlinear
virtual control input ωc = −α arctan(βq) is replaced by the
linear virtual control input ωc = −αq. As shown in Fig. 3,
the steady-state errors for attitude and angular velocity under
PD controller are 2.8 deg and 5.1 × 10−4 rad/s, which is
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(c) Angular velocity estimation error ω̃b,i in fault
estimation
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Fig. 2: Time responses of the proposed active FTCS in the presence of fault.

significantly worse than the proposed fault-tolerant controller
with smaller steady-state errors. The responses of attitude and
angular velocity under the traditional backstepping controller
with a linear virtual input are shown in Fig. 4, in which an
obvious sluggish motion is observed when the state errors are
small. From the view point of the settling time, the proposed
approach can converge the attitude and angular velocity to
the error bounds |qi(t)| ≤ 0.2 deg and |ωi| ≤ 2 × 10−4

rad/s in 36.9 s and 43.6 s, respectively, while the traditional
backstepping controller requires 55.0 s and 61.8 s to reach the
same attitude and angular velocity error bounds. Therefore,
the settling time of the attitude and angular velocity with the
proposed fault-tolerant controller is reduced by 49.1% and
41.7%, respectively. Therefore, it is verifed that the proposed
FTCS significantly improves the system performance.

VI. CONCLUSION

In this paper, an active FTCS design is developed for
spacecraft attitude control systems suffering from actuator
faults. A fault detection scheme is proposed to determine
the time at which the system is subject to actuator faults
and false alarms are avoided from external disturbances. To
have a simple structure of fault identification, the total fault
effects are estimated in place of each individual fault. The
developed indirect fault identification approach is able to ex-
ponentially estimate the total fault effects to the desired degree
of accuracy. Subsequently, based on the estimated information
about actuator faults, fault-tolerant control law is synthesized
to accommodate actuator faults and saturation constraints.

The effectiveness of the proposed FTCS approach has been
illustrated by simulation results. The future works may focus
on reducing/avoiding the adverse transient in switching the
control strategy from normal controller to reconfigurable one
after the fault is identified successfully. One of the potential
approaches for solving the switching transient is the technique
presented in [37]. Moreover, to improve the sensitivity of
the fault detection, time-varying fault detection threshold [38]
should also be addressed.

APPENDIX A: PROOF OF LEMMA 1
To prove Lemma 1, we first consider the case when x ∈

[0, 1]. The inequality −αx arctan(βx) ≤ −αx2 is equivalent
to arctan(βx) ≥ x for x ∈ [0, 1]. Defining a function
f(x) = arctan(βx) − x, our aim is to show f(x) ≥ 0.
Taking derivatives of f(x) with respective to x, we have
df(x)
dx = −β2x2+β−1

1+β2x2 . Then, we have lim
x→0+

df(x)
dx = β − 1 > 0

and lim
x→1−

df(x)
dx = −β2−1+β

1+β2 ≤ −β
1+β2 < 0 if β ≥ 1.5574.

Next, for x ∈ (0, 1), the second derivative is further obtained
as d2f(x)

dx2 = −2β3x
(1+β2x2)2 < 0, which implies f(x) is strictly

concave. Since f(x) is strictly concave for x ∈ (0, 1),
lim
x→0+

df(x)
dx > 0, and lim

x→1−

df(x)
dx < 0, the minimum of f(x)

is obtained at f(0) or f(1). In view of f(0) = 0, it is clear
f(x) ≥ 0 if f(1) ≥ 0. Recalling β ≥ 1.5574, it is easy
to verify f(1) = arctan(β) − 1 ≥ 0 Therefore, the result
−αx arctan(βx) ≤ −αx2 is established for x ∈ [0, 1]. As
both αx arctan(βx) and αx2 are even functions, the result also
holds when x ∈ [−1, 0]. This complete the proof. 444
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(a) Spacecraft attitude in terms of Euler angle
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Fig. 3: Time responses of attitude control systems using only PD controller in the presence of fault.
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Fig. 4: Time responses of attitude control systems using the traditional backstepping controller with a linear virtual control
input [6] in the presence of fault.
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