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Robust control allocation for spacecraft attitude
tracking under actuator faults
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Abstract—This paper addresses attitude tracking problems for
an overactuated spacecraft in the presence of actuator faults,
imprecise fault estimation, and external disturbances. First,
model reference adaptive control technique is used to design
a high-level controller to produce the three-axis virtual control
torque. Then, taking fault estimation uncertainties into account,
a robust control allocation (RobCA) strategy is proposed to
redistribute virtual control signals to the remaining actuators
when an actuator fault occurs. The RobCA is formulated as a
min-max optimization problem, which deals with actuator faults
directly without reconfiguring the controller and ensures some
robustness of system performances. Finally, Simulation results
are provided to show the effectiveness of the overall control
strategy.

Index Terms—Fault-tolerant control, actuators, control alloca-
tion, model reference adaptive control, attitude tracking.

I. INTRODUCTION

FOR spacecraft attitude control systems, actuators play an
important role in generating control efforts commanded

from controller to achieve specific mission objectives. How-
ever, when a fault occurs in the actuator, the influence of
controller on the spacecraft might be interrupted or modified.
For example, the TOPEX satellite could not perform attitude
maneuvers because of the failure of pitch reaction wheel, and
its mission was finally aborted in October 2005 [1]. Therefore,
to enhance the spacecraft reliability and safety, actuator fault
tolerance capability needs to be addressed in attitude control
design.

Depending on how redundancies are utilized, fault-tolerant
control (FTC) solutions can be classified into two categories:
passive and active strategies [2]. In passive FTC systems, all
potential actuator faults are considered together with normal
system operating conditions at the design stage, and a single
fixed fault-tolerant controller is synthesized to achieve the
given objectives. Several passive FTC methods have been
proposed for spacecraft attitude control problem, such as
indirect robust adaptive control [3], time-delay control with
dynamic inversion [4], and adaptive sliding mode control [5],
[6]. On the other hand, the active FTC approach reacts to
actuator faults by reconfiguring the controller based on a fault
detection and diagnosis (FDD) scheme which provides real-
time information about faults, so that the desired performance
is maintained in spite of actuator faults. In [7], actuator failure
detection, identification and adaptive reconfigurable controller
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for spacecraft were proposed. In [8], an iterative learning
observer was designed to estimate time-varying actuator faults.
Based on the FDD scheme developed in [8], an FTC law
was reconfigured in [9] to accomplish attitude stabilization
under partial loss of actuator effectiveness faults. In [10], the
problem of nonlinear fault detection, isolation, and recovery
for the spacecraft orbital and attitude control system was
investigated. In [11], based on reconstructed fault information
from a terminal sliding mode observer, a fault compensation
control law was developed for spacecraft to follow the desired
attitude trajectories after a finite settling time.

Modern spacecraft often uses redundant actuators to en-
hance the reliability, maneuverability and survivability. This
makes the spacecraft attitude control system an over-actuated
system, which has more control effects than three conven-
tional control effectors [12]. Due to this redundancy, control
allocation is utilized to distribute the desired total control
demand over the individual actuators, especially in case of
actuator faults [13], [14]. In [15]–[17], sliding mode control
and non-robust control allocation were combined for FTC to
handle actuator faults in flight control systems. In [18], a
robust least-squares control allocation was proposed for flight
control system when the control effectiveness matrix is subject
to uncertainties/faults. In particular, for spacecraft attitude
control systems, a velocity-free nonlinear proportional-integral
controller was designed in [19] as a high-level controller and a
robust control allocation was used to distribute the three-axis
moments over the available actuators.

In this paper, a model reference adaptive (MRA) high-level
controller incorporating robust control allocation (RobCA)
scheme is proposed for spacecraft attitude tracking under
actuator faults, imprecise FDD, and external disturbances. The
main contributions of this paper are summarized as follows.

1) The external disturbances can be rejected by the MRA
high-level controller without considering actuator faults,
and the closed-loop performance is defined by a refer-
ence model, which creates a desired trajectory for the
attitude tracking system to follow.

2) In contrast to the existing control allocation based FTC
schemes such as [15], [16], imprecise fault estimation in
both actuator effectiveness and additive fault is consid-
ered. Moreover, the proposed methods ensure robustness
of system performances with respect to imprecise fault
estimation in control allocation design instead of in high-
level controller design. Therefore, design complexity of
the high-level controller can be reduced.

3) Comparing with aforementioned robust control alloca-
tion methods such as [18], [19], the optimal index of
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minimizing the energy consumption is introduced to
guarantee that the solution is unique in both unsaturated
and saturated cases of RobCA. Furthermore, to reduce
computation burden in the unsaturated case of RobCA,
the original vector optimization problem is converted to
a one-dimensional search problem.

The remainder of this paper is organized as follows. In
Section II, the mathematic models for spacecraft attitude
tracking systems and actuator faults are presented. In Section
III, the MRA high-level controller is designed. In Section IV,
the solutions for unsaturated RobCA problem and saturated
RobCA problem are presented. Section V illustrates the ap-
plication of the overall control strategy to a rigid spacecraft,
followed by conclusions in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. Spacecraft Attitude Dynamics

The kinematics and dynamics for attitude motion of a rigid
spacecraft can be expressed by the following equations [20]:

Jω̇ = −ω×Jω +Du+ d

q̇ = 1
2 (q

× + q0I3)ω

q̇0 = −1
2q

Tω,

(1)

where J ∈ R3×3 denotes the positive definite inertia matrix
of the spacecraft, ω ∈ R3 is the inertial angular velocity
vector of the spacecraft with respect to an inertial frame I
and expressed in the body frame B, Q = [q1 q2 q3 q0]

T =
[qT q0]

T ∈ R3 × R denotes the unit quaternion describing the
attitude orientation of the body frame B with respect to inertial
frame I and satisfies the constraint qTq+ q20 = 1, I3 ∈ R3×3

denotes a 3-by-3 identity matrix, u ∈ Rn (n > 3) denotes
the control torque produced by n actuators, and D ∈ R3×n

is the actuator distribution matrix, the notation x× ∈ R3×3

for a vector x = [x1 x2 x3]
T is used to represent the skew-

symmetric cross-product matrix.
The external disturbances d(t) = [d1(t) d2(t) d3(t)]

T ∈ R3

may come in many forms, and they are considered in this
paper as a combination of a constant and a series of sinusoidal
functions [21], [22], i.e., each component di(t), i ∈ {1, 2, 3},
is given by

di(t) = hi0 +

ni∑
j=1

hij sin(ωijt+Υij) (2)

where hi0 and hij are arbitrarily unknown amplitudes, Υij

are unknown phase angles, and ωij are known frequencies.
Therefore, the disturbance model (2) can be written in a
compact form:

di(t) = HT
i Ψi(t) (3)

where Hi = [hi0 hi1 cosΥi1 · · · hini cosΥini hi1 sinΥi1

· · · hini sinΥini ]
T ∈ R2ni+1 is an unknown vector

with constant elements, and Ψi(t) = [1 sin(ωi1t) · · ·
sin(ωinit) cos(ωi1t) · · · cos(ωinit)]

T ∈ R2ni+1 is known.
In the fault-free case, the actual output torque u of n

actuators is equal to the desired value uc commanded by

controller, i.e., u = uc. When actuator faults are considered,
faults of n actuators are modelled as follows:

u = Euc + ū, (4)

where uc = [uc1 uc2 · · · ucn]
T ∈ Rn denotes the command

control torque, E = diag{e1, e2, · · · , en} ∈ Rn×n denotes
the effectiveness factor matrix of spacecraft actuators with
0 ≤ ei ≤ 1, i ∈ {1, 2, · · · , n}. Note that the case ei = 1
indicates that the ith actuator works normally, and 0 < ei < 1
implies that the ith actuator partially loses its effectiveness,
but still does not totally fail. The value ei = 0 means
that the ith actuator undergoes a complete failure. To ensure
three-axis attitude control, it is assumed that up to n − 3
actuators can suffer from total failure simultaneously. The
vector ū = [ū1 ū2 · · · ūn]

T ∈ Rn represents the bounded
additive fault. Hence, the nonlinear attitude kinetics model
incorporating actuator faults can be rewritten in the following
form:

Jω̇ = −ω×Jω +D (Euc + ū) + d. (5)

B. Attitude Error Dynamics

To address the attitude tracking issue, the desired attitude
and the desired angular velocity of the spacecraft in the desired
reference frame Bd with respect to inertial frame I are denoted
by unit quaternion Qd = [qT

d qd0]
T and ωd, respectively.

The attitude tracking error Qe = [qT
e qe0]

T is defined as
the relative orientation between attitude Q and target attitude
Qd, which is computed as Qe = Q−1

d ⊗ Q, where Q−1
d is

the inverse or conjugate of the desired quaternion determined
by Q−1

d = [−qT
d qd0]

T , and ⊗ denotes the quaternion
multiplication operator of two unit quaternion Qi = [qT

i qi0]
T

and Qj = [qT
j qj0]

T , which is defined as follows:

Qi ⊗Qj =

[
qi0qj + qj0qi + q×

i qj
qi0qj0 − qT

i qj

]
. (6)

The angular velocity error ωe ∈ R3 is given by ωe = ω −
Cωd, where C is the rotation matrix, which is defined as C =
(q2e0 − qT

e qe)I3 + 2qeq
T
e − 2qe0q

×
e . Consequently, based on

the attitude dynamics in (5), the attitude tracking error system
with actuator faults can be described as

Jω̇e = −(ωe +Cωd)
×J(ωe +Cωd)

+J(ω×
e Cωd −Cω̇d) +D (Euc + ū) + d

q̇e =
1
2 (q

×
e + qe0I3)ωe

q̇e0 = −1
2q

T
e ωe.

(7)

Assumption 1: The inertia matrix J is a symmetric, positive
definite and bounded constant matrix. There exists a positive
constant cJ such that xTJx ≤ cJ∥x∥2 for any x ∈ R3. The
notation ∥ ·∥ denotes the Euclidean norm or its induced norm.

Assumption 2: The desired angular velocity of spacecraft
and its time derivative (i.e., ωd and ω̇d) are bounded.

C. Problem Statement

For overactuated systems, it is possible to divide the con-
troller design into two steps [23]. The overall structure of the
proposed FTC attitude tracking scheme is shown in Fig. 1.
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Fig. 1. Structure of the overall proposed FTC system.

Step 1: High-level Controller Design
In the first step, the virtual control torque τ ∈ R3 is

designed to specify total attitude control torque, which is
introduced as

τ = Du = D(Euc + ū). (8)

As a result, the attitude tracking error dynamics in (7) can be
rewritten as the following virtual equivalent system

Jω̇e = −(ωe +Cωd)
×J(ωe +Cωd)

+J(ω×
e Cωd −Cω̇d) + τ + d

q̇e =
1
2 (q

×
e + qe0I3)ωe

q̇e0 = − 1
2q

T
e ωe.

(9)

Step 2: Control Allocation Design
In the second step, with consideration of the imprecision in

FDD, a RobCA algorithm is designed to distribute the desired
total control commands determined by the high-level controller
equivalently to each individual actuator.

III. HIGH-LEVEL CONTROLLER DESIGN

In this section, an MRA high-level controller is proposed
for the spacecraft attitude tracking system in the presence of
external disturbances. Define a lumped error variable [24]

s = ωe + βqe, (10)

where β is a positive constant. Then, from (9), the dynamic
equation for the lumped error variable s is obtained as

Jṡ = f(ω,ωd, ω̇d,Q,Qd) + τ + d, (11)

where f(ω,ωd, ω̇d,Q,Qd) ∈ R3 is given by

f =− (ωe +Cωd)
×J(ωe +Cωd)

+
β

2
J(q×

e + qe0I3)ωe + J(ω×
e Cωd −Cω̇d). (12)

To obtain the online information on disturbances, an auxil-
iary system that can be regarded as a reference model to the
lumped error dynamics (11), is introduced as

J ˙̂s = f + χ+ d̂(t), (13)

where ŝ = [ŝ1 ŝ2 ŝ3]
T ∈ R3 is the estimate of

lumped error variable, χ ∈ R3 is the input of the aux-
iliary system that will be given later. The vector d̂(t) =

[ĤT
1 Ψ1(t) Ĥ

T
2 Ψ2(t) Ĥ

T
3 Ψ3(t)]

T ∈ R3 denotes the estimate
of the disturbance, where Ĥi ∈ R2ni+1, i ∈ {1, 2, 3}, is the
estimate of Hi in (2).

Define the reference model tracking error as s̃ =
[s̃1 s̃2 s̃3]

T ∈ R3 with s̃i = ŝi − si, i ∈ {1, 2, 3}. Then,
dynamics for s̃ is written as

J ˙̃s = χ− τ + d̃(t), (14)

where d̃(t) = [H̃T
1 Ψ1(t) H̃

T
2 Ψ2(t) H̃

T
3 Ψ3(t)]

T ∈ R3 with
H̃i = Ĥi−Hi, i ∈ {1, 2, 3}, is the disturbance estimate error.

Next, the theorem with regard to the MRA high-level
controller is stated as follows:

Theorem 1: Consider that the attitude tracking error dynam-
ics is described by (9) with external disturbances given in (2)
and that assumptions 1-2 are satisfied. Define the MRA high-
level controller as

τ = χ+ k1s̃− k3qe (15)

with χ given by

χ = −d̂(t)− f − k2ŝ, (16)

where k1, k2, and k3 are positive constant gains, and k2 and
k3 are chosen so that 4βk2 > k3. Let the adaptive law for Ĥi

in d̂(t) of (16) be updated by

˙̂
Hi(t) = −ΛiΨi(t)s̃i, (17)

where Λi is a diagonal matrix with positive entries. Then,
the closed-loop attitude tracking error system will converge
to the equilibrium point Qe = [qT

e qe0]
T = [1 0]T , ωe = 0

asymptotically.

Proof. Consider the following candidate Lyapunov function:

V =
1

2
s̃TJs̃+

1

2
ŝTJŝ+ k3

[
qT
e qe + (1− qe0)

2
]

+
1

2

3∑
i=1

H̃T
i Λ−1

i H̃i. (18)

Differentiating V along trajectories of (13) and (14) results in

V̇ = s̃T (χ− τ + d̃) + ŝT (f + χ+ d̂)

+ k3q
T
e s− βk3∥qe∥2 +

3∑
i=1

H̃T
i Λ−1

i
˙̃
Hi.

Since Hi is a vector with constant elements, it follows that
˙̃
Hi =

˙̂
Hi. Substituting the high-level controller given in (15)

and (16) and adaptive law given by (17) into above yields

V̇ ≤− k1∥s̃∥2 − k2∥ŝ∥2 + k3ŝ
Tqe − βk3∥qe∥2

+ s̃T d̃−
3∑

i=1

H̃T
i Ψi(t)s̃i

≤− k1∥s̃∥2 −
[
ŝT qT

e

]
P

[
ŝT qT

e

]T
, (19)

where P =

[
k2I3 − 1

2k3I3
− 1

2k3I3 βk3I3

]
.

Since 4βk2 > k3, it is clear that P is positive definite,
which implies that V is nonincreasing and bounded for all
t ≥ 0, and it follows that s̃, ŝ, qe, and H̃i are all bounded.
As s̃ and ŝ are bounded, it is clear that the lumped error
variable s is bounded for all t ≥ 0, which implies that ωe is
bounded due to the boundedness of qe. Consequently, using
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assumptions 1-2 and boundedness of ωe and H̃i, one can show
that f(ω,ωd, ω̇d,Q,Qd) and d̂ are bounded for all t ≥ 0.
Since d̂, f , and ŝ are bounded, it is clear from (16) that χ is
bounded, and hence one can conclude that τ is also bounded
for all t ≥ 0. Therefore, from (13), (14), and second equation
of (9), one can easily verify that ˙̂s, ˙̃s, and q̇e are bounded
for all t ≥ 0, which implies that ŝ, s̃, and qe are uniformly
continuous functions. Moreover, from (19), it is easy to verify
that ŝ, s̃, qe∈ ℓ2. Then, from the Barbalat’s Lemma (using
the alternative statement of this lemma from Corollary A.7 of
[25]), it yields that s̃ → 0, ŝ → 0, and qe → 0 as t → ∞.
Hence, from s̃ → 0 and ŝ → 0, one can conclude that s → 0.
Since s → 0 and qe → 0, it follows from (10) that ωe → 0
as well. Moreover, since qe → 0 and q2

e + q2e0 = 1, it leads to
qe0 → ±1. As discussed in [26] that qe0 = −1 is not a stable
equilibrium, it is obtained that qe0 → 1 as t → ∞. Therefore,
the result in Theorem 1 is established.

Remark 1: The introduction of the auxiliary system (13)
provides a reference model for the lumped error system (11)
to follow. In fact, by substituting the auxiliary system input
(16) in (13), it is obtained that J ˙̂s = −k2ŝ. Consequently,
one can choose a candidate Lyapunov function V = 1

2 ŝ
TJŝ,

and it is proved that ŝ converge to zero with an exponential
rate greater than 2k2

cJ
by Lyapunov stability analysis. This state

trajectory of the auxiliary system creates a desired reference
trajectory for the state of the lumped error system to follow.

Remark 2: From (19) and Remark 1, it is obtained that
larger k1, k2, and β yield a faster convergence of s̃, ŝ, and
qe, respectively. However, to ensure asymptotic stability of the
closed-loop attitude tracking system, the condition 4βk2 > k3
should be satisfied firstly (i.e., make sure that matrix P in (19)
is positive-definite).

IV. CONTROL ALLOCATION DESIGN

Due to physical limitations on actuators, the amplitude and
rate constraints of actuators are considered in the control allo-
cation design. For simplicity, it is assumed that the actuators
have the same amplitude and rate constraint values, and the
command control inputs uc are restricted by

δmin ≤ uci ≤ δmax, |u̇ci| ≤ ηrate (20)

where lower and upper position constraints of the ith actuator
are defined by δmin and δmax, respectively, and ηrate is the
maximum control rate of the ith actuator. Because modern
spacecraft attitude control systems are implemented in a digital
computer, rate constraints can be converted into position
constraints. Then, overall constraints are further specified as

uc ≤ uc ≤ ūc, (21)

with uci = max{δmin, uci(t − T ) − Tηrate} and
ūci = min{δmax, uci(t − T ) + Tηrate}, where uc =
[uc1 uc2 · · · ucn]

T ∈ Rn and ūc = [ūc1 ūc2 · · · ūcn]
T ∈ Rn

are the combined constraints for n actuators, T is the sampling
time, and uci(t− T ) is the ith command control input in the
previous sampling instant.

In addition, in order to handle actuator faults, estimated
fault information is used in control allocation. Assuming that

actuator fault information, Ê = diag{ê1, ê2, · · · , ên} ∈ Rn×n

and ˆ̄u = [ˆ̄u1 ˆ̄u2 · · · ˆ̄un]
T ∈ Rn, is detected and estimated

by an FDD scheme. However, no matter which FDD scheme
is employed, it is inevitable to have some estimation or
identification errors [15], and Ê and ˆ̄u may not be identical
to their actual values. Hence, the level of imprecision of fault
estimation is introduced. Relations between actual fault and
their estimated values are assumed to satisfy

E = (In −∆E)Ê, ū = (In −∆ū)ˆ̄u, (22)

where ∆E = diag{δe1 δe2 · · · δen} ∈ Rn×n and ∆ū =
diag{δū1 δū2 · · · δūn} ∈ Rn, and the unknown scalars δei
and δūi represent the level of imprecision in the estimation
of actuator effectiveness and additive fault, respectively. Thus,
during the control allocation, the command control efforts uc

in (8) need to be found such that

τ = D[(In −∆E)Êuc + (In −∆ū)ˆ̄u]. (23)

In light of uncertainties in (23), RobCA is formulated as

uc = arg min
uc≤uc≤ūc

max
∥∆E∥≤ρ1,
∥∆ū∥≤ρ2

{
∥uc∥2M

+ h∥D(In −∆E)Êuc +D(In −∆ū)ˆ̄u− τ∥2
}
, (24)

where ∥uc∥2M stands for uT
c Muc, the weighting matrix M

is positive-definite, the constant h > 0, ρ1 and ρ2 are two
known positive scalars such that ∥∆E∥ ≤ ρ1 and ∥∆ū∥ ≤ ρ2,
respectively.

For the RobCA in (24), the primary objective represented
by the second term is to find the optimal uc by minimizing
the worse-case residual. This achieves some robustness given
by the worst residual to control allocation with respect to the
imprecision in the fault estimation of the FDD scheme [18],
[27]. Comparing with the results in [18], [19], since there is
no guarantee that τ is attainable or that the solution of uc is
unique, a secondary objective of RobCA represented by the
first term in (24), which minimizes the commanded power
consumption, is also considered.

To reduce the notational burden, let A = DÊ, b = τ−D ˆ̄u,
∆A = −D∆EÊ, and ∆b = D∆ū ˆ̄u. Then, we get that
∥∆A∥ ≤ ρA, ∥∆b∥ ≤ ρb, where ρA = ρ1∥D∥∥Ê∥, ρb =
ρ2∥D∥∥ ˆ̄u∥. Thus, the proposed RobCA becomes

uc =arg min
uc≤uc≤ūc

{
∥uc∥2M

+ max
∥∆A∥≤ρA,
∥∆b∥≤ρb

h∥(A+∆A)uc − (b+∆b)∥2
}
. (25)

In the following, the proposed RobCA problem is studied for
both unsaturated and saturated actuators.

A. Unsaturated Case
When no actuator saturates, actuator constraints can be

disregarded. Furthermore, it is verified that the unsaturated
RobCA problem is equivalent to the following problem [28]

uc = arg min
uc

{
∥uc∥2M + max

∥z∥≤ϕ(uc)
h∥Auc − b+ z∥2

}
(26)
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where z = ∆Auc − ∆b, ϕ(uc) is defined as ϕ(uc) =
ρA∥uc∥+ ρb.

To solve (26), the inner maximization problem is solved
first, then followed by the outer minimization problem. For
the inner maximization problem, the maximum

L(uc) , max
∥z∥≤ϕ(uc)

h∥Auc − b+ z∥2 (27)

is convex in uc, and the inequality constraint is also convex
in z, so the maximum over z is achieved at the boundary,
i.e., ∥z∥ = ϕ(uc). Introducing a nonnegative Lagrange mul-
tiplier λ, the constrained maximization problem in (27) is
transformed into the following unconstrained problem

L(uc) = max
z,λ

[
h∥Auc − b+ z∥2 − λ(∥z∥2 − ϕ2(uc))

]
.

(28)

Differentiating (28) with respect to z and λ yields

(λ∗ − h)z∗ = h(Auc − b), ∥z∗∥ = ϕ(uc), (29)

where z∗ and λ∗ denote the optimal solution of the maxi-
mization problem in (28). Computing the Hessian of L(uc)
with respect to z, and let it be positive-definite when λ = λ∗.
Then, it can be found that λ∗ should satisfy λ∗ > h. In view
of (29), the maximum cost in (28) is given by

L(uc) =
hλ∗

λ∗ − h
∥Auc − b∥2 + λ∗ϕ2(uc). (30)

Substituting (30) into the original problem (26), the unsatu-
rated RobCA problem is equivalent to the following minimiza-
tion problem:

uc =arg min
uc

{
∥uc∥2M +

hλ∗

λ∗ − h

× ∥Auc − b∥2 + λ∗ϕ2(uc)

}
. (31)

Next, the outer minimization problem (31) is solved. To
reduce the computation burden, the minimization problem,
which is a vector optimization problem on uc, is converted
to a one-dimensional search problem. For this purpose, the
following function with two independent variables uc and λ
is introduced

R(uc, λ) =
hλ

λ− h
∥Auc − b∥2 + λϕ2(uc), (32)

where λ belongs to the interval (h,+∞). Then, the cost of
the inner maximization in (27) can be equal to the constrained
minimization problem over the scalar λ [29],

L(uc) = arg min
λ>h

R(uc, λ). (33)

As a result, the original problem turns out to be equivalent to

uc =arg min
λ>h

min
uc

J(uc, λ) (34)

where J(uc, λ) = ∥uc∥2M +R(uc, λ).
Taking derivative of J(uc, λ) with respect to uc, it yields[
G(λ) + λρA

(
ρA +

ρb
∥uc(λ)∥

)
In

]
uc(λ) = N(λ) (35)

where G(λ) = M + W (λ)ATA, N(λ) = W (λ)AT b, and
W (λ) = hλ

λ−h . Then, for any nonzero uc in (35), we get

uc(λ) =

[
G(λ) + λρA

(
ρA +

ρb
∥uc(λ)∥

)
In

]−1

N(λ)

(36)

Define a scalar ξ = ∥uc(λ)∥. Then, the equation (36) becomes

ξ2 −NT (λ)

[
G(λ) + λρA

(
ρA +

ρb
ξ

)
In

]−2

N(λ) = 0.

(37)

It can be shown that a unique solution ξ∗ > 0 exists for (37)
if λρAρb < ∥N(λ)∥, and otherwise, ξ∗ = 0, which means
that uc(λ) = 01. As a result, it is obtained that

u∗
c(λ) =

[
G(λ) + λρA

(
ρA +

ρb
ξ∗

)
In

]−1

N(λ) (38)

when λρAρb ≤ ∥N(λ)∥, and otherwise, u∗
c(λ) = 0. Now, let

J(λ) denote the minimum value of J(uc, λ) over uc in (34),
i.e.,

J(λ) =min
uc

J(uc, λ) = J(u∗
c(λ), λ)

=∥u∗
c(λ)∥

2
M +W (λ)∥Au∗

c(λ)− b∥2 + λϕ2(u∗
c(λ)).

Finally, the unsaturated RobCA problem can be solved by
determining λ∗ from the following scalar-valued optimization
problem

λ∗ = arg min
λ>h

J(λ). (39)

Because the function J(λ) is unimodal [29], the minimiza-
tion problem (39) is always well-posed such that an unique
minimum on its domain is attainable.

In sum, the unsaturated RobCA algorithm is implemented
as follows:

Inputs:
• Ê and ˆ̄u are from the FDD scheme, and the virtual

actuator torque τ is from high-level controller.
• Choose the weighting parameters M and h.

Steps:
1) Solve the equation (37) and obtain the unique positive

solution ξ∗ by using numerical methods.
2) Solve the innermost minimization problem in (34) with

respect to uc. The solution u∗
c(λ) is given by

u∗
c(λ) =


[
G(λ) + λρA

(
ρA + ρb

ξ∗

)
In

]−1
N(λ),

if λρAρb < ∥N(λ)∥
0, if λρAρb ≥ ∥N(λ)∥.

(40)

3) Compute λ∗ by solving the scalar-valued minimization
problem defined in (39).

4) Substitute λ∗ into (40) to get the solution uc = u∗
c(λ

∗).

1The derivation of the condition λρAρb ≤ ∥N(λ)∥ can be found in
Appendix B of [29].
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B. Saturated Case
When actuator amplitude and rate constraints are consid-

ered, the RobCA defined in (25) can be converted into a
second-order cone programming (SOCP) problem formulation.
For the inner maximization problem in (25), using triangle
inequality, it is noted that

∥(A+∆A)uc − (b+∆b)∥
≤∥Auc − b∥+ ∥∆A∥∥uc∥+ ∥∆b∥
≤∥Auc − b∥+ ρA∥uc∥+ ρb, (41)

which provides an upper bound for ∥(A+∆A)uc−(b+∆b)∥.
In fact, this upper bound is achievable if ∆A and ∆b have
forms of

∆A =
Auc − b

∥Auc − b∥
uT
c

∥uc∥
ρA, ∆b = − Auc − b

∥Auc − b∥
ρb. (42)

Then, it follows that

∥(A+∆A)uc − (b+∆b)∥ = ∥Auc − b∥+ ρA∥uc∥+ ρb

which is the desired upper bound from the triangle inequality.
Therefore, we may conclude that the maximum cost of the
inner maximization problem can be given by

L(uc) = h(∥Auc − b∥+ ρA∥uc∥+ ρb)
2. (43)

As a result, the RobCA problem reduces to

uc =arg min
uc≤uc≤ūc

{
∥uc∥2M

+ h(∥Auc − b∥+ ρA∥uc∥+ ρb)
2
}
. (44)

The solution of problem (44) can be obtained by solving
the following SOCP problem

min
uc,ti

t1

subject to



∥col(t2, t3)∥ ≤ t1

∥M1/2uc∥ ≤ t2

∥Auc − b∥ ≤ t3√
h
− ρb − t4

∥uc∥ ≤ t4
ρA

uc ≤ uc ≤ ūc,

(45)

where the variables ti ∈ R+ with i ∈ {1, 2, · · · , 4}, and
col(t2, t3) ∈ R2 is a column vector composed of the variables
t2 and t3. The above SOCP problem can be solved by using
nonlinear optimization softwares, such as YALMIP, CVX, etc.

V. SIMULATIONS

To study the effectiveness and performance of the proposed
MRA high-level control scheme and the RobCA strategy,
numerical simulations have been carried out for the rigid
spacecraft attitude tracking system under actuator faults. The
spacecraft is assumed to have the inertia matrix of J =
[20 0 0.9; 0 17 0; 0.9 0 15]. The external disturbances are as-
sumed to be

d(t) =

 0.01 + 0.01 cos(0.05t)
0.01 sin(0.08t) + 0.01 cos(0.06t)

0.01 + 0.015 sin(0.06t)

N · m.

The initial attitude is Q(0) = [0.2 −0.15 −0.25 0.9354]T with
a zero initial angular velocity. The desired reference angular
velocity is given as

ωd(t) = 0.573×
[
cos(

t

40
) sin(

t

30
) − cos(

t

50
)

]T
deg/s.

For the consideration of practical application, the angular
velocity is measured from a rate-integrating gyro [30] which
is model as ω̃(t) = ω(t) + β(t) + ηv(t) and β̇(t) = ηu(t),
where ω̃(t) is the gyro output, the vector β(t) is gyro bias,
and the vectors ηv(t) and ηu(t) are independent mean zero
Gaussian white-noise process with spectral densities given
by σ2

vI3 and σ2
uI3, respectively. The covariance of ηv(t)

and ηu(t) is given by E{ηv(t)η
T
v (τ)} = I3σ

2
vδ(t − τ) and

E{ηu(t)η
T
u (τ)} = I3σ

2
uδ(t− τ), where δ(t− τ) is the Dirac

delta function [30]. Since discrete-time gyro measurements
are employed in practice, based on the result from [31], the
above continuous-time model is further equivalently convert to
a discrete-time model in the simulation. The measurement bias
of angular velocity sensor is 1 deg/h on each axis. Moreover,
due to the limited manufacturing tolerances, the mounting
misalignments of attitude sensor and angular velocity sensor
in the simulation are assumed to be 0.005 deg and 0.1 deg,
respectively.

In order to achieve three-axis control of a spacecraft, four
reaction wheels in a pyramid configuration are considered as
actuators, and both loss of effectiveness faults and additive
faults are considered in actuators. The scenarios of time-
varying actuator faults are described as follows.

1) The first reaction wheel experiences partial loss of
control effectiveness with a time-varying effectiveness
gain e1 = 0.5 + 0.5e−t.

2) The second reaction wheel undergoes an additive fault
with ū2 = −0.03 + 0.03e−0.5t + 0.001rand(·) N·m.

3) The third reaction wheel experiences loss of effec-
tiveness and additive fault simultaneously with e3 =
0.6+0.4e−0.5t and ū3 = −0.02+0.02e−t+0.002rand(·)
N·m, respectively.

4) The fourth reaction wheel undergoes a complete failure.
Here, the function rand(·) generates a random value from the
normal distribution with mean 0 and standard deviation 1.

The estimate of actuator fault information can be provided
by an FDD scheme as developed in [32], where local observers
are used to estimate fault-related parameters online for each
of the actuators. The maximum imprecision in fault estimation
is assumed to be 20%. The high-level controller parameters
are chosen with β = 0.42, k1 = 7.5, k2 = 50, k3 = 0.5,
and Λi = 0.8I2, i ∈ {1, 2, 3}. For RobCA, the weighting
matrix M and weighting scalar h in (26) are M = I4 and
h = 1× 104, respectively. To have an easy interpretation, atti-
tude tracking errors are re-expressed in Euler angles. For the
purpose of comparison, PD controller [26] with pseudoinverse
based control allocation is also carried out.

Figs. 2 and 3 show the closed-loop system performance
under MRA controller with unsaturated RobCA and PD con-
troller with pseudoinverse control allocation, respectively. It is
observed from Fig. 2 that the desired states can still be tracked
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Fig. 2. System performance under MRA controller with unsaturated RobCA.
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Fig. 3. System performance under PD controller with unsaturated pseudoinverse based control allocation.
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Fig. 4. System performance under MRA controller with saturated RobCA.
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Fig. 5. System performance under PD controller with saturated pseudoinverse based control allocation.
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with small tracking errors and a rapid convergence rate when
the proposed scheme is used. Whereas for performance of the
PD controller with pseudoinverse control allocation method in
Fig. 3, due to the FDD imprecisions and external disturbances,
the steady-state of attitude tracking error is about 1 deg and
angular velocity tracking error is about 1.5×10−3 deg/s, which
are much lager than that under the proposed scheme. This
is due to the fact that the proposed scheme possesses some
robustness with respect to the considered form of external
disturbances in (2) and imprecise FDD estimation. However,
it should be noted that degraded control performance may be
observed if the actual disturbance frequencies in (2) cannot be
estimated or measured accurately.

Next, the actuator saturation is taken into account in sim-
ulation. In this case, the limitations on the reaction wheel
control torque are assumed to be uci = −0.25 N·m and
ūci = 0.25 N·m, i ∈ {1, 2, 3, 4}. Referring to Figs. 4 and 5, it
is observed that steady-state tracking errors under the proposed
scheme are still superior to that under the PD controller with
pseudoinverse based control allocation method even in the
presence of actuator saturation.

VI. CONCLUSIONS

In this paper, the MRA high-level controller incorporating
RobCA strategy has been proposed for spacecraft attitude
tracking system in the presence of external disturbances,
FDD imprecisions, and actuator saturation. First, an MRA
controller is designed as the high-level controller to specify
total control efforts such that the desired attitude trajectories
can be followed asymptotically. Then, a RobCA scheme is
further developed to distribute the total control command
determined by the high-level controller to individual actuators.
The RobCA problem is formulated as a min-max optimization
problem and further converted to a scalar-valued optimization
problem to reduce computation burden. The effectiveness of
the proposed strategy are illustrated in simulation.
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