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I. Introduction

O NE of the essential functions for various spacecraft is to point
an onboard instrument’s boresight along a prescribed inertial

direction. In such a mission, the equipped sensitive payloads are
required to be kept sufficiently far away from unwanted celestial
objects or bright sources of energy. In view of this requirement, the
capacity of an attitude controller to handle attitude constraints should
be guaranteed. Otherwise, it will lead to damage of certain payloads
and inferior control performance. For example, the infrared
telescopes may be required to slew from one direction in space to
another without direct exposure to the sun vector or other infrared
bright regions [1]. Generally, this type of attitude maneuver can be
regarded as a spacecraft reorientation problem in the presence of
attitude-constrained zones and has attracted more and more attention
in practical spacecraft missions.
A satellite’s motion is governed by kinematic and dynamic

equations, and the mathematical models are highly nonlinear and
coupled. Extensive nonlinear control algorithms have been proposed
for solving the spacecraft reorientation problem, such as
proportional-derivative feedback control [2], sliding mode control
[3–5], backstepping control [6,7], adaptive control [8], and inverse
optimal control [9,10]. However, it should be noted that attitude
constraints are not taken into account in the aforementioned
literature. An attitude reorientation problem with consideration of
attitude-constrained zones has been examined in only a few research
works. Approaches to solve constrained attitude control problems
can be generalized into two main categories: path planning methods
and potential function methods. The path planning methods
determine a feasible attitude trajectory before the reorientation
maneuver according to the geometric relations with the exclusion
zones. Consequently, a constraint-free attitude control law is
developed to follow the designed attitude path. In [11], based on the
analysis of the vectorial kinematics on sphere, attitude motion
planning was considered in the presence of bright objects and a
communication link with a ground station is maintained. In [12],
assuming that there exists a constraint-free guidance loop, a

randomized attitude slew planning algorithm was proposed to

determine a time-parameterized sequence of “virtual attitude” that

effectively steers the current attitude to the target attitude while
avoiding constraint violations. In [13], the unit celestial sphere was

discretized into a graph using an icosahedron-based pixelization

subroutine, and theA� pathfinding approachwas employed to find an

admissible minimum path cost trajectory. In [14], a maneuver
planning strategy was derived to accomplish the required single-axis

pointing of an underactuated spacecraft in the presence of obstacles

along the angular path and constraints on admissible rotation axes.
Although the path-planning-based methods are able to handle

certain classes of attitude constraints, these methods have a

disadvantage in that they could not be extended to more complex

scenarios, involving multiple celestial constrained zones, as often

encountered in spacecraft missions [15]. Meanwhile, because path
planning techniques are usually based on computationally

demanding search methods, the computational tractability and

closed-loop stability of the overall system may not be guaranteed
using path-planning-based methods [16]. On the contrary, potential

function methods formulate the attitude-constrained zones in the

context of an artificial potential, which is further used for

synthesizing the corresponding attitude control law to avoid
unwanted celestial objects while achieving the desired attitude.

Because this kind of approach is analytical, without the need of any

change in the overall structure of the attitude control software or

hardware, it is suitable for onboard computation and provides flexible
autonomous operations. In [17], a Gaussian function was used as a

potential function to describe the dynamic environment, and control

torques were then chosen such that the satellite attitude converges to

the desired final orientation without violating a list of user-defined
pointing constraints. Because Euler angles are used to represent

attitude in [17], the proposed control algorithm may suffer from

singularity. Instead of usingEuler angles, the unit quaternion not only
prevents singularity but also reduces expensive computational load

created by the Euler angle expression [18]. In [19], a repulsive

potential function was used for a constrained slew maneuver, where

the camera’s charge-coupled device chip is prevented from exposure
to the sun directly. In [16], attractive and repulsive components of the

potential function are designed in quaternion error vector space to

guarantee target attitude convergence and constrained direction

avoidance, respectively. In [15], a convex logarithmic barrier
potential was formulated using the convex parameterization of

attitude constraint sets in the unit-quaternion space, and two attitude

control laws based on the backstepping technique were proposed for

the constrained attitude control problem.
In this Note, based on potential function methods, a velocity-free

control law that can achieve rest-to-rest three-axis attitude

reorientation with autonomous avoidance of the undesired celestial

objects is presented for a flexible spacecraft. The spacecraft orientation
in the presence of constraints are formulated in terms of unit quaternion

and is further parameterized to a convex set representation.Because the

proposed quadratic potential function is proved to be strictly convex, it
has the capability to not only handle multiple attitude-constrained

zones but also guarantee convergence toward the desired attitude.

Following this, an auxiliary unit-quaternion dynamic system

introduced in [20] is employed to synthesize the velocity-free attitude
controller that achieves asymptotic stability toward the desired

attitude. The advantage of the proposed velocity-free control scheme

is the simple design and structure, which is of great interest for

aerospace industry with real-time implementation when onboard
computing power is limited. To the best of the authors’ knowledge,

the result presented in this Note is the first attempt in literature to

accomplish attitude reorientation for flexible spacecraft without
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using explicit velocity feedback, while attitude constraints are also
addressed.

II. Preliminaries

In this Note, the unit-quaternion representation is used to describe
the orientation of a spacecraft. A quaternion is defined as
Q � � q1 q2 q3 q0 �T � � qT q0 �T ∈ Q, where the vector part
q ∈ R3, the scalar part q0 ∈ R, and Q is the set of quaternion. The
symbol “⊗” denotes the quaternion multiplication operator of two
quaternions Qi � � qTi qi0 �T ∈ Q and Qj � � qTj qj0 �T ∈ Q,
which are defined as follows:

Qi ⊗ Qj �
�
qi0qj � qj0qi � S�qi�qj

qi0qj0 − qTi qj

�
(1)

and has the quaternionQI � � 0 0 0 1 �T as the identity element.

The matrix S�x� ∈ R3×3 is a skew-symmetric matrix satisfying

S�x�y � x × y for any vectors x, y ∈ R3, and “×” denotes vector
cross product. The set of unit quaternionQu is a subset of quaternion
Q such that

Qu � fQ � � qT q0 �T ∈ R3 × RjqTq� q20 � 1g (2)

where the vector part q � n̂ sin�ϕ∕2� and the scalar part
q0 � cos�ϕ∕2�; n̂ and ϕ refer to the Euler axis and the rotation
angle about the Euler axis. The unit-quaternion conjugate or inverse

is defined as Q� � �−qT q0 �T .

A. Kinematics Equation

The spacecraft kinematics in terms of the unit-quaternion can be
given by

_Q � 1

2
Q ⊗ ν�ω� � 1

2

�
S�q� � q0I3

−qT

�
ω (3)

where Q � � q1 q2 q3 q0 �T � � qT q0 �T ∈ Qu denotes the
unit-quaternion describing the attitude orientation of the body frame
B with respect to inertial frame I , ω ∈ R3 is the inertial angular
velocity vector of the spacecraft with respect to an inertial frame I
and expressed in the body frame B, and ν:R3 → R4 is defined as the
mapping ν�ω� � �ωT 0 �T .
Let Qd ∈ Qu denote the desired attitude. In this Note, the rest-to-

rest attitude reorientation problem of rotating a rigid spacecraft from
its current attitudeQ to a desired attitudeQd is considered. The unit-
quaternion error Qe ∈ Qu is defined as Qe � Q�

d ⊗ Q �
� qTe qe0 �T , which describes the discrepancy between the actual
unit-quaternion Q and the desired unit-quaternion Qd. The
kinematics represented by unit-quaternion error is described as [21]

_Qe �
1

2
Qe ⊗ ν�ωe� (4)

where ωe � ω −R�Qe�Tωd, R�Qe� is the unit-quaternion error Qe

related rotation matrix [22] defined as R�Qe� � �q2e0 − qTe qe�I3�
2qeq

T
e − 2qe0S�qe�, and ωd denotes the desired angular velocity. In

this Note, because the rest-to-rest attitude reorientation problem is
only considered, the desired angle velocity is ωd � 0, which yields
ωe � ω. Therefore, the attitude error kinematics for rest-to-rest
attitude reorientation maneuver in Eq. (4) can be rewritten as

_Qe �
1

2
Qe ⊗ ν�ω� � 1

2

�
S�qe� � qe0I3

−qTe

�
ω (5)

B. Flexible Spacecraft Dynamics

The dynamics for the attitudemotion of a flexible spacecraft can be
expressed by the following equations [8]:

J _ω� δT �η � −S�ω��Jω� δT _η� � τ (6)

�η� C_η� Kη� δ _ω � 0 (7)

where J � JT denotes the positive-definite inertia matrix of the
spacecraft and τ ∈ R3 denotes the control torque about the body
axes. Equation (7) describes the flexible dynamics under the
hypothesis of small elastic deformations, where η ∈ RN is the
modal coordinate vector, δ ∈ RN×3 is the coupling matrix between
the elastic and rigid dynamics, C � diag�Λ2

1; : : : ;Λ2
N� and K �

diag�2ζ1Λ1; : : : ; 2ζNΛN� denote the damping and stiffness
matrices, N is the number of the elastic modal considered, and Λi

and ζi (i � 1; : : : ; N) are natural frequencies and corresponding
damping, respectively.
For the controller design, the following variable is introduced:

ψ � _η� δω (8)

Taking time derivative of ψ leads to

_ψ � �η� δ _ω � −Cψ − Kη� Cδω (9)

Define a new state variable ξ � � ηT ψT �T , then it follows from
Eqs. (7) and (9) that

_ξ �
�

0 IN
−K −C

�
ξ�

�
−δ
Cδ

�
ω (10)

Thus, the dynamics in Eq. (6) can be described as

J0 _ω � −S�ω��J0ω� δTψ� � δT �K C �ξ − δTCδω� τ (11)

where J0 � J − δTδ.

C. Attitude Constraints Based on Unit Quaternion

Suppose a half-cone angle strictly greater than θ should be
maintained between the normalized boresight vector y of the
spacecraft instrument and the normalized vector x pointing toward a
certain celestial object, as shown in Fig. 1. This means that the cones
with an apex angle of θ emanating from the bright objects vector
should exclude the boresight vector of the sensitive onboard
instruments during the reorientation maneuver. When the attitude of
the spacecraft is determined by Q, the new boresight vector of the
instrument in the inertial coordinates is

yI � R�Q�Ty � �q20 − qTq�y� 2�qTy�q� 2q0�q × y� (12)

where R�Q� is a rotation matrix given by R�Q� � �q20 − qTq�I3�
2qqT − 2q0S�q�. Then, the constraints can be expressed by thevector
dot product

x ⋅ yI < cos�θ� (13)

Consequently, it follows from Eq. (13) that

q20x
Ty − qTqxTy� 2�qTy�xTq� 2q0q

T�y × x� < cos�θ� (14)

which can be further rewritten as

QT

�
xyT � yxT − �xTy�I3 y × x

�y × x�T xTy

�
Q < cos�θ� (15)

Fig. 1 Demonstration of attitude constraint.
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Suppose there are i constrained objectives associated with the jth
onboard sensitive instrument in the spacecraft rotational space. Then,
the spacecraft attitudeQ ∈ Qu for which the boresight vector yj with
respect to the ith celestial object should satisfy the following
constraint

QTMj
iQ < cos�θji � (16)

where

Mj
i �

"
Aj
i bji

bjTi dji

#
(17)

with

Aj
i � xiy

T
j � yjx

T
i − �xTi yj�I3; bji � yj × xi; dji � xTi yj;

i � 1; 2; : : : ; n; j � 1; 2; : : : ; m (18)

Subsequently, to represent the possible attitude for the jth
instrument and the ith celestial object, a subset Qpj

i
of Qu is

specified as

Qpj
i
� fQ ∈ QujQTMj

iQ − cos θji < 0g (19)

The angle θji is the constraint angle about the direction of the ith
object specified by xi for the jth instrument boresight vector yj.
Without loss of generality, the domain of the angle θji for all i and j is
restricted to be (0, π).
ForQ ∈ Qpj

i
, we haveQTMj

iQ − cos θ < 0, which can be further

written as QT �Mj
iQ < 0 with �Mj

i � Mj
i − cos θjiI4. For θ

j
i ∈ �0; π�,

one has

−2 < λmin� �Mj
i � ≤ QT �Mj

iQ < λmax� �Mj
i � < 2 (20)

where λmin� �Mj
i � and λmax� �Mj

i � denote the minimal and maximal

eigenvalue of matrix �Mj
i , respectively. Then, the set Qpj

i
can be

equivalently represented as a convex set

~Qpj
i
� fQ ∈ QujQT ~Mj

iQ < 2g (21)

where ~Mj
i is a positive-definite matrix. The proof of the boundedness

ofQT �Mj
iQ in Eq. (20) as well as its convex representation in Eq. (21)

can be established by applying Propositions 3 and 4 in [15].

III. Velocity-Free Attitude Reorientation
Controller Design

A. Potential Function Design

The potential function V�Q�: Qp → R, is defined as

V�Q� � kQd −Qk2
Xm
j�1

Xn
i�1

1

α
�
QTMj

iQ − cos θji

�
2

(22)

where the set Qp � fQ ∈ QujQ ∈ Qpj
i
g (i � 1; 2; : : : ; n and

j � 1; 2; : : : ; m) represents the possible attitudes of the spacecraft on
which the boresight vector of the onboard instruments lie outside of
the constrained attitude. The preceding potential function includes
two terms multiplying together, that is,

kQd −Qk2 and
Xm
j�1

Xn
i�1

1

α
�
QTMj

iQ − cos θji

�
2

The first term kQd −Qk2 represents an attractive potential field
denoting the distance of the current attitude and the desired one, and
the second term

Xm
j�1

Xn
i�1

1

α
�
QTMj

iQ − cos θji

�
2

represents the specific celestial body constrained repulsive potential

field. The parameter α is a design variable that is used to adjust the

relative weighting between the attractive and repulsive potential. It is

usually chosen to be a big value such that magnitude of control input

is reasonable.
Lemma 1: The potential function in Eq. (22) has the following

properties:
1) V�Qd� � 0.
2) V�Q� > 0, for all Q ∈ Qp \ fQdg.
3) ∇2V�Q� > 0 is positive definite for all Q ∈ Qp and Qd ∈ Qp.
Proof: It is clear from the definition of the potential function in

Eq. (22) that V�Qd� � 0 and V�Q� > 0 if Q ∈ Qp \ fQdg. The
following analysis illustrates the derivation of the last property of the

preceding lemma.
Since QT �Mj

iQ < 0 if Q ∈ Qp, it is equivalent to the following

terms:

−QT �Mj
iQ� μ − μ � QT ~Mj

iQ − μ > 0 (23)

where ~Mj
i is assumed to be the form

~Mj
i � − �Mj

i � μI4 (24)

and μ is a positive constant such that −λmax� �Mj
i � � μ > 0, which

means that ~Mj
i is a positive-definite matrix.

Subsequently, if Q ∈ Qp, the potential function in Eq. (22) is

equivalent to

V�Q� � kQd −Qk2
Xm
j�1

Xn
i�1

1

α
�
QT ~Mj

iQ − μ
�
2

(25)

The gradient of V�Q� in Eq. (25) is given by

∇V � ∂V�Q�
∂Q

� ∂kQd −Qk2
∂Q

Xm
j�1

Xn
i�1

1

α
�
QT ~Mj

iQ − μ
�
2

� kQd −Qk2
Xm
j�1

Xn
i�1

−4QT ~Mj
i

α
�
QT ~Mj

iQ − μ
�
3

(26)

Since kQd −Qk2 � 2 − 2QT
dQ, it follows that

∂kQd −Qk2
∂Q

� −2QT
d and

∂2

∂Q2
�kQd −Qk2� � 04×4

Then, it leads to

∇V � −
2

α

Xm
j�1

Xn
i�1

�
QT

d

�QT ~Mj
iQ − μ�2 �

2kQd −Qk2QT ~Mj
i

�QT ~Mj
iQ − μ�3

	
(27)

Thus, the Hessian ∇2V�Q� is given by

∇2V � −
2

α

Xm
j�1

Xn
i�1

�
−4QdQ

T ~Mj
i

�QT ~Mj
iQ − μ�3

� �−4 ~Mj
iQQT

d � 2kQd −Qk2 ~Mj
i �

�QT ~Mj
iQ − μ�3

	

−
12kQd −Qk2 ~Mj

iQQT ~Mj
i

�QT ~Mj
iQ − μ�4

	
(28)

Based on the fact that kQd −Qk2 � 2 − 2QT
dQd, the preceding

equation is further rewritten as
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∇2V � −
2

α

Xm
j�1

Xn
i�1

��−8QdQ
T ~Mj

i − 4 ~Mj
iQQT

d � 4 ~Mj
i �

�QT ~Mj
iQ − μ�3

−
�24 − 24QdQ

T� ~Mj
iQQT ~Mj

i

�QT ~Mj
iQ − μ�4

	
(29)

Multiplying the last equation by QT and Q from the left and the

right, respectively, it leads to

QT∇2VQ � −
8

α

Xm
j�1

Xn
i�1

��QT ~Mj
iQ�2�−5� 3QTQd�
�QT ~Mj

iQ − μ�4

−
δQT ~Mj

iQ�1–3QTQd�
�QT ~Mj

iQ − μ�4
	

In view of QT ~Mj
iQ > 0 and QTQd ∈ �−1; 1�, one has

QT∇2VQ ≥ −
8

α

Xm
j�1

Xn
i�1

�
QT ~Mj

iQ

�QT ~Mj
iQ − μ�4 �3�Q

T ~Mj
iQ� μ�

− 5QT ~Mj
iQ − μ�

	
≥
16

α

Xm
j�1

Xn
i�1

QT ~Mj
iQ

�QT ~Mj
iQ − μ�3 > 0 (30)

where ~Mj
i > 0 and Eq. (23) is used.

From Eq. (30), it is clear thatQT∇2VQ remains positive for allQ,

Qd ∈ Qp. Therefore, the Hessian of V�Q� is positive definite, which
means that the potential function in Eq. (22) is strictly convex. □

In summary, the preceding three properties show that the potential

functionV�Q�defined inEq. (22) is smooth and strictly convex for all

Q ∈ Qp and Qd ∈ Qp, and it has a global minimum at Q � Qd.

B. Velocity-Free Controller Design

Introducing an auxiliary unit quaternion

_�Q � 1

2
�Q ⊗ ν�Ω� (31)

with �Q�0� � � �q�0�T �q0�0� �T ∈ Qu, and Ω ∈ R3 will be given

later. We define the unit quaternion ~Q � �Q� ⊗ Qe � � ~qT ~q0 �T ∈
Qu describing the discrepancy between the unit-quaternion errorQe

and the auxiliary unit-quaternion signal �Q. Then, we have

_~Q � d

dt
� �Q� ⊗ Qe� �

1

2
� �Q ⊗ ν�Ω��� ⊗ Qe �

1

2
�Q� ⊗ Qe ⊗ ν�ω�

� 1

2
�ν�Ω��� ⊗ � �Q� ⊗ Qe� �

1

2
� �Q� ⊗ Qe� ⊗ ν�ω�

� −
1

2
ν�Ω� ⊗ ~Q� 1

2
~Q ⊗ ν�ω� (32)

which implies that

_~Q �
�

_~q
_~q0

�
� 1

2

�
~q0�ω −Ω� � ~q × �ω −Ω�

− ~qT�ω −Ω�
�

(33)

The velocity-free attitude regulation controller is designed as

τ � −k1 ~q − k2qe � k3Vec�∇V� ⊗ Q� (34)

where the operator Vec�⋅� denotes the vector part of �⋅�.
Consider the following Lyapunov candidate:

Vl � 1

2
ωTJ0ω� k1� ~qT ~q� �1 − ~q0�2�

� k2�qTe qe � �1 − qe0�2� � ξTPξ� 2k3V�Q� (35)

where P is a positive-definite matrix. The time derivative of Vl is

_Vl � ωTJ0 _ω� k1 ~q
T�ω −Ω� � k1q

T
eω� ξTP_ξ

� 2k3∇VT



1

2
Q ⊗ ν�ω�

�
� ωTf−S�ω��J0ω� δTψ� � δT �K C �ξ − δTCδω

� k1 ~q� k2qe � τg − k1 ~q
TΩ� k3ν�ω�T�Q� ⊗ ∇V�

� ξTP


�
0 IN

−K −C

�
ξ�

�−δ
Cδ

�
ω

�
(36)

From ωTS�ω��J0ω� δTψ� � 0, it is obtained that

_Vl � ωT�k1 ~q� k2qe � τ� − k1 ~q
TΩ� k3ν�ω�T�Q� ⊗ ∇V�

�ωTδT �K C �ξ − ωTδTCδω − ξTWξ� ξTP

�−δ
Cδ

�
ω (37)

where W is a symmetric positive-definite matrix satisfying the

following Lyapunov equation:

P

�
0 IN
−K −C

�
�

�
0 IN
−K −C

�
P � −2W (38)

Because the matrix

h
0 IN
−K −C

i

has eigenvalues with negative real parts, there always exists a

symmetric positive-definite matric W such that Eq. (38) is verified

[8]. Note that

ν�ω�T�Q� ⊗ ∇V� � −ωTVec��∇V� ⊗ Q�� (39)

and substituting the control law (34) into Eq. (37) yields

_Vl � −k1 ~qTΩ − �ωT ξT �ϒ�ωT ξT �T (40)

where matrix ϒ is given by

ϒ �
"

δTCδ δT �K−PC�CP�
2

�K−PC�CP�Tδ
2

W

#
(41)

By using the Schur complement lemma [23], and for the

appropriate choice of matrix W, the matrix ϒ could be a positive-

definite matrix [24]. Then, it follows that

_Vl � −k1 ~qTΩ (42)

If Ω � Γ ~q with Γ � ΓT > 0, one has

_Vl � −k1 ~qTΓ ~q ≤ 0 (43)

Therefore, it is clear from Eq. (43) that Qe, ~Q, ω, and V�Q� are
bounded. Consequently, one can obtain that �Vl is bounded. Hence,

according to Barbalat’s Lemma, one can conclude that

limt→∞ ~q�t� � 0 and limt→∞ ~q0�t� � 	1. Because ~Q, Qe, Q, and

Qd are bounded, it is clear that∇V is bounded, which further leads to

the boundedness of τ from control law (34). Because τ and ~Q are

bounded, it is clear that
�~Q is bounded, and consequently

limt→∞
_~Q�t� � 0. From the definition of

_~Q in Eq. (33), together

with facts that limt→∞
_~Q�t� � 0, limt→∞ ~q�t� � 0, and

limt→∞ ~q0�t� � 	1, it is easy to verify that limt→∞�ω −Ω� � 0.
Again, since limt→∞ ~q�t� � 0, one can obtain that limt→∞Ω � 0, and
hence it is clear that limt→∞ω � 0, which in turn yields that τ � 0
from Eq. (6). Therefore, in view of control law (34) and
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limt→∞
_~Q�t� � 0, we obtain that limt→∞∇V��t� � 0 sinceQ ≠ 0. In

addition, because the potential V�Q� is strictly convex, the following
equivalence is ensured

fQj∇V�Q� � ∇V��Q� � 0g ⇔ fQjV�Q� � 0g (44)

which consequently implies that limt→∞Q�t� � Qd.
In summary, we have the following theorem.
Theorem 1: The velocity-free controller (34), applied to the

flexible spacecraft control systems expressed by Eqs. (3), (6), and (7)
in the presence of attitude-constrained zones, guarantees that all
closed-loop signals are bounded and that limt→∞ω � 0
and limt→∞Q�t� � Qd.

IV. Simulation Results

To demonstrate the effectiveness and performance of the proposed
controller, numerical simulation is performed to a flexible spacecraft
in this section. It is assumed that the spacecraft carries a light-
sensitive instrumentwith a fixed boresight in the spacecraft body axes
alignedwith theZ direction. The nominalmain body inertiamatrix of
the spacecraft is

J0 �
2
4 350 3 4

3 280 10

4 10 190

3
5 kg ⋅m2 (45)

and the coupling matrix between the elastic and rigid dynamics is
given by [8]

δ �

2
664

6.45637 1.27814 2.15629

−1.25619 0.91756 −1.67264
1.11687 2.48901 −0.83674
1.23637 −2.6581 −1.12503

3
775 ������

kg
p

⋅ m∕s2 (46)

The natural frequencies are Λ1 � 0.7681, Λ2 � 1.1038,
Λ3 � 1.8733, and Λ4 � 2.5496 rad∕s, and the corresponding
damping ratios are ζ1 � 0.05607, ζ2 � 0.08620, ζ3 � 0.1283, and

ζ4 � 0.2516. In the simulation, the spacecraft is retargeting its
sensitive instrument (such as infrared telescopes or interferometers)

while avoiding four celestial objects (such as sunlight or other bright
objects) in the spacecraft reorientation configuration space. Four
attitude-constrained zones are chosen without overlapping with
each other. The details of the four attitude-constrained zones are
given in Table 1, in which the normalized vectors pointing toward

the corresponding celestial objects are expressed with respect
to the inertial frame. Both initial and desired attitude are chosen
such that they are out of the four attitude-constrained zones. The
spacecraft is assumed to have the initial attitude Q�0� �
� 0.329 0.659 −0.619 −0.2726 �T and initial angular velocity
ω�0� � � 0 0 0 �T rad∕s. The controller gains in control law (34)
are chosen as k1 � 0.3Jp, k2 � 0.05Jp, and k3 � 0.005Jp, where
Jp � diag�� 350 280 190 �� is a diagonal matrix in which the
nonzero values are identical to the diagonal values of J0. Note that

each of the controller gains in the simulation is selected as a
multiplication of a constant and a diagonal matrix Jp containing
diagonal elements of the inertia matrix. Although the control gains
are not scale constants as defined in the original controller (34), the

overall stability can still be guaranteed. The benefit of the gain
modification is that it is easier to select proper gains to get a satisfactory
control performance. For the auxiliary unit-quaternion defined in
Eq. (31), the variable Ω � Γ ~q with Γ � � 1.5 1.5 1.5 �T . The
variable α in the potential function is chosen as α � 50.
To have a better illustration of the proposed method, the desired

attitude that the flexible spacecraft is rotating to is Qd �
� 0.38 −0.5 −0.5 −0.5963 �T , which is quite near to the second
attitude-constrained zone. The target attitude is in a position at
34.58 deg from the center of the nearest attitude-constrained zone
(i.e., CZ 2), which corresponds to the fact that the minimal angle
between desired orientation and the boundary of the nearest

forbidden cone is only 9.58 deg. As shown in Fig. 2, the pointing
direction of the instrument generated by the proposed controller tries
to reach the desired pointing direction from the initial pointing
direction, but the second attitude-constrained cone lies in its way and

prevents it from passing directly. To keep out of this attitude-
constrained cone, a large control toque in the opposite direction is
produced, which keeps the pointing direction away from the
constrained cone. The proposed controller generates a proper control
action such that the third attitude-constrained cone is avoided and

finally drives the instrument to reach the desired pointing direction.
The corresponding simulation results for the quaternion error,
angular velocity, control torque, and modal displacements are shown
in Fig. 3, fromwhich it is clear that acceptable control performance is

achieved. In addition, two sharp increases of the control torque are
observed in Fig. 3c because a large control torque is required to keep

CZ 2

CZ 1

CZ 4

CZ 3

a) Trajectory of sensitive instrument pointing
direction in 3-D
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b) Trajectory in 2-D cylindrical projection

Fig. 2 Case II: Trajectory of sensitive instrument pointing direction in three and two dimensions (3-D and 2-D) under the proposed control law (34).

Table 1 Simulation parameters

Constrained zone Constrained object Angle, deg

CZ 1 � 0.183 −0.983 −0.036 � 30
CZ 2 � 0 0.707 0.707 � 25
CZ 3 �−0.853 0.436 −0.286 � 25
CZ 4 � 0.122 −0.140 −0.983 � 20
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a) Trajectory of sensitive instrument pointing
direction in 3-D
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Fig. 4 Case II: Trajectory of sensitive instrument pointing direction in 3-D and 2-D using controller in [20].
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Fig. 3 Case II: Time responses of spacecraft attitude Qe, angular velocity ω, control torque τ, and modal displacements η under the proposed
control law (34).
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out of the attitude-constrained zones. A comparison with the
technique discussed in [20] is also considered, where a velocity-free
controller is developed without coping with attitude constraints.
Figure 4 reports the simulation results using the controller in [20]. It is
clear that the pointing trajectory goes into the second attitude-
constrained cone, which may cause damage to the sensitive onboard
instruments.

V. Conclusions

This Note focuses on the development of velocity-free attitude
control laws for a rest-to-rest maneuver of flexible spacecraft under
attitude constraints. The constrained spacecraft orientations are
parameterized as a convex set using an intrinsic property of the
attitude representation via unit quaternion. A new quadratic potential
function is proposed to avoid the unwanted celestial objects by
placing a large potential around the constrained directions. Based on
such a potential function, a velocity-free attitude control law is
developed to ensure the asymptotic stability of the closed-loop
system by using auxiliary unit-quaternion dynamics. The performance
of the proposed constrained attitude control algorithm has been
discussed through numerical studies. In future work, angular velocity
constraints should be investigated to reduce the maximal slew rate of
flexible spacecraft.
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