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Abstract

The problem of fault-tolerant attitude tracking control for an over-actuated spacecraft in the presence of actuator faults/failures
and external disturbances is addressed in this paper. Assuming that information on the inertia and bounds on the disturbances
are unknown, a novel fault-tolerant control (FTC) law incorporating on-line control allocation (CA) is developed to handle
actuator faults/failures. To improve the robustness of the adaptive law and stop the adaptive gain from increasing, the time-
varying dead-zone modification technique is employed in parameter adaptations. It is shown that uniform ultimate boundedness
of the tracking errors can be ensured. To illustrate the efficiency of the CA-based FTC strategy, numerical simulations are
carried out for a rigid spacecraft under actuator faults and failures.
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1 Introduction

Attitude tracking control of spacecraft systems is a
benchmark control problem which is widely studied
due to its highly coupled nonlinearity in dynamics [1].
Recently, various nonlinear control approaches, such
as inverse optimal control [2], sliding mode control [3],
[4], hybrid control [5], output feedback control [6], etc.,
have been proposed for solving the attitude tracking
control problem with normal functioning actuators.
However, in practical circumstances, actuators may ex-
perience complete failures or partial loss of effectiveness
during operation [7], which could significantly degrade
mission performance or even lead to totally loss of the
spacecraft, see the example of satellite GPS BII-07 [8].
Therefore, to enhance the reliability of spacecraft, actu-
ator fault tolerance capability needs to be developed in
attitude control system design.

Fault-tolerant control (FTC) is one approach to ensure
reliable operation of systems while maintaining desired
stability and performance properties [9]. Generally, ap-
proaches for FTC systems design can be classified in-
to two types, namely, passive and active ones [10]. The
similarities and differences between these two FTC de-
sign methodologies from both philosophical and prac-
tical points of view can be found in [11]. Sliding mode
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control (SMC) technique has attracted extensive inter-
est in FTC design recently due to its inherent robust-
ness properties against matched uncertainties, see for
example [12], [13], [14] and [15]. For spacecraft attitude
control systems, methods such as multiple model [16],
indirect robust adaptive control [17], dynamic inversion
technique [18], and SMC [19], [20] etc., have been used
to maintain the desired attitude maneuver in spite of
actuator faults or failures.

Modern spacecraft often use redundant actuators to im-
prove the reliability and survivability. To make effec-
tive use of these redundancies, control allocation (CA)
is one promising and effective approach [21], which dis-
tributes the virtual control efforts from the high level
controller to the individual actuators, especially in the
case of actuator faults and failures [22], [23]. Recently, in
[15], [24], [25], SMC technique is combined with CA to
develop fault-tolerant controllers for over-actuated lin-
ear systems when actuators were subject to partial loss
of effectiveness or complete failures. For some spacecraft
missions, such as remote sensing or reconnaissance, the
spacecraft is required to achieve rapid attitude maneu-
vering together with high targeting accuracy and sta-
bility between the maneuvers [26]. However, external
disturbances were not taken into account in designing
these CA-based FTC schemes. Moreover, due to fuel
consumption, deployable appendage, sensor boom or ar-
ticulation, the mass properties of the spacecraft may be
uncertain or unknown, which makes the inertia matrix
different from that determined during preflight testing
[27], [28]. This inertia parameter discrepancy may lead
to the degradation of attitude control performance [29].
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This paper aims to propose a novel inertia-free adaptive
FTC design incorporated with CA for spacecraft atti-
tude tracking systems in the presence of unknown phys-
ical inertia information, external disturbances, and ac-
tuator faults/failures. The main contributions of the pa-
per are listed as follows: (1) the existing works that de-
sign CA-based FTC approach for linear systems in [15],
[24], are extended to strongly coupled nonlinear attitude
tracking systems, and external disturbances are reject-
ed. (2) Some modifications are made for the on-line CA
scheme proposed in [15] so that partially effective actua-
tors can be leveraged for control use. (3) Unlike existing
methods [2], [27] that estimate the elements in inertia
matrix directly for solving the attitude tracking control
problem, indirect adaptive techniques are employed so
that inertia matrix information is not required in the
FTC design. (4) Due to the structure of the proposed in-
direct adaptive control technique, a novel time-varying
dead-zone modification is proposed in the design of pa-
rameter adaptations to stop the adaptive gain from in-
creasing and improve robustness of the adaptive law to
measurement or system noises.

The remaining of the paper is organized as follows. Sec-
tion 2 presents the mathematic models for spacecraft at-
titude tracking systems with actuator fault/failure. Sec-
tion 3 is devoted to the presentation of main contribu-
tions, where a novel CA-based inertia-free adaptive con-
tinuous FTC scheme is proposed. In Section 4, simula-
tion results are included to show the efficiency of the
proposed scheme. Finally, conclusions and future works
are given in Section 5.

2 Problem Formulation

2.1 Spacecraft Attitude Dynamics

The kinematics and dynamics for the attitude motion of
a rigid spacecraft is expressed as follows [30]:

Q̇ =

[
q̇

q̇0

]
= 1

2

[
S(q) + q0I3

−qT

]
ω

Jω̇ = −S(ω)Jω + Du + d

(1)

where Q = [q1, q2, q3, q0]T = [qT , q0]T ∈ R3 × R de-
notes the unit-quaternion describing the attitude orien-
tation of the body frame B with respect to inertial frame
I and satisfies the constraint qTq + q2

0 = 1, ω ∈ R3

is the inertial angular velocity vector of the spacecraft
with respect to an inertial frame I and expressed in the
body frame B, J ∈ R3×3 denotes inertia matrix of the
spacecraft, I3 ∈ R3×3 denotes a 3-by-3 identity matrix,
D ∈ R3×N (N is the number of actuators and N > 3)
is the actuator distribution matrix with full row rank,
i.e., rank(D) = 3, u ∈ RN and d ∈ R3 denote the con-
trol torques produced by the N actuators and external
disturbances, respectively. The matrix S(x) ∈ R3×3 is a
skew-symmetric matrix satisfying S(x)y = x×y for any
vectors x,y ∈ R3, and × denotes vector cross product.

In the fault-free situation, the actual output torques u
of N actuators are equal to the desired values uc =
[uc1, uc2, . . . , ucN ]T ∈ RN commanded by the controller,
i.e., u = uc. When the system experiences actuator
faults/failures, the nonlinear attitude dynamics can be
rewritten in the following form:

Jω̇ = −S(ω)Jω + DE(t)uc + d (2)

where E = diag{e1(t), e2(t), . . . , eN (t)} ∈ RN×N is the
effectiveness gain matrix of actuators with scalars ei(t)
satisfying 0 ≤ ei ≤ 1, i = 1, 2, . . . , N . Note that the
case ei(t) = 1 indicates that the ith actuator works nor-
mally, and 0 < ei(t) < 1 implies that the ith actua-
tor partially loses its effectiveness. The value ei(t) = 0
means that the ith actuator undergoes a complete fail-
ure. In this paper, it is assumed that the actuator effec-
tiveness gain can be diagnosed by an FDD mechanism.
Similar to [15], the estimate of the actuator effectiveness,

Ê(t) = diag{ê1(t), ê2(t), . . . , êN (t)} with 0 ≤ êi(t) ≤ 1,
are supposed to satisfy

E(t) = (IN −∆(t))Ê(t) (3)

where ∆(t) = diag{δ1(t), δ2(t), . . . , δN (t)}, and the un-
known scalars δi(t) represent the level of imprecision in
the estimation of actuator effectiveness. Since the values
of E and Ê are constrained between zero and one, the
mismatch ∆(t) would be bounded by a constant ∆max,
i.e., ‖∆(t)‖ ≤ ∆max, where the notation ‖ · ‖ denotes
the Euclidean norm or its induced norm.

2.2 Attitude Error Dynamics

To address the attitude tracking issue, the desired mo-
tion of the spacecraft is given in a desired reference
frame R, whose orientation with respect to I is spec-
ified by unit-quaternion Qd = [qTd , qd0]T and satisfies
the constraint q2

d + q2
d0 = 1. The attitude tracking error

Qe = [qTe , qe0]T = Q−1
d ⊗Q is defined as the relative ori-

entation between the attitude Q and the desired attitude
Qd, where Q−1

d is the conjugate of the desired quater-

nion determined by Q−1
d = [−qTd , qd0]T , and ⊗ denotes

the quaternion multiplication operator. The angular ve-
locity error ωe ∈ R3 is given by ωe = ω − R(Qe)ωd,
where ωd is the desired angular velocity expressed in the
desired reference frameR. The rotation matrix R(Qe) is
given by R(Qe) = (q2

e0− qTe qe)I3 + 2qeq
T
e − 2qe0S(qe),

and ‖R(Qe)‖ = 1 and Ṙ(Qe) = −S(ωe)R(Qe).

Thus, the equation that governs the attitude tracking
error in terms of the unit-quaternion is given by

Q̇e =

[
q̇e

q̇e0

]
= 1

2

[
S(qe) + qe0I3

−qTe

]
ωe . (4)

To develop the control scheme, it would be useful to
define an auxiliary desired angular velocity, given by

ω̄d = R(Qe)ωd − kqe, (5)
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where k is a positive constant chosen by the designer.
The differentiable signal ω̄d satisfies

˙̄ωd =−S(ωe)R(Qe)ωd + R(Qe)ω̇d

− k

2
(S(qe) + qe0I3)ωe. (6)

Based on the auxiliary desired angular velocity, a sliding
vector is given by [31], [32]

ω̃ = ω − ω̄d = ωe + kqe. (7)

Consequently, from the attitude dynamics in (2) with
actuator efficiency in (3), the attitude tracking error in
terms of the sliding vector can be described as

J ˙̃ω =−S(ω̃)Jω − S(ω̄d)Jω − J ˙̄ωd

+ D(IN −∆(t))Ê(t)uc + d. (8)

To facilitate control system design, the following as-
sumptions are used in the subsequent developments.

Assumption 1 The inertia matrix J is a symmetric,
positive-definite and unknown constant matrix such that
‖J‖ ≤ cJ , where cJ is a positive constant.

Assumption 2 The desired angular velocity of space-
craft and its time derivative are bounded, that is ‖ωd‖ ≤
cω and ‖ω̇d‖ ≤ cdω, where cω and cdω are positive con-
stants.

Assumption 3 The external disturbance d is bounded
such that ‖d‖ ≤ dmax, where dmax is a positive constant.

Assumption 4 The spacecraft is so constructed that po-
tentially up to N − 3 actuators can suffer from total fail-
ures simultaneously, and the estimate of the actuator ef-

fectiveness satisfies Ê(t) ∈ E, where set E is defined as

E =
{

(ê1, ê2, . . . , êN ) ∈ [0 1]
N

: det(DÊ3(t)DT ) 6= 0
}

with [0 1]
N

= [0 1]× · · · × [0 1]︸ ︷︷ ︸
N times

.

Remark 1. Since the environmental disturbances due to
gravitation, solar radiation pressure, magnetic forces or
aerodynamic drag are bounded in practice, assumption
3 is reasonable. Assumption 4 guarantees that the fault-
y attitude tracking system is controllable and closed-
loop stability can be maintained, otherwise the attitude
tracking system shall be under-actuated.

2.3 Problem Formulation

In this paper, actuator redundancy (N > 3) is consid-
ered to enhance reliability and safety for the attitude
tracking control system, and hence the attitude track-
ing control system is an over-actuated systems. Thus, it
is possible to divide the controller design into two parts

SpacecraftActuatorController
Control 

Allocation

FDD Scheme

Loss of control 

effectiveness

External

disturbance

Reference 

Signal

Fig. 1. Structure of the overall attitude tracking scheme.

[21]: high level controller design and CA design. A high
level controller is designed as virtual control input to
specify total desired control efforts to the system, while
CA is developed to map the virtual control efforts into
individual actuators such that the total actual control
signals generated by all actuators amount to commanded
virtual inputs. Overall structure of the CA-based fault-
tolerant attitude tracking scheme is shown in Fig. 1.

Motivated by [15], the following l2-optimal CA problem
is considered:

min
uc(t)

uTc Ê
−1(t)uc

subject to DÊ(t)uc = vc (9)

where vc is the virtual control input generated by the

high level controller. It should be noted that DÊ3(t)DT

is invertible since Ê(t) ∈ E from assumption 4. Compar-
ing with the existing CA scheme in [15], the difference is
that the estimate of the actuator effectiveness is consid-
ered in the constraint. This modification makes the con-
straint is in accord with the actual situation, and par-
tially effective actuators can be leveraged for control use.
Then, it is straightforward to get the solution of (9) as

uc = Ê2(t)DT (DÊ3(t)DT )−1vc. (10)

Substituting the CA solution (10) into (8), the attitude
tracking error dynamics can be further written as

J ˙̃ω =−S(ω̃)Jω − S(ω̄d)Jω − J ˙̄ωd + vc

−D∆(t)D†vc + d, (11)

where D† = Ê3(t)DT (DÊ3(t)DT )−1. Since DD† =
I3, D† is a pseudo-inverse of matrix D under the con-

dition that Ê(t) ∈ E in assumption 4. According to the

property of pseudo-inverse in [33], if Ê(t) ∈ E , then there

exists a finite scalar ξ independent of Ê(t) such that

‖D†‖ = ‖Ê3(t)DT (DÊ3(t)DT )−1‖ < ξ. (12)

Assumption 5 The maximal mismatch between the ac-

tual efficiency matrix E(t) and its estimate Ê(t) in (3)
satisfies ∆maxξ‖D‖ < 1, where ξ is defined in (12).

Remark 2. Assumption 5 means that the mismatch be-
tween the actual efficiency matrix E(t) and its estimate

Ê(t) cannot be arbitrarily large. In practice, since the
designed FDD scheme could always provide estimation
on faults with a certain degree of precision, this assump-
tion is reasonable.
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3 Inertia-free Adaptive FTC Design

In this section, an inertia-free adaptive continuous virtu-
al control input is proposed to achieve attitude tracking
under actuator faults/failures without requiring space-
craft inertia knowledge. To eliminate the requirement of
inertia information, indirect adaptive technique is em-
ployed. First, using assumptions 1-3 and properties that
‖R(Qe)‖ = 1 and ‖S(qe) + qe0I3‖ = 1, the following
inequalities are established:

‖ω̄d‖ ≤ cω + k, (13)

‖S(ω̄d)Jω‖ ≤ cJ (cω + k) ‖ω‖, (14)

‖ ˙̄ωd‖ ≤
(
cω +

k

2

)
‖ω‖+ c2ω +

k

2
cω + cdω. (15)

Consequently, the lumped nonlinear terms and external
disturbances in (8) are upper bounded by

‖S(ω̄d)Jω + J ˙̄ωd + d‖ ≤ cΘ (16)

where the unknown constant c is given by

c = max

{
cJ

(
2cω +

3

2
k
)
, cJ

(
c2ω +

k

2
cω + cdω

)
+ dmax

}

and the time-varying variable Θ is defined as

Θ = ‖ω‖+ 1. (17)

Next, the inertia-free adaptive continuous virtual control
input for the spacecraft is proposed as

vc = v1 + v2 (18)

v1 = −k1ω̃ − k2qe (19)

v2 = −kv + ĉ(t)Θ + ∆maxξ‖D‖‖v1‖
1−∆maxξ‖D‖

ω̃a (20)

ω̃a =


ω̃
‖ω̃‖ , if ‖ω̃‖ > ε

ω̃
ε , if ‖ω̃‖ ≤ ε

(21)

where k1 and k2 are two positive constants, ε is a positive
scalar variable defined as ε = σ

Θ , and σ is a small positive
constant. Since Θ = ‖ω‖+ 1 ≥ 1, it is clear that ε ≤ σ.
The parameter ĉ(t) is the estimate of constant c, which
is updated as

˙̂c(t) = α1Θω̃TaDε[ω̃]− α1α2

Θ
ĉ(t) (22)

where α1 and α2 are two positive constants, and ĉ(0) >
0. The dead-zone operator Dε[·] is defined as

Dε[ω̃] =

 ω̃, if ‖ω̃‖ > ε

0, if ‖ω̃‖ ≤ ε.
(23)

Since the time-varying variable Θ is incorporated into ε,
the dead-zone width ε is also time-varying. The proper-
ties of ω̃a and Θ are described by the following lemmas.

Lemma 1 The function ω̃a defined in (21) has the fol-
lowing properties:

(1) ‖ω̃a‖ ≤ 1.
(2) ω̃T ω̃a = ‖ω̃‖, if ‖ω̃‖ > ε

ω̃T ω̃a ≤ σ, if ‖ω̃‖ ≤ ε.

Proof. See the appendix A. �

Lemma 2 For ‖ω̃‖ ≤ ε, the variable Θ defined in (17)
is bounded by

1 ≤ Θ ≤ Θm (24)

where the finite constant Θm =
cω+k+1+

√
(cω+k+1)2+4σ

2 .

Proof. See the appendix B. �

To analyze the stability of the overall system, a
Lyapunov-like candidate Vs is proposed as

Vs =
1

2
ω̃TJω̃ + k2

[
qTe qe + (1− qe0)2

]
+

1

2α1
c̃2(t) (25)

where c̃(t) = c− ĉ(t), and ˙̃c(t) = − ˙̂c(t). The time deriva-
tive of Vs is given by

V̇s = ω̃T
(
− S(ω̃)Jω − S(ω̄d)Jω − J ˙̄ωd + d

−D∆(t)Ê3(t)DT (DÊ3(t)DT )−1vc + vc

)
+k2q

T
e ωe −

1

α1
c̃(t) ˙̂c(t). (26)

Since ĉ(0) > 0 is chosen, ĉ(t) ≥ 0 can always be guar-
anteed in view of the update law of ĉ(t) in (22). Conse-
quently, under assumption 5 and using the first property

in lemma 1, it follows that ‖vc‖ ≤ kv+ĉ(t)Θ+‖v1‖
1−∆maxξ‖D‖ . Sub-

stituting the inertia-free virtual control input (18) and
parameter update law (22) into (26), it leads to

V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 + cΘ‖ω̃‖

+∆maxξ‖D‖
kv + ĉ(t)Θ + ‖v1‖

1−∆maxξ‖D‖
‖ω̃‖

−kv + ĉ(t)Θ + ∆maxξ‖D‖‖v1‖
1−∆maxξ‖D‖

ω̃T ω̃a

−c̃(t)Θω̃TaDε[ω̃] +
α2

Θ
c̃(t)ĉ(t). (27)

For further stability analysis, two cases are considered.

Case I: If ‖ω̃‖ > ε, then ω̃T ω̃a = ‖ω̃‖ and Dε[ω̃] = ω̃.
Therefore, (27) can be rewritten as

V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 − c̃(t)Θ‖ω̃‖

+
α2

Θ
c̃(t)ĉ(t) +

kv∆maxξ‖D‖ − kv
1−∆maxξ‖D‖

‖ω̃‖

+
ĉΘ∆maxξ‖D‖+ c̃(t)Θ− cΘ∆maxξ‖D‖

1−∆maxξ‖D‖
‖ω̃‖

≤ −k1‖ω̃‖2 − k2k‖qe‖2 − kv‖ω̃‖+
α2

Θ
c̃(t)ĉ(t). (28)
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By completion of squares that c̃(t)ĉ(t) ≤ − c̃
2(t)
2 + c2

2 and
using ‖ω̃‖ > σ

Θ , it can be shown that

V̇s ≤−k1‖ω̃‖2 − k2k‖qe‖2 −
1

Θ

(
kvσ −

α2c
2

2

)
. (29)

If the design parameters kv, σ, and α2 are chosen so that

kvσ ≥
α2c

2

2
, (30)

then V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 < 0. Therefore, when
‖ω̃‖ > ε, Vs(t) decreases monotonically until ‖ω̃‖ ≤ ε
is achieved. Consequently, Vs(t) is upper bounded by
its initial value Vs(0), i.e., Vs(t) ≤ Vs(0). Since c̃2(t) ≤
2α1Vs(t) from (25), it follows that

ĉ(t) ≤ cm (31)

where cm = c+
√

2α1Vs(0).

Case II: If ‖ω̃‖ ≤ ε, then ω̃T ω̃a = ‖ω̃‖2
ε ≤ σ from the

second property in lemma 1 and Dε[ω̃] = 0. Therefore,
(27) can be rewritten as

V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 −
α2

2Θm
c̃2(t) +

α2c
2

2
+ cΘ‖ω̃‖

+
∆maxξ‖D‖

1−∆maxξ‖D‖
(kv + ĉΘ + ‖v1‖) ‖ω̃‖. (32)

Assuming that ‖ω̃‖ ≤ ε is satisfied at t = t∗. As soon
as ‖ω̃‖ ≤ ε is fulfilled at t = t∗, the adaptive parameter

ĉ(t) deceases monotonically in accordance with ˙̂c(t) =
−α1α2

Θ ĉ(t), which implies ĉ(t) ≤ ĉ(t∗). If t∗ = 0 or ‖ω̃‖
increase to ε at t = t∗, then ĉ(t∗) ≤ ĉ(0). Otherwise,
‖ω̃‖ decreases to ε at t = t∗, and it follows from (31)
that ĉ(t∗) ≤ cm. Since ĉ(0) ≤ Vs(0), it can always be
guaranteed that ĉ(t) ≤ cm. Therefore, from (32) and
using the constraint of unit-quaternion |q0| ≤ 1 as well
as Θ‖ω̃‖ ≤ σ when ‖ω̃‖ ≤ ε, it is clear that

V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 −
α2

2Θm
c̃2(t) +

α2c
2

2
+ cσ

+
∆maxξ‖D‖

1−∆maxξ‖D‖
(kv + cm + k2 + k1σ)σ (33)

which leads to

V̇s ≤ −κVs + % (34)

where the two positive constants κ and % are given by

κ = min
{
k1
cJ
, k, α1α2

Θm

}
and % = ∆maxξ‖D‖

1−∆maxξ‖D‖ (kv+cm+k2

+k1σ)σ+α2c
2

2 +cσ+4k2k. In addition, let η be a constant
defined as

η =
∆maxξ‖D‖

1−∆maxξ‖D‖
(kv + cm + k2 + k1σ)σ

+
α2c

2

2
+ cσ. (35)

Then, according to (33), it can be found that V̇s(t) < 0 if

‖ω̃‖ >
√

η

k1
, or ‖qe‖ >

√
η

k2k
. (36)

Moreover, to show that angular velocity tracking error
ωe is bounded as well, a new Lyapunov-like candidate is
chosen as

Vs1 =
1

2
ω̃TJω̃ + (2k1k + k2)

[
qTe qe + (1− qe0)2

]
+

1

2α1
c̃2(t). (37)

Following the same lines as in the proof of Case II and
using (7), it is straightforward to show that

V̇s1 ≤ −k1‖ωe‖2 − k(k1k + k2)‖qe‖2 + η. (38)

Clearly, according to (38), V̇s1(t) < 0 if

‖ωe‖ >
√

η

k1
, or ‖qe‖ >

√
η

k(k1k + k2)
. (39)

Finally, the actual inertia-free adaptive continuous com-
manded control input, which will be sent to the actua-
tor, is given by

uc = Ê2(t)DT (DÊ3(t)DT )−1

(
− k1ω̃ − k2qe

−kv + ĉ(t)Θ + ∆maxξ‖D‖‖v1‖
1−∆maxξ‖D‖

ω̃a

)
. (40)

Now, we shall state the following theorem:

Theorem 1 Consider the attitude tracking error sys-
tem in (4) and (8) under assumptions 1-5. Suppose
that the control parameters kv, α2, and σ are chosen to
satisfy the condition (30). If the inertia-free adaptive
continuous commanded control input uc is given by (40)
and the update law is provided by (22), then the sliding
vector ω̃, attitude tracking error qe, and angular veloc-
ity tracking error ωe are uniformly ultimately bounded,
and converge to a small invariant set containing the
origin, that is, lim

t→∞
‖ω̃(t)‖ ∈ Ωω̃, lim

t→∞
qe(t) ∈ Ωqe ,

and lim
t→∞

ωe(t) ∈ Ωωe , where Ωω̃, Ωqe , and Ωωe are

defined as Ωω̃ =
{
ω̃
∣∣∣‖ω̃‖ ≤ min

{√
η
k1
, σ
} }

, Ωqe ={
qe

∣∣∣‖qe‖ ≤√ η
k(k1k+k2)

}
, Ωωe =

{
ωe

∣∣∣‖ωe‖ ≤√ η
k1

}
,

respectively.

Proof. In Case I, if the condition (30) is satisfied, then

V̇s < 0, and thus ‖ω̃‖ ≤ ε ≤ σ can always be achieved in
finite time. In Case II, from (34), it can be shown that
the closed-loop systems is uniformly ultimately bound-
ed stable [34]. Summarizing Case I and Case II, it can
be concluded that all the internal signals are bound-
ed. Furthermore, if the condition (30) and equation (36)
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are satisfied, it follows that V̇s < 0 for both Case I
and Case II. As a result, the overall closed-loop sys-
tem is bounded and the decrease of V̇s drives ‖ω̃‖ and

‖qe‖ into ‖ω̃‖ ≤ min
{√

φ
k1
, σ
}

and ‖qe‖ ≤
√

φ
k2k

ulti-

mately. Moreover, if equation (39) is satisfied, it follows

that V̇s1 < 0 for Case II, and thus ‖ωe‖ and ‖qe‖ con-

verge to ‖ωe‖ ≤
√

φ
k1

and ‖qe‖ ≤
√

φ
k(k1k+k2) ultimate-

ly. Since
√

φ
k(k1k+k2) <

√
φ
k1

, ‖qe‖ shall be confined to

‖qe‖ ≤
√

φ
k(k1k+k2) ultimately. Therefore, it is obtained

that the filtered angular velocity, attitude orientation
and angular velocity tracking errors are uniformly ulti-
mately bounded as lim

t→∞
‖ω̃(t)‖ ∈ Ωω̃, lim

t→∞
qe(t) ∈ Ωqe ,

and lim
t→∞

ωe(t) ∈ Ωωe , where Ωω̃, Ωqe , and Ωωe are small

invariant sets containing the origin defined in theorem
2. This completes the proof. �

Remark 3. The stability condition on the control pa-
rameters kv, α2, and σ in (30) can be relaxed if some
modifications are made to the update law (22). The mod-
ified update law is proposed as

˙̂c(t) = α1Θω̃TaDε[ω̃]− α1

Θ
α2

2(t)ĉ(t). (41)

This modified update law is employed with an auxiliary
time-varying gain function α2(t) satisfying

α̇2(t) = −kα
Θ
α2(t) (42)

where kα is a positive constant.

To show the stability of the closed-loop system under
the virtual control input (18) and modified adaptive law
(41), the candidate Lyapunov function is chosen as Vs =
1
2 ω̃

TJω̃+k2

[
qTe qe + (1− qe0)2

]
+ 1

2α1
c̃2(t)+ 1

8kα
c2α2

2(t).
Differentiating Vs with respect to time and substituting
the virtual control input and modified update law into
it, V̇s ≤ −k1‖ω̃‖2 − k2k‖qe‖2 < 0 can also be obtained
in Case I without restrictions on the control parameters.
This modification on the adaptive law shall not affect
the result in Case II except that the constant η in (35)

becomes η = ∆maxξ‖D‖
1−∆maxξ‖D‖ (kv + cm + k2 + k1σ)σ + cσ.

Therefore, it is proved similarly that the results stated
in theorem 1 can also be achieved. �

Remark 4. From parameter update law in (22), the
constant α1 mainly adjusts the increasing rate of the pa-
rameter ĉ(t) (the rising phase of ĉ(t) if the initial value
ĉ(0) is small), while α2 adjusts the decreasing rate (the
steady phase of ĉ(t)). In order to ensure a smooth change
of the ĉ(t), α1 and α2 should be small constants. More-
over, due to the stability condition in (30), a large value
of α2 should not be select. �

4 Simulations

To study the effectiveness and performance of the
CA-based FTC strategies, numerical simulations have
been carried out for spacecraft attitude tracking sys-
tem given in (1) under actuator faults/failures. The
spacecraft is assumed to have the inertia matrix of J =
[20 1.2 0.9; 1.2 17 1.4; 0.9 1.4 15] kg ·m2. External dis-

turbances ared = 5×10−2 [sin(0.8t) cos(0.5t) sin(0.2t)]
T

N ·m. In order to achieve three axes control of a space-
craft, four reaction wheels (RW) in a pyramid configu-
ration are considered as actuators, whose distribution
matrix is D = 1√

3
[−1 − 1 1 1; 1 − 1 − 1 1; 1 1 1 1].

For a clear interpretation of the results, attitude
are expressed in Euler angles (yaw, pitch, and rol-
l are ψ, θ, and φ) converted from unit quater-
nion in the simulation. The initial attitude is set as
[ψ, θ, φ]T = [38.85, 22.33, − 16.32]T deg, cor-
responding to Q(0) = [−0.2, 0.15, 0.35, 0.9028]T .
The initial angular velocity is ω(0) = [0, 0, 0]T

rad/s. The desired motion expressed in the body
frame B with respect to inertial frame I is ωd(t) =
0.01[cos(t/40), sin(t/60), − cos(t/50)]T rad/s. Using
q̇d = 1

2 (S(qd) + qd0I3)ωd and q̇d0 = − 1
2q

T
d ωd, the de-

sired quaternion Qd can be obtained, and then the de-
sired attitude represented by Euler angers (ψd, θd, and
φd) can also be obtained. The initial value of desired
quaternion is set as Qd(0) = [0, 0, 0, 1]T .

In the simulation, four reaction wheels are assume to ex-
perience partial loss of effectiveness fault or total failure
simultaneously. The detailed scenario is described as
e1(t) = 0.5 + 0.09 sin(0.05t) + 0.005 rand(·)
e2(t) = 0.6 + 0.1 cos(0.08t) + 0.008 rand(·)
e3(t) = 0.4 + 0.08 sin(0.06t) + 0.005 rand(·)
e4(t) = 0

where the function rand(·) generates a random value
from the normal distribution with mean 0 and standard
deviation 1. Under this fault scenario, it is found that
ξ = 1.732 in (12). Here it is assumed that the upper
bound on the error in fault estimation is ∆max = 0.25.
The parameters of the inertia-free adaptive continuous
virtual control input in (18) is set as k = 0.3, k1 = 0.1,
k2 = 0.1, α1 = 0.01, α2 = 0.01, σ = 0.001, and kv = 0.1.
The initial value of ĉ(t) in (22) is chosen as ĉ(0) = 0.01.

The simulation results using inertial-free adaptive FTC
design (18) under the actuator faults/failures are giv-
en in Fig. 2. It can be seen that all signals are bounded
and tracking errors converge to a small neighborhood of
zero despite external disturbances and actuator fault-
s/failures. In particular, it is observed from Figs. 2c that
no commanded control input is reallocated to RW4 and
the virtual control input is totally reallocated to RW1-
RW3. This observation is in accordance with the CA
scheme in (9). Referring to Fig. 2d, the adaptive param-
eter is bounded, and thus the efficacy of the proposed
adaptation law is verified.
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(a) Attitude orientation tracking error.
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(b) Angular velocity tracking error.
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Fig. 2. Tracking errors, commanded control input uc, and adaptive parameter using inertia-free adaptive FTC law in (18).

Table 1
Comparison of control performance

Controller
Control performance

SE1 of qe SE of ωe OCF2

Proposed FTC law
in (40)

± 0.06 ± 3×10−4 5.93

FTC law in [17] ± 1.15 ± 5×10−3 10.56

PD+ controller [35]
with CA in [15]

± 6.50 ± 2×10−2 3.13

1 SE stands for steady error.
2 OCF denotes overall control effort defined as OCF =

1
2

∫ T

0
‖uc‖dt, where T is the simulation time.

For the purposes of comparison, the FTC attitude track-
ing controller in [17] and the PD+ controller in [35] com-
bined with CA in [15] are also simulated under the same
fault scenario. The control gains of PD+ controller are
turned such that the closed-loop attitude tracking er-
ror system in healthy condition is critical damping. To
make a fair comparison of the control performances un-
der actuator faults/failures, the magnitude of control
torques under three control schemes are limited to the
same level. The comparison results are summarized in
Table 1. It is observed that the proposed FTC law in
(40) provides superior control performance than the two
controller schemes used for comparison. Since there is
no fault recovery in PD+ controller, it doesn’t cost ex-
tra control effort to compensate for actuator faults and
the tracking performance has deteriorated significant-
ly. From energy consumption perspective, the proposed
FTC law uses less control effort and achieves better con-

trol performance comparing with FTC law in [17].

5 Conclusions

In this paper, a CA-based FTC scheme for attitude
tracking systems of over-actuated spacecraft in the p-
resence of actuator faults/failures and external distur-
bances are presented. Due to the availability of actuator
redundancies, CA is used to redistribute the control ef-
forts among remaining actuators without reconfiguring
the controller, and faulty but not completely failed actu-
ators are fully leveraged. A novel adaptive FTC scheme
is proposed without using the information on the inertia
matrix and external disturbances. It is shown that the
proposed FTC scheme has the capacity to handle actu-
ator faults/failures and the uniform ultimate bounded-
ness of the tracking errors can be ensured. The effective-
ness of the proposed FTC schemes is verified through
simulation of a rigid spacecraft. In future work, control
input saturation and unwinding problem should be in-
vestigated to reduce the power consumption.

Appendix

A Proof of Lemma 1

From (21), ‖ω̃a‖ = 1 when ‖ω̃‖ > ε which implies that
ω̃T ω̃a = ω̃T ω̃

‖ω̃‖ = ‖ω̃‖ for ‖ω̃‖ > ε. If ‖ω̃‖ ≤ ε, then

‖ω̃a‖ = ‖ω̃‖
ε ≤ 1 and ω̃T ω̃a = ‖ω̃‖2

ε ≤ ε. Notice that

ε = σ
Θ and Θ ≥ 1, it follows that ω̃T ω̃a ≤ σ for ‖ω̃‖ ≤ ε.

Therefore, the results in lemma 1 are established. �
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B Proof of Lemma 2

When ‖ω̃‖ ≤ ε, it is clear that ‖ω̃‖ ≤ σ
Θ . Since ‖ω̃‖ =

‖ω − ω̄d‖ from (7), it follows that ‖ω̃‖ ≥ ‖ω‖ − ‖ω̄d‖.
This gives Θ ≤ σ

Θ + cω + k + 1, where the inequality
in (13) is used. Since Θ = ‖ω‖ + 1 ≥ 1, it can be ob-
tained that Θ2 − (cω + k + 1) Θ − σ ≤ 0. Consequent-
ly, solving this inequality yields 1 ≤ Θ ≤ Θm, where

Θm =
cω+k+1+

√
(cω+k+1)2+4σ

2 . �
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