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Abstract In this paper, for Multi-Spacecraft System (MSS) with a directed communication topology link
and a static virtual leader, a controller is proposed to realize attitude consensus and attitude stabilization with
stochastic links failure and actuator saturation. First, an MSS attitude error model suitable for a directed
topology link and with a static virtual leader based on SO(3) is derived, which considers that the attitude
error on SO(3) cannot be defined based on algebraic subtraction. Then, we design a controller to realize the
MSS on SO(3) with attitude consensus and attitude stabilization under stochastic links failure and actuator
saturation. Finally, the simulation results of a multi-spacecraft system with stochastic links failure and a
static virtual leader spacecraft are demonstrated to illustrate the efficiency of the attitude controller.

1. Introduction

In recent years, the attitude control of Multi-Spacecraft System
(MSS) has aroused widespread concern. By using the information-
based sharing, interaction and cooperation of the MSS to form a
large virtual spacecraft, it can not only replace the role of large
spacecraft in many application fields, but also obtain many advan-
tages.1 For example, in the process of carrying out deep space ex-
ploration and earth observation missions, the MSS can significantly
improve the information processing and observation capability. In
addition, the failure of one spacecraft in an MSS will not cause
the failure of the whole mission, which improves the reliability and
stability. Meanwhile, it has the advantages of cheap and easy main-
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tenance.2–5 Therefore, as a necessary extension and supplement to
the technology of large spacecraft, the MSS technology has a very
important research value.
At present, many attitude representation methods have been

developed for rigid body attitude control.6 These include Euler
angles andModified Rodriguez Parameters (MRPs), which have the
disadvantage of singularities.7 Thus, they are not suitable for large-
angle attitude redirection maneuvers. The unit-quaternion in non-
Euclidean global parameterization has no singularity. However,
there is an unexpected ambiguity phenomenon,8 i.e., each rotation
can be expressed by two different unit-quaternions. Accordingly,
the attitude representation method of rigid spacecraft based on the
Lie group SO(3) can avoid the defects of the above three attitude
representations and has caused in-depth research. Four types of
tracking control systems for a rigid spacecraft directly on the special
orthogonal group SO(3) were designed by Lee9 to achieve global
exponential stability and to avoid singularities of local coordinates,
or ambiguities associated with quaternions. An adaptive controller
on SO(3) for a rigid spacecraft was derived by Kulumani et al.,10
which can satisfy the attitude constraint and avoid the attitude-
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forbidden zone in the course of redirection.
In addition, for the attitude tracking problem of the MSS, all

spacecraft have to track the desired attitude given by the virtual
leader spacecraft. In order to reduce the communication burden
and improve the robustness of the MSS, a distributed strategy has
been widely used in missions,11–15 i.e., each spacecraft can only
determine its own control commands according to its own state and
the communication with neighboring spacecraft. For the multi-
spacecraft system on MRPs with both rigid and flexible spacecraft,
a controller was designed by Du et al.16 for each spacecraft to track
the attitude of the virtual leader spacecraft. Cui et al.17 proposed
a distributed finite time attitude tracking controller with unavail-
able angular velocity on MRPs for uncertain MSS under directed
topology conditions. An adaptive nonsingular fast terminal sliding
mode controller was developed by Zhang et al.18 for MSS using
the unit-quaternion under directed and undirected graph to achieve
attitude synchronization and tracking. For the multi-spacecraft sys-
tem on unit-quaternion, in which only some spacecraft can obtain
virtual leader commands, an adaptive attitude controller was de-
signed by Yue et al.19 to achieve attitude coordination and tracking
under uncertain inertia parameters. An adaptive fault-tolerant con-
troller on unit-quaternion was designed by Hu et al.20 to realize
the attitude coordination and tracking of multi-spacecraft system
with the uncertain inertia parameters, the actuators failure, and the
time-varying center of mass. Under a directed graph, a distributed
adaptive controller was employed by Chen and Shan21 for MSS on
SO(3) to achieve attitude tracking and synchronization. Consider-
ing mixed attitude constraints, an saturated adaptive controller on
SO(3) was designed by Kang et al.22 to achieve attitude coordi-
nation and tracking of multiple spacecraft systems with arbitrary
initial attitude. The above literature assumes that the communica-
tion links between spacecraft are determined, i.e., the links between
spacecraft are 100% communicable, and stochastic links failure is
not taken into account.
In practice, communication links between spacecraft are sus-

ceptible to multiple uncertainties, such as environmental distur-
bances, stochastic characteristics of equipment, and randomly lost
package of data. Therefore, it is uncertain whether the communica-
tion link between spacecraft is connected, i.e., the link is possible
to fail and be randomly reconstructed. A discrete-time protocol for
discrete-time linear multi-agent systemswas addressed by Rezaee et
al.,23 which achieved almost sure consensus under stochastic links
failure. The attitude consensus problem in MSS using the unit-
quaternion under stochastic link failures was studied by Rezaee and
Abdollahi.24 However, the model of the spacecraft is represented
by the unit-quaternion, and it can not track the expected attitude
due to only considering the attitude consensus, which limits the
application in the mission. To the best of our knowledge, design-
ing an attitude controller for MSS on SO(3) with a virtual leader
spacecraft under stochastic links failure is still an open problem.
In this work, we consider that the MSS are connected in a

directed topology, and a virtual leader spacecraft provides a static
desired attitude for theMSS. It is assumed that each communication
link between two spacecraft including the leader is not determin-
istic and may experience connection failure and be reconstructed
randomly over time. To solve this challenging problem, a MSS at-
titude error model based on SO(3) suitable for a directed topology
link is derived. Then, a controller is designed to realize the MSS
on SO(3) with attitude consensus and attitude stabilization under
stochastic links failure and actuator saturation.
The main contribution of this work is stated as follows:
Comparedwith the existing attitude control approaches16,18,21,24

of MSS , we design an attitude controller for the MSS on SO(3)

with a static virtual leader to realize attitude consensus and attitude
stabilization under stochastic links failure and actuator saturation.
The remainder of this paper is organized as follows. The at-

titude kinematics and dynamics of MSS on SO(3) are modeled in
Section 2. One problem to be solved in this paper is stated in Sec-
tion 3. In Section 4, an MSS attitude stabilization error model on
SO(3) suitable for a directed topology link and with a static virtual
leader is proposed. The controller under the stochastic links failure
is designed to realize the MSS attitude consensus and attitude stabi-
lization on SO(3) in Section 5. Simulation results are demonstrated
in Section 6. Conclusions are drawn in Section 7.

2. Preliminaries

2.1. Attitude kinematics and dynamics with actuator saturation
In this paper, the attitude dynamics of a rigid body is considered. Let
I denote an inertial reference frame and B denote the body-fixed
frame with origin being located at the center of mass. A special
group of 3 × 3 orthogonal matrices used to parameterize attitude is
defined as

SO(3) =
{
𝑹 ∈ R3×3 | 𝑹T𝑹 = 𝑰3, det 𝑹 = 1

}
(1)

The hat map ∧ : R3 → 𝔰𝔬(3) is used to convert a vector in R3
to a 3 × 3 skew-symmetric matrix, where 𝔰𝔬(3) is also the Lie
algebra corresponding to the vector. More explicitly, for a vector
𝒙 = [𝑥1, 𝑥2, 𝑥3]T ∈ R3, we have

�̂� =


0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0

 (2)

The inverse of the hat map is denoted by the vee map ∨ : 𝔰𝔬(3) →
R3. Several properties of the hat map and the vee map of 𝒙, 𝒚 ∈ R3
are summarized as follows:10,25

�̂� 𝒚 = 𝒙 × 𝒚 = −𝒚 × 𝒙 = −�̂�𝒙 (3)

tr[𝑨�̂�] = 0.5 tr[�̂�(𝑨 − 𝑨T)] = −𝒙T (𝑨 − 𝑨T)∨ (4)

�̂� 𝑨 + 𝑨T �̂� = ({tr[𝑨] 𝑰3 − 𝑨}𝒙)∧ (5)

𝑹�̂�𝑹T = (𝑹𝒙)∧ (6)

for any 𝒙, 𝒚 ∈ R3, 𝑨 ∈ R3×3 and 𝑹 ∈ SO(3).
Then, consider an MSS consisting of 𝑁 spacecraft. Let 𝑹𝑖 ∈

SO(3) represent the rotation matrix of the 𝑖-th spacecraft from
the body frame B to the inertial reference frame I. The attitude
kinematics of the 𝑖-th spacecraft can be expressed as21,26

¤𝑹𝑖 = 𝑹𝑖�̂�𝑖 (7)

where 𝛀𝑖 ∈ R3 is the inertial angular velocity vector of the 𝑖-th
spacecraft with respect to an inertial frame I and expressed in the
body-fixed frame B. The attitude dynamics of the 𝑖-th spacecraft is
given by10,25

𝑱𝑖 ¤𝛀𝑖 = −𝛀𝑖 × 𝑱𝑖𝛀𝑖 + 𝒖𝑖 + 𝒅𝑖 (8)

where 𝑱𝑖 ∈ R3×3, 𝒖𝑖 ∈ R3 and 𝒅𝑖 ∈ R3 denote the symmetric
positive definite inertia matrix in the body-fixed frame and the
control torque, and the external disturbance of the 𝑖-th spacecraft,
respectively.
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Assumption 1. The external disturbance 𝒅𝑖 of each spacecraft is
bounded by an unknown positive constant 𝑑𝑖,max, i.e., ‖𝒅𝑖 ‖ ≤
𝑑𝑖,max. In addition, 𝑑𝑖,max is bounded by a known empirical value
𝐷𝑖,max, i.e., ‖𝒅𝑖 ‖ ≤ 𝑑𝑖,max < 𝐷𝑖,max, where ‖∗‖ denotes the
Euclidean norm.

In addition, the actuators saturation is also considered in this
work. The saturated control input 𝒖𝑖 = [𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3]T ∈ R3
in Eq. (8) is defined as 𝑢𝑖, 𝑝 = sign(𝑢𝑖, 𝑝)min(𝑢𝑖,sat, 𝑝 , |𝑢𝑖, 𝑝 |),27
where 𝑢𝑖, 𝑝 and 𝑢𝑖, 𝑝,sat are the nominal input and saturation limit
of the 𝑝-th actuator of the spacecraft with 𝑝 = 1, 2, 3. The non-
linear saturation 𝒖𝑖 in this work is approximately modeled as �̄�𝑖 =
[�̄�𝑖,1, �̄�𝑖,2, �̄�𝑖,3]T ∈ R3 by using a dead-zone basedmodel28,29 with
the relation

�̄�𝑖, 𝑝 = 𝜌𝑖, 𝑝,0𝑢𝑖, 𝑝 −
∫ 𝐾𝑖,𝑝

0
𝜌𝑖, 𝑝 (𝑘)Z(𝑘, 𝑢𝑖, 𝑝)d𝑘 (9)

where 𝜌𝑖, 𝑝 (𝑘) is a known density function and is given as

𝜌𝑖, 𝑝 (𝑘) =
{ 2
𝐾𝑖,𝑝

𝑘 ≤ 𝐾𝑖, 𝑝

0 𝑘 > 𝐾𝑖, 𝑝
(10)

The dead-zone operator

Z(𝑘, 𝑢𝑖, 𝑝) = max
(
𝑢𝑖, 𝑝 − 𝑘,min(0, 𝑢𝑖, 𝑝 + 𝑘)

)
(11)

Meanwhile, 𝜌𝑖, 𝑝,0 =
∫ 𝐾𝑖,𝑝

0 𝜌𝑖, 𝑝 (𝑘)d𝑘 is a positive known constant
parameter. We further have 𝑢𝑖, 𝑝,sat = 𝐾𝑖, 𝑝 from 𝜌𝑖, 𝑝 (𝑘).22
Then, the attitude dynamics of the 𝑖-th spacecraft Eq. (8) can

be rewritten as

𝑱𝑖 ¤𝛀𝑖 = −𝛀𝑖 × 𝑱𝑖𝛀𝑖 + �̄�𝑖 + 𝒅𝑖 (12)

with

�̄�𝑖 = 𝝆𝑖, 𝑝,0 ◦ 𝒖𝑖 − 𝒍𝑖 (13)

where 𝝆𝑖, 𝑝,0 = [𝜌𝑖,1,0, 𝜌𝑖,2,0, 𝜌𝑖,3,0]T ∈ R3, 𝒍𝑖 = [𝑙𝑖,1, 𝑙𝑖,1, 𝑙𝑖,1]T ∈
R3 with 𝑙𝑖, 𝑝 =

∫ 𝐾𝑖,𝑝

0 𝜌𝑖, 𝑝 (𝑘)Z(𝑘, 𝑢𝑖, 𝑝)𝑑𝑘 , 𝑝 = 1, 2, 3. 𝒖𝑖 =

[𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3]T ∈ R3 represents the controller output to be de-
signed and the symbol ◦ denotes Hadamard product.

2.2. Stochastic process
The change of a stochastic variable in time can be expressed by a
stochastic process 𝑋 = {𝑋 (𝑡), 𝑡 ≥ 0}. Let P{·} and E{·} denote
the probability and the expected value of a stochastic variable. The
conditional expected value of 𝑋 given an event 𝐻 is expressed
by E{𝑋 | 𝐻}. The stochastic process can be described by the
probability triple (𝜔, F , P),30 where 𝜔, F and P are the space
of events, a 𝜎-algebra onto a subspace of 𝜔, and the probability
measure on (𝜔, F ) with 0 ≤ P{·} ≤ 1 and P{𝜔} = 1, respectively.
In addition, a filtration {F𝑡 , 𝑡 ≥ 0} on (𝜔, F , P) is defined as a set
of sub 𝜎-algebras of F and satisfies Fs ⊂ F𝑡 (𝑠 < 𝑡).
In this condition, if 𝑋 (𝑡) is F𝑡 -measurable for all 𝑡 ≥ 0, then the

stochastic process 𝑋 = {𝑋 (𝑡), 𝑡 ≥ 0} is adapted to the filtration {F𝑡 }.
Moreover, a stochastic process 𝑋 is a super-martingale relative to
{F𝑡 } and P if the following conditions are satisfied:31

(1) 𝑋 is adapted to the filtration {F𝑡 }
(2) E{|𝑋 (𝑡) |} < ∞ ∀𝑡
(3) E{𝑋 (𝑡) | Fs} ≤ 𝑋 (𝑠) 𝑡 > 𝑠

The stochastic variable 𝑋 (𝑡) almost surely (a.s.) converges to a
finite 𝑋f if P {lim𝑡→∞ 𝑋 (𝑡) = 𝑋f} = 1, which is further equivalently
written as lim𝑡→∞ 𝑋 (𝑡) a.s.→ 𝑋f .
Now, we can summarize the following super-martingale con-

vergence lemma for deriving the main result of this paper:24,32

Lemma 1. If the stochastic process 𝑋 = {𝑋 (𝑡), 𝑡 ≥ 0} is a non-
negative super-martingale, then there exists a finite 𝑋f such that
lim𝑡→∞ 𝑋 (𝑡) a.s→ 𝑋f .

2.3. Graph theory
The information topology between the leader spacecraft and the
follower 𝑁 spacecraft can be described by a directed graph G =

(V, E),33 whereV = {1, 2, · · · , 𝑁} denotes the node set and E ⊂
V ×V is the edge set. The associated adjacency matrix is defined
as A =

[
𝛼𝑖 𝑗

]
∈ R𝑁×𝑁 , where 𝛼𝑖 𝑗 = 1 if (𝑖, 𝑗) is one element

of E, i.e., the mode 𝑖 sends information to the node 𝑗 , and 𝛼𝑖 𝑗 =
0 otherwise. Since there is no self-loop for each node in this
work, 𝛼𝑖𝑖 = 0 holds. The set of in-neighbors of the node 𝑖 is
denoted by N𝑖 = { 𝑗 | ( 𝑗 , 𝑖) ∈ E}. The in-degree matrix of the
graph G is denoted by D = diag (D1,D2, . . . ,D𝑁 ), where D𝑖 =∑
𝑗∈N𝑖

𝛼𝑖 𝑗 . The out-neighbors set of the node 𝑖 is denoted by
O𝑖 = { 𝑗 | (𝑖, 𝑗) ∈ E}. The out-degree matrix of the graph G is
denoted by Q = diag (Q1,Q2, . . . ,Q𝑁 ), where Q𝑖 =

∑
𝑗∈O𝑖

𝛼 𝑗𝑖 .
Note that D𝑖 indicates the number of nodes (except the leader)
sending information to the node 𝑖 and Q𝑖 indicates the number
of nodes (except the leader) receiving information from the node
𝑖. To describe the information flow from the virtual leader (i.e.,
node 0) to the followers, the leader adjacency matrix is defined as
a diagonal matrix B = diag (𝑏1, 𝑏2, . . . , 𝑏𝑁 ), where 𝑏𝑖 = 1 if the
virtual leader sends information to node 𝑖, and 𝑏𝑖 = 0 otherwise.

2.4. Communication links failure
In practical situations, the connectivity of communication links
among spacecraft is vulnerable to indeterministic failures due to
malicious attacks, environmental disturbances and randomly lost
package of data, causing that the communication links may break
off and reconstruct stochastically.
To model the random connectivity of the communication links

for each node, two time-varying connection probabilities 𝑝𝑖, 𝑗 (𝑡) ∈
(0, 1] and 𝑝𝑖,0 (𝑡) ∈ (0, 1] are used, which describe the connectivity
of the links from spacecraft 𝑗 ∈ {1, 2, . . . , 𝑁} satisfying ( 𝑗 , 𝑖) ∈ E
and the virtual leader 0 to spacecraft 𝑖 ∈ {1, 2, . . . , 𝑁}, respectively.
It is noted that the communication link from the 𝑗-th spacecraft
(or the virtual leader) to the 𝑖-th spacecraft cannot be disconnected
all the time, i.e., ∀𝑡, 𝑝𝑖, 𝑗 (𝑡) ≠ 0 (𝑝𝑖,0 (𝑡) ≠ 0). Otherwise, ∀𝑡,
𝑝𝑖, 𝑗 (𝑡) = 0 (𝑝𝑖,0 (𝑡) = 0), the communication between the two
spacecraft is always disconnected. In this case, the continuous links
failure becomes deterministic, which is not within our considera-
tion. Moreover, two stochastic switching parameters 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) and
𝑎𝑖,0 (𝑝𝑖,0) associated with 𝑝𝑖, 𝑗 (𝑡) and 𝑝𝑖,0 (𝑡) for the 𝑖-th spacecraft
are defined as

𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) =
{
1 with probability 𝑝𝑖, 𝑗 (𝑡)
0 with probability 1 − 𝑝𝑖, 𝑗 (𝑡)

(14)

𝑎𝑖,0 (𝑝𝑖,0) =
{
1 with probability 𝑝𝑖,0 (𝑡)
0 with probability 1 − 𝑝𝑖,0 (𝑡)

(15)

which indicate that the connection status of the communication link
from the 𝑗-th spacecraft (or the virtual leader) to spacecraft 𝑖 is
nondeterministic and is with probability 𝑝𝑖, 𝑗 (𝑡) (or 𝑝𝑖,0 (𝑡)) over
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time. Specifically, in Eq. (14), 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) = 1 means that with
probability 𝑝𝑖, 𝑗 (𝑡) spacecraft 𝑗 transmits information to spacecraft
𝑖 at time 𝑡, while 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) = 0 implies that with probability 1 −
𝑝𝑖, 𝑗 (𝑡) the communication link from spacecraft 𝑗 to spacecraft 𝑖
is disconnected at time 𝑡. Then, we can get the expectations of
𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) and 𝑎𝑖,0 (𝑝𝑖,0) for each link related to spacecraft 𝑖 at time
𝑡, which are E{𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 )} = 𝑝𝑖, 𝑗 (𝑡) and E{𝑎𝑖,0 (𝑝𝑖,0)} = 𝑝𝑖,0 (𝑡).
Next, define the following probability vector:

𝑷𝑖 (𝑡) , [𝑝𝑖, 𝑗1 (𝑡), . . . , 𝑝𝑖, 𝑗𝑘 (𝑡), . . . , 𝑝𝑖, 𝑗D𝑖
(𝑡), 𝑝𝑖,0 (𝑡)]T (16)

with 𝐿𝑖 = D𝑖 + 𝑏𝑖 ∀𝑖 ∈ {1, 2, . . . , 𝑁} and ( 𝑗𝑘 , 𝑖) ∈ E ∀𝑘 ∈
{1, 2, . . . ,D𝑖}. Then, the following assumptions are made about
the connectivity probabilities.

Assumption 2. As 𝑡 → ∞, there exist 𝑡𝑖,1, 𝑡𝑖,2, · · · , 𝑡𝑖,𝐿𝑖 time in-
stances for all 𝑖 ∈ {1, 2, . . . , 𝑁} such that the time-concatenated
vectors of each element in 𝑷𝑖 (𝑡) are linearly independent. That is,
the vectors
𝑝𝑖, 𝑗1 (𝑡𝑖,1)
𝑝𝑖, 𝑗1 (𝑡𝑖,2)

.

.

.

𝑝𝑖, 𝑗1 (𝑡𝑖,𝐿𝑖 )


,


𝑝𝑖, 𝑗2 (𝑡𝑖,1)
𝑝𝑖, 𝑗2 (𝑡𝑖,2)

.

.

.

𝑝𝑖, 𝑗2 (𝑡𝑖,𝐿𝑖 )


,. . .,


𝑝𝑖, 𝑗D𝑖

(𝑡𝑖,1)
𝑝𝑖, 𝑗D𝑖

(𝑡𝑖,2)
.
.
.

𝑝𝑖, 𝑗D𝑖
(𝑡𝑖,𝐿𝑖 )


,


𝑝𝑖,0 (𝑡𝑖,1)
𝑝𝑖,0 (𝑡𝑖,2)

.

.

.

𝑝𝑖,0 (𝑡𝑖,𝐿𝑖 )

︸                                                                          ︷︷                                                                          ︸
𝐿𝑖 vectors and each one is a 𝐿𝑖×1 vector

(17)

are linearly independent.

According to Assumption 2, the condition

𝛽𝑖,1


𝑝𝑖, 𝑗1 (𝑡𝑖,1)
𝑝𝑖, 𝑗1 (𝑡𝑖,1)

.

.

.

𝑝𝑖, 𝑗1 (𝑡𝑖,𝐿𝑖 )


+ 𝛽𝑖,2


𝑝𝑖, 𝑗2 (𝑡𝑖,1)
𝑝𝑖, 𝑗2 (𝑡𝑖,2)

.

.

.

𝑝𝑖, 𝑗2 (𝑡𝑖,𝐿𝑖 )


+ · · ·

+ 𝛽𝑖,𝐿𝑖−1


𝑝𝑖, 𝑗D𝑖

(𝑡𝑖,1)
𝑝𝑖, 𝑗D𝑖

(𝑡𝑖,2)
.
.
.

𝑝𝑖, 𝑗D𝑖
(𝑡𝑖,𝐿𝑖 )


+ 𝛽𝑖,𝐿𝑖


𝑝𝑖,0 (𝑡𝑖,1)
𝑝𝑖,0 (𝑡𝑖,2)

.

.

.

𝑝𝑖,0 (𝑡𝑖,𝐿𝑖 )


= 0

(18)

holds as 𝑡 → ∞ for each spacecraft 𝑖 only when 𝛽𝑖,1 = 𝛽𝑖,2 = · · · =
𝛽𝑖,𝐿𝑖 = 0.

Example 1. To illustrate the rationality of Assumption 2, the fol-
lowing example is given. Considering the communication topology
shown in Fig. 1, for the spacecraft 1, there are two other spacecraft
sending information to it, i.e., D1 = 2, and it also has communi-
cation with the virtual leader spacecraft, i.e., 𝐿1 = D1 + 𝑏1 = 3.
Assuming that the connectivity of communication links for space-
craft 1 is with probabilities 𝑝1,5 (𝑡) = 0.8 + 0.1 cos(𝑡/8), 𝑝1,6 (𝑡) =
0.7 + 0.2 cos(𝑡/5) and 𝑝1,0 (𝑡) = 0.9 − 0.1 sin(𝑡/20). Taking any
𝐿1 = 3 time instances, such as 𝑡1,1 = 20 s, 𝑡1,2 = 50 s, 𝑡1,3 = 120 s,
we have vectors,

𝑣1 =


𝑝1,5 (20)
𝑝1,5 (50)
𝑝1,5 (120)

 =

0.7199
0.8999
0.7240


𝑣2 =


𝑝1,6 (20)
𝑝1,6 (50)
𝑝1,6 (120)

 =

0.5693
0.5322
0.7848


𝑣3 =


𝑝1,0 (20)
𝑝1,0 (50)
𝑝1,0 (120)

 =

0.8460
0.9801
0.8040



(19)

Control 

objective

1

2

3
4

5

6
1

20

3 4

5

6

0

Fig. 1 Schematic diagram of control objective: Formation reaches an
attitude consensus and attitude stabilization.

Obviously, 𝑣1, 𝑣2 and 𝑣3 are linearly independent and satisfy As-
sumption 2. It can be concluded that any two links can meet As-
sumption 2 as long as the links failure probabilities are not equal.

Remark 1. In this work, the failure probability of any communi-
cation link varies over time 𝑡, and the failure probability of any two
communication links is not always equal. Assumption 1 and its
detailed illustration Example 1 further show the application range
of stochastic links failure in this work, i.e., the failure probability of
any two communication links is not equal at all times, otherwise,
Assumption 1 is violated.

3. Problem statement

The objective of this paper is to design an attitude control scheme
for an MSS with 𝑁 spacecraft on SO(3) subject to stochastic com-
munication failure, so that attitude consensus and the attitude stabi-
lization can be achieved. In this work, we consider that spacecraft
in theMSS are connected in a directed topology, and a virtual leader
spacecraft provides the static desired attitude 𝑹0 for the MSS.
For example, as shown in Fig.1, the virtual leader is only con-

nected to the first and the fourth spacecraft in the topology. It is
supposed that there is no isolated node in the communication graph,
i.e., N𝑖 ≠ ∅ ∀𝑖, and the information of the virtual leader spacecraft
can be transmitted to any spacecraft through a directed path(s). In
addition, we assume that each communication link between two
spacecraft including the leader is not deterministic and may experi-
ence connection failure and reconstruction randomly over time.
This work mainly solves the following problem:

Problem 1. Under the stochastic links failure and actuator satura-
tion, design a controller for the MSS on SO(3) with a static virtual
leader to realize attitude consensus and attitude stabilization.

4. Attitude error function and dynamics

In this section, the attitude error function and the attitude error
dynamic of a MSS based on SO(3) suitable for a directed topology
link and with a static virtual leader are derived.

4.1. Attitude error function on SO(3)
The attitude error function on SO(3) of MSS is given in the follow-
ing proposition.10,25,34

Proposition 1. For the 𝑖-th spacecraft, define an attitude error func-
tion Ψ𝑖 ∈ R, an attitude consensus error function Ψc,𝑖 ∈ R, an atti-
tude stabilization error function Ψs,𝑖 ∈ R, an attitude consensus er-
ror vector 𝒆c,𝑖 ∈ R3, an attitude stabilization error vector 𝒆s,𝑖 ∈ R3,
and an angular velocity error vector 𝒆𝛀,𝑖 ∈ R3 as follows:

Ψ𝑖 =
∑︁
𝑗∈N𝑖

Ψc,𝑖 +Ψs,𝑖 (20)
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Ψc,𝑖 =
1
2
tr
[
𝑰3 − 𝑹T𝑗 𝑹𝑖

]
∀ 𝑗 ∈ N𝑖 (21)

Ψs,𝑖 = 𝑏𝑖
( 1
2
tr
[
𝑰3 − 𝑹T0 𝑹𝑖

] )
(22)

𝒆c,𝑖 =
1
2
(
𝑹T𝑗 𝑹𝑖 − 𝑹T𝑖 𝑹 𝑗

)∨ ∀ 𝑗 ∈ N𝑖 (23)

𝒆s,𝑖 =
1
2
𝑏𝑖
(
𝑹T0 𝑹𝑖 − 𝑹T𝑖 𝑹0

)∨ (24)

𝒆𝛀,𝑖 = 𝛀𝑖 − 𝑏𝑖𝑹T𝑖 𝑹0𝛀0 = 𝛀𝑖 (25)

where 𝛀0 = 0 is used in Eq. (25), because the virtual leader
provides a static desired attitude. Subscripts 𝑖 and 𝑗 are the indexes
indicating the 𝑖-th and 𝑗-th (𝑖, 𝑗 ∈ {1, 2 · · · 𝑁}, 𝑖 ≠ 𝑗) spacecraft
in the MSS, respectively. Subscript 0 represents the virtual leader
spacecraft.
Then, we can get the following properties:

(1) Ψc,𝑖 , Ψs,𝑖 and Ψ𝑖 are positive semi-definite and their zeros are
at 𝑹𝑖 = 𝑹 𝑗 , 𝑹𝑖 = 𝑹0 and 𝑹𝑖 = 𝑹 𝑗 = 𝑹0, respectively.

(2) The left-trivialized derivatives ofΨc,𝑖 ,Ψs,𝑖 andΨ𝑖 with respect
to the infinitesimal variation 𝛿𝑹𝑖 = 𝑹𝑖 �̂� for 𝜼 ∈ R3 are given
by

D𝑹𝑖
Ψc,𝑖 · 𝛿𝑹𝑖 =

∑︁
𝑗∈N𝑖

𝜼T𝒆c,𝑖 (26)

D𝑹𝑖
Ψs,𝑖 · 𝛿𝑹𝑖 = 𝜼T𝒆s,𝑖 (27)

D𝑹𝑖
Ψ𝑖 · 𝛿𝑹𝑖 =

∑︁
𝑗∈N𝑖

𝜼T𝒆c,𝑖 + 𝜼T𝒆s,𝑖 (28)

(3) The defined errors 𝒆c,𝑖 and 𝒆s,𝑖 are bounded by

0 ≤
𝒆c,𝑖 ≤ 1 (29)

0 ≤
𝒆s,𝑖 ≤ 𝑏𝑖 (30)

Proof. According to Rodrigues function, for any 𝑸 = 𝑹T
𝑗
𝑹𝑖 ∈

SO(3), there exists 𝒏 ∈ R3 with ‖𝒏‖ ≤ 𝜋 such that

𝑸 = exp( �̂�) = 𝑰3 +
sin ‖𝒏‖
‖𝒏‖ �̂� + 1 − cos ‖𝒏‖

‖𝒏‖2
�̂�2 (31)

Substituting the foregoing equation into Eq. (21), we can obtain

Ψc,𝑖 (𝑹 𝑗 exp( �̂�), 𝑹 𝑗 ) = 1 − cos(‖𝒏‖) (32)

Therefore, it is clear that 0 ≤ Ψc,𝑖 ≤ 2 andΨc,𝑖 = 0when 𝑹𝑖 = 𝑹 𝑗 .
Similarly, we can get 0 ≤ Ψs,𝑖 ≤ 2𝑏𝑖 and Ψs,𝑖 = 0 when 𝑹𝑖 = 𝑹0
or 𝑏𝑖 = 0 indicating that the 𝑖-th spacecraft is not connected to the
virtual leader spacecraft.
Because Ψ𝑖 is the addition of Ψc,𝑖 and Ψs,𝑖 , Ψ𝑖 is also positive

definite about 𝑹𝑖 = 𝑹 𝑗 = 𝑹0, and 𝑹𝑖 = 𝑹 𝑗 = 𝑹0 is the critical
point of Ψ𝑖 . These show the above property (1).
The infinitesimal variation of a rotation matrix can be written

as 𝛿𝑹 = d
d𝜖

���
𝜖=0

𝑹 exp(𝜖 �̂�) = 𝑹�̂� for 𝜼 ∈ R3. 25 By leveraging this,
the left-trivialized derivative of Ψc,𝑖 with respect to 𝑹𝑖 is given by

D𝑹𝑖
Ψc,𝑖 · 𝛿𝑹𝑖 =

d
d𝜖

����
𝜖=0

Ψ
(
𝑹𝑖 (exp 𝜖 �̂�), 𝑹 𝑗

)
= −1
2
tr[𝑹𝑇𝑗 𝑹𝑖 �̂�]

(33)

UsingEq. (4),D𝑹𝑖
Ψc,𝑖 ·𝛿𝑹𝑖 = 𝜼T𝒆c,𝑖 is further obtained. Similarly,

we can also have D𝑹𝑖
Ψs,𝑖 · 𝛿𝑹𝑖 = 𝜼T𝒆s,𝑖 and D𝑹𝑖

Ψ𝑖 · 𝛿𝑹𝑖 =∑
𝑗∈N𝑖

(𝜼T𝒆c,𝑖) + 𝜼T𝒆s,𝑖 . These show the above property (2).

Finally, substituting Eq. (31) into Eq. (23), we can obtain

𝒆c,𝑖 =
sin ‖𝒏‖
‖𝒏‖ 𝒏 (34)

Thus, ‖𝒆c,𝑖 ‖2 = sin2 ‖𝒏‖ ≤ 1, which implies that 0 ≤ ‖𝒆c,𝑖 ‖ ≤ 1.
Similarly, we can also obtain 0 ≤ ‖𝒆s,𝑖 ‖ ≤ 𝑏𝑖 . These show the
above property (3).
This completes the proof. �

Remark 2. Proposition 1 defines an attitude consensus error func-
tion Ψc,𝑖 and an attitude consensus error vector 𝒆c,𝑖 to deal with
the attitude consensus requirements of the 𝑖-th spacecraft and the
𝑗-th spacecraft in the MSS. An attitude stabilization error function
Ψs,𝑖 and an attitude stabilization error vector 𝒆s,𝑖 are defined for the
attitude stabilization requirements that each spacecraft stabilized to
the desired attitude from the virtual leader spacecraft. The attitude
error function Eq. (20) includes both attitude consensus error and
attitude stabilization error, corresponding to the control objective
of this work. The critical point of Ψ𝑖 is 𝑹𝑖 = 𝑹 𝑗 = 𝑹0, which
ensures the realization of control objective. In addition, the pa-
rameter 𝑏𝑖 in Ψ𝑖 indicates whether the 𝑖-th spacecraft is connected
to the virtual leader spacecraft, i.e., it determines whether the at-
titude stabilization requirements need to be considered for the 𝑖-th
spacecraft.

Remark 3. Compared with the previous attitude error function of
MSS16,18,24 that only considers the attitude consensus error, an
attitude error function including both attitude consensus error and
attitude stabilization error onSO(3) is proposed in thiswork. There-
fore, the proposed attitude error function Ψ𝑖 in Eq. (20) can be
applied for a directed topology link with a static virtual leader.

4.2. Attitude error dynamics on SO(3)
In this section, we derive the attitude error dynamics of the 𝑖-th
spacecraft in the following proposition.

Proposition 2. The attitude error dynamics of the 𝑖-th spacecraft
for the proposed Ψ𝑖 , Ψc,𝑖 , Ψs,𝑖 , 𝒆c,𝑖 , 𝒆s,𝑖 , and 𝒆𝛀,𝑖 satisfy

¤Ψ𝑖 =
∑︁
𝑗∈N𝑖

¤Ψc,𝑖 + ¤Ψs,𝑖 (35)

with

¤Ψc,𝑖 = (𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 )T𝒆c,𝑖 ∀ 𝑗 ∈ N𝑖 (36)

¤Ψs,𝑖 = 𝒆T𝛀,𝑖𝒆s,𝑖 (37)

¤𝒆c,𝑖 = (tr[𝑹T𝑖 𝑹 𝑗 ] 𝑰3 − 𝑹T𝑖 𝑹 𝑗 ) (𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 ) (38)

¤𝒆s,𝑖 = 𝑏𝑖 (tr[𝑹T𝑖 𝑹0] 𝑰3 − 𝑹T𝑖 𝑹0)𝒆𝛀,𝑖 (39)

¤𝒆𝛀,𝑖 = 𝑱−1𝑖 (−�̂�𝑖 𝑱𝑖𝛀𝑖 + �̄�𝑖 + 𝒅𝑖) (40)

Proof. For any desired attitude 𝑹0 ∈ SO(3), 𝑹T0 𝑹0 = 𝑰3. Then,
taking the time derivative on both sides results in ¤𝑹T0 𝑹0+𝑹

T
0
¤𝑹0 = 0,

which further implies

¤𝑹T0 = −𝑹T0 ¤𝑹0𝑹T0 . (41)

Then, in view of Eq. (41), the derivative of 𝑹T0 𝑹𝑖 is obtained as

𝑹T0
¤𝑹𝑖 + ¤𝑹T0 𝑹𝑖 = 𝑹T0 [𝑹𝑖�̂�𝑖 − 𝑹0�̂�0 (𝑹T0 𝑹𝑖)]

= 𝑹T0 𝑹𝑖 (𝛀𝑖 − 𝑹T𝑖 𝑹0𝛀0)
∧ (42)
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where Eq. (6) is used. In addition, since the static task is considered,
i.e., 𝛀0 = 0, it follows that

𝑹T0
¤𝑹𝑖 + ¤𝑹T0 𝑹𝑖 = 𝑹T0 𝑹𝑖�̂�𝑖 (43)

Following the above derivation, we can obtain

𝑹T𝑗
¤𝑹𝑖 + ¤𝑹T𝑗 𝑹𝑖 = 𝑹T𝑗 𝑹𝑖 (𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 )∧ (44)

Then, it is clear from Eq. (21) that

¤Ψc,𝑖=−
1
2
tr[𝑹T𝑗 ¤𝑹𝑖+ ¤𝑹T𝑗 𝑹𝑖]=−

1
2
tr[𝑹T𝑗 𝑹𝑖 (𝛀𝑖−𝑹

T
𝑖 𝑹 𝑗𝛀 𝑗 )∧]

=(𝛀𝑖−𝑹T𝑖 𝑹 𝑗𝛀 𝑗 )T (𝑹T𝑗 𝑹𝑖−𝑹
T
𝑖 𝑹 𝑗 )

∨
(45)

where the property given in Eq. (4) is used. Similarly, by leveraging
Eq. (43) and Eq. (4), we can also show Eq. (37).
Then, we show Eq. (38)

¤𝒆c,𝑖=
(
𝑹T𝑗 𝑹𝑖 (𝛀𝑖−𝑹

T
𝑖 𝑹 𝑗𝛀 𝑗 )∧+(𝛀𝑖−𝑹T𝑖 𝑹 𝑗𝛀 𝑗 )∧𝑹T𝑖 𝑹 𝑗

)∨
=(tr[𝑹T𝑖 𝑹 𝑗 ] 𝑰 − 𝑹T𝑖 𝑹 𝑗 ) (𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 )

(46)

where Eq. (44) and Eq. (5) are used. Similarly, by using Eq. (43)
and Eq. (5), we can show Eq. (39).
Moreover, since the inertia matrix of each spacecraft is positive

definite, according to Eq. (12), it is trivial to get Eq. (40).
This completes the proof. �

5. Controller design

In this section, we solve Problem 1 by proposing an attitude con-
troller approach for theMSS on SO(3) to achieve attitude consensus
and attitude stabilization with the stochastic links failure.
In light of Eq. (36), Eq. (37) and Eq. (40), an attitude controller

can be designed as

𝒖𝑖 =𝝌 ◦
(
− 𝑘1

∑︁
𝑗∈N𝑖

𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 )𝒆𝑐,𝑖 − 𝑘2𝑎𝑖,0 (𝑝𝑖,0)𝒆𝑠,𝑖

− (𝑘3 + 𝑘4)
‖𝛀𝑖 ‖2

‖𝛀𝑖 ‖ + ^2𝑖
+ 𝒍𝑖

) (47)

with

¤̂ = −𝛾𝑖
(𝑘3 + 𝑘4)^𝑖 ‖𝛀𝑖 ‖

‖𝛀𝑖 ‖ + ^2𝑖
(48)

where 𝝌 = [ 1
𝜌𝑖,1,0

, 1
𝜌𝑖,2,0

, 1
𝜌𝑖,3,0

]T ∈ R3; 𝑘1, 𝑘2, 𝑘3, 𝑘4 > 𝐷𝑖,max
and 𝛾𝑖 are positive constants.
Using the proposed attitude controller Eq. (47), the stability of

the MSS is summarized as the following theorem.

Theorem 1. For the attitude error kinematics and dynamics on
SO(3) represented by Eq. (35) and Eq. (40), the proposed attitude
controller Eq. (47) and adaptive update law Eq. (48) with 𝑘3 >
max{𝑘1, 𝑘2}S and 𝑘4 > 𝐷𝑖,max, where S

Δ
= 2‖D‖1 + ‖Q‖1 + 1

ensures that the attitude ofMSS can almost surely achieve consensus
and stabilization despite stochastic links failure.

Proof. Consider the following Lyapunov candidate function:

𝑉 =

𝑁∑︁
𝑖=1

( 1
2
𝛀T𝑖 𝑱𝑖𝛀𝑖 + 𝑘5Ψ𝑖 +

1
𝛾𝑖
^2𝑖

)
(49)

where 𝑘5 = max{𝑘1, 𝑘2}. Substituting the attitude dynamics Eq.
(40) and the attitude controller Eq. (47) into the time derivative of
𝑉 yields

¤𝑉 ≤
𝑁∑︁
𝑖=1

(
𝑘5

∑︁
𝑗∈N𝑖

𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 )‖𝒆c,𝑖 ‖‖𝛀𝑖 ‖ − (𝑘4 − 𝐷𝑖,max)‖𝛀𝑖 ‖

+ 𝑘5 (1 − 𝑎𝑖,0 (𝑝𝑖,0))‖𝒆s,𝑖 ‖‖𝛀𝑖 ‖ − 𝑘3‖𝛀𝑖 ‖

+ 𝑘5
∑︁
𝑗∈N𝑖

‖𝒆c,𝑖 ‖‖𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 ‖
) (50)

where the fact 𝛀T
𝑖
�̂�𝑖 = 0 is used. Then, due to ‖𝑹T𝑖 𝑹 𝑗 ‖ ≤ 1,

‖𝛀𝑖 − 𝑹T𝑖 𝑹 𝑗𝛀 𝑗 ‖ ≤ ‖𝛀𝑖 ‖ + ‖𝛀 𝑗 ‖ (51)

Moreover, according to ‖𝒆c,𝑖 ‖ ≤ 1 and ‖𝒆s,𝑖 ‖ ≤ 𝑏𝑖 from Propo-
sition 1 along with the fact that 𝑏𝑖 ∈ {0, 1}, 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) ∈ {0, 1},
𝑎𝑖,0 (𝑝𝑖,0) ∈ {0, 1} and D𝑖 =

∑
𝑗∈N𝑖

𝛼𝑖 𝑗 ≤ ‖D‖1 where ‖·‖1 rep-
resents the 1-norm of the matrix, it follows from Eq. (50) and Eq.
(51) that

¤𝑉≤
𝑁∑︁
𝑖=1

(
𝑘5

∑︁
𝑗∈N𝑖

[1+𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 )] ‖𝒆c,𝑖 ‖‖𝛀𝑖 ‖+𝑘5
∑︁
𝑗∈N𝑖

‖𝒆c,𝑖 ‖‖𝛀 𝑗 ‖

− (𝑘3 − 𝑘5 [1 − 𝑎𝑖,0 (𝑝𝑖,0)] ‖𝒆s,𝑖 ‖)‖𝛀𝑖 ‖
) (52)

Further, we can obtain

¤𝑉 ≤
𝑁∑︁
𝑖=1

(
2𝑘5D𝑖 ‖𝛀𝑖 ‖ − (𝑘3 − 𝑘5)‖𝛀𝑖 ‖ + 𝑘5

∑︁
𝑗∈N𝑖

‖𝛀𝑖 ‖
)

≤
𝑁∑︁
𝑖=1

(
− [𝑘3 − 𝑘5 (2‖D‖1 + 1)] ‖𝛀𝑖 ‖

)
+ 𝑘5

𝑁∑︁
𝑖=1

∑︁
𝑗∈N𝑖

‖𝛀 𝑗 ‖

(53)

Recognizing that

𝑁∑︁
𝑖=1

∑︁
𝑗∈N𝑖

‖𝛀 𝑗 ‖ ≤
𝑁∑︁
𝑖=1

‖Q‖1‖𝛀𝑖 ‖ (54)

we can substitute it into Eq. (53) and obtain

¤𝑉 ≤ −[𝑘3 − 𝑘5 (2‖D‖1 + ‖Q‖1 + 1)]
𝑁∑︁
𝑖=1

‖𝛀𝑖 ‖ (55)

As a consequence, if the control gains are selected to satisfy

𝑘4 > 𝐷𝑖,max, 𝑘3 > 𝑘5S > max{𝑘1, 𝑘2}S (56)

where S , 2‖D‖1 + ‖Q‖1 + 1, we can obtain that ¤𝑉 is negative
semidefinite. Then, by invoking the generalized invariance princi-
ple for nonautonomous systems,24,35 we can conclude

lim
𝑡→∞

𝛀𝑖 ≡ 03×1 (57)

Thus, 𝛀𝑖 = 0 and ¤𝛀𝑖 = 0 as 𝑡 → ∞
Then, substituting the conclusion into attitude error dynamics

Eq. (40) and controller Eq. (47) yields∑︁
𝑗∈N𝑖

𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 )𝒆c,𝑖 + 𝑎𝑖,0 (𝑝𝑖,0)𝒆s,𝑖 = 03×1 𝑡 → ∞ (58)

Considering that 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) and 𝑎𝑖,0 (𝑝𝑖,0) are stochastic variables,
computing expectations on both sides of Eq. (58) leads to∑︁
𝑗∈N𝑖

𝑝𝑖, 𝑗 (𝑡)𝒆c,𝑖 + 𝑝𝑖,0𝒆s,𝑖 = 03×1 (59)
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as 𝑡 → ∞. In view of Eq. (38), Eq. (39) and Eq. (40), ¤𝒆c,𝑖 = ¤𝒆s,𝑖 =
03×1, i.e., as 𝑡 → ∞, 𝒆c,𝑖 ∈ R3 and 𝒆s,𝑖 ∈ R3 are constant vectors.
According to Assumption 2, for the 𝑖-th spacecraft ∃𝐿𝑖 = D𝑖 + 𝑏𝑖
vectors and

∑︁
𝑗∈N𝑖

©«
𝒆c,𝑖 (𝑞)


𝑝𝑖, 𝑗 (𝑡𝑖,1)
𝑝𝑖, 𝑗 (𝑡𝑖,2)

.

.

.

𝑝𝑖, 𝑗 (𝑡𝑖,𝐿𝑖 )


ª®®®®¬
+ 𝒆s,𝑖 (𝑞)


𝑝𝑖,0 (𝑡𝑖,1)
𝑝𝑖,0 (𝑡𝑖,2)

.

.

.

𝑝𝑖,0 (𝑡𝑖,𝐿𝑖 )


= 0𝐿×1 (60)

where 𝑿 (𝑞) with 𝑞 = 1, 2, 3 represents the 𝑞-th number of 𝑿.
Then, by using the vector linear independence theorem, we can
further obtain 𝒆c,𝑖 → 03×1, 𝑗 ∈ N𝑖 and 𝒆s,𝑖 → 03×1 as 𝑡 → ∞,
which can be further expressed as

P
{(𝑹T𝑗 𝑹𝑖 − 𝑹T𝑖 𝑹 𝑗 )

∨
 > Y1} = 0 ∀ 𝑗 ∈ N𝑖 , 𝑡 → ∞

P
{(𝑹T0 𝑹𝑖 − 𝑹T𝑖 𝑹0)

∨
 > Y2} = 0 𝑡 → ∞

(61)

where Y1 and Y2 are any positive minimum. Then, by defining the
filtration

F𝑡 =
{
[ 𝑹𝑖 (𝜚)T, 𝑹 𝑗 (𝜚)T, 𝛀(𝜚)T

𝑖
], 0 ≤ 𝜚 ≤ 𝑡

}
(62)

the following three conditions can be obtained:

(1) For the MSS, the Lyapunov

𝑉 (𝑡) =
𝑁∑︁
𝑖=1

(
1
2
𝛀T𝑖 (𝑡)𝑱𝑖𝛀𝑖 (𝑡) + 𝑘5Ψ𝑖 (𝑡) +

1
𝛾𝑖
^2𝑖 (𝑡)

)
(63)

can be regarded as a stochastic process, and𝑉 (𝑡) isF𝑡 -measurable
for any time 𝑡. Since 𝑉 (𝑡) is determined by 𝑹𝑖 (𝜚), 𝑹 𝑗 (𝜚),
and 𝛀(𝜚)𝑖 as well as their history, 𝑉 (𝑡) only depends on
{Fs, 0 ≤ 𝑠 ≤ 𝑡}, and thus 𝑉 (𝑡) is determined for the filtra-
tion F𝑡 .

(2) Given the result of the Lyapunov analysis ¤𝑉 (𝑡) ≤ 0, we have
𝑹𝑖 (𝜚), 𝑹 𝑗 (𝜚), and 𝛀(𝜚)𝑖 are bounded. Therefore, 𝑉 (𝑡) is
bounded. Thus, which E{𝑉 (𝑡)} is also bounded.

(3) Since ¤𝑉 (𝑡) ≤ 0, we know 𝑉 (𝑡) ≤ 𝑉 (𝑠) if 𝑡 ≥ 𝑠. In view of
the fact that 𝑉 (𝑡) is measurable for any 𝑡 and according to the
property of conditional expectation,

E {𝑉 (𝑡) | F𝑠} = 𝑉 (𝑡) ≤ 𝑉 (𝑠) 𝑡 ≥ 𝑠 (64)

As a consequence, the above three conditions yield that 𝑉 (𝑡) is
super-martingale. Then, according to Lemma 1, we know that

lim
𝑡→∞

𝑉 (𝑡) → 𝑉f (65)

where 𝑉f is a nonnegative finite real number. From the Lyapunov
function

𝑉 (𝑡) =
𝑁∑︁
𝑖=1

(
1
2
𝛀T𝑖 (𝑡)𝑱𝑖𝛀𝑖 (𝑡) + 𝑘5Ψ𝑖 (𝑡) +

1
𝛾𝑖
^2𝑖 (𝑡)

)
(66)

and 𝑡 → ∞, 𝛀𝑖 = 0, we have

lim
𝑡→∞

Ψ𝑖
a.s.→ 𝑉f 𝑖 = 1, 2, · · · , 𝑁 (67)

Due to the fact thatΨ𝑖 is positive definite about 𝑹𝑖 = 𝑹 𝑗 = 𝑹0, and
Eq. (61), we can conclude that 𝑉f = 0. Then, the critical point of
Ψ𝑖 is 𝑹𝑖 = 𝑹 𝑗 = 𝑹0. Therefore,

lim
𝑡→∞

𝑹𝑖
a.s.→ 𝑹 𝑗

a.s.→ 𝑹0, ∀𝑖 = 1, 2, · · · , 𝑁 (68)

This is equivalent to

P
{
lim
𝑡→∞

𝑹𝑖 = 𝑹 𝑗 = 𝑹0
}
= 1 ∀𝑖 = 1, 2, · · · , 𝑁. (69)

This implies that the spacecraft attitude in the MSS tends to be
consistent, and stable at the desired attitude provided by the virtual
leader spacecraft.
This completes the proof. �

Remark 4. The gains 𝑘1 and 𝑘2 in controller Eq. (47) are equiv-
alent to the proportional coefficient in a PD controller, and 𝑘3 is
equal to the derivative coefficient. The larger 𝑘1 and 𝑘2 are chosen,
the faster the attitude error converges, but it will cause system oscil-
lation, and it is necessary to increase 𝑘3 at the same time. 𝑘4 is the
coefficient used to counteract external disturbances. Once the value
𝐷𝑖,max is determined based on experience, an appropriate value of
𝑘4 can be selected. Therefore, we can select the appropriate values
of 𝑘1, 𝑘2, 𝑘3 and 𝑘4 when condition Eq. (56) is satisfied.

Remark 5. The Eq. (59) is expressed as
∑
𝑗∈N𝑖

𝑝𝑖, 𝑗 (𝑡)𝒆c,𝑖 = 03×1
without item related to the virtual leader in the study of Rezaee and
Abdollahi,24 so the conclusion of 𝒆c,𝑖 → 03×1, 𝑗 ∈ N𝑖 as 𝑡 → ∞
can be obtained directly. The conclusion that 𝒆c,𝑖 → 03×1, 𝑗 ∈ N𝑖
and 𝒆s,𝑖 → 03×1 as 𝑡 → ∞ cannot be directly obtained by in-
troducing the communication links related to the virtual leader.
However, this work can draw this conclusion (𝒆c,𝑖 → 03×1, 𝑗 ∈ N𝑖
and 𝒆s,𝑖 → 03×1 as 𝑡 → ∞) under Assumption 2, which is the most
significant difference from Rezaee and Abdollahi.24 Therefore, we
can not only achieve the attitude consensus ofMSS, but also achieve
the attitude stabilization under stochastic links failure.

6. Simulation results

In this section, the effectiveness of the proposed attitude controller is
demonstrated by numerical simulation for the MSS with stochastic
links failure.
We consider a leader-follower MSS composed of six spacecraft

and a virtual leader spacecraft in the numerical simulation. The
communication links among spacecraft and the probability of suc-
cessful connection of each link are shown in Fig.2. Obviously, the
connection probabilities 𝑝𝑖, 𝑗 (𝑡) ∈ (0, 1] and 𝑝𝑖,0 (𝑡) ∈ (0, 1] and
the connectivity probabilities of all links satisfy Assumption 2 and
‖D‖1 = 2, ‖Q‖1 = 2.
To simulate the stochastic links failures, the following random

numbers associated with each link are introduced:

𝑐𝑖, 𝑗 = rand(1) 𝑖 ∈ {1, 2, · · · , 6}, 𝑗 ∈ N𝑖
𝑐𝑖,0 = rand(1) 𝑖 ∈ {1, 4}

(70)

where rand(1) ∈ [0, 1] is a random number. Then, the connectivity
of each link can be expressed as

𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) =
{
1 𝑐𝑖, 𝑗 ≤ 𝑝𝑖, 𝑗
0 𝑐𝑖, 𝑗 > 𝑝𝑖, 𝑗

,
𝑖 ∈ {1, 2, · · · , 6}
and 𝑗 ∈ N𝑖

𝑎𝑖,0 (𝑝𝑖,0) =
{
1 𝑐𝑖,0 ≤ 𝑝𝑖,0
0 𝑐𝑖,0 > 𝑝𝑖,0

, 𝑖 ∈ {1, 4}
(71)

The inertia matrices of the MSS are given as

𝑱𝑖 =


60 0 −5
0 65 0
−5 0 70

 kg ·m2 𝑖 = 1, 2, · · · , 6 (72)
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𝑝2,1 = 𝑝1 = 0.9 − 0.1sin Τ𝑡 15

𝑙1

𝑙2
𝑙3

𝑙4

𝑙5

𝑙6𝑙7

𝑙8

𝑙9

𝑙10

𝑙1 :
𝑙2 :
𝑙3 :
𝑙4 :
𝑙5 :
𝑙6 :
𝑙7 :
𝑙8 :
𝑙9 :
𝑙10 :

𝑝3,2  =  𝑝2  =  0.7  +  0.1sin  𝑡Τ10
𝑝4,2  =  𝑝3  =  0.8  +  0.2cos  𝑡Τ20
𝑝4,3  =  𝑝4  =  0.8  +  0.1sin  𝑡Τ5
𝑝5,4  =  𝑝5  =  0.7  −  0.2sin  𝑡Τ10
𝑝6,5  =  𝑝6  =  0.8  +  0.1cos  𝑡Τ8
𝑝1,5  =  𝑝7  =  0.85  −  0.1cos  𝑡Τ8
𝑝1,6  =  𝑝8  =  0.8  −  0.1cos  𝑡Τ8
𝑝1,0  =  𝑝9  =  0.8  +  0.15sin  𝑡Τ5
𝑝4,0  =  𝑝10  =  0.85  +  0.1cos  𝑡Τ20

Fig. 2 Communication links between spacecraft with probability of
successful connection.

Table 1 Initial states of MSS

No. 𝑹𝑖 (0)=exp(\𝑖 (0), 𝒏𝑖 (0)) 𝛀𝑖 (0) (rad/s)

1 \1 (0)=−10◦, 𝒏1 (0)= [0, 0, 1]T [0.1, 0.05,−0.2]T

2 \2 (0)=135◦, 𝒏2 (0)= [0,1,1]T
‖ [0,1,1] ‖ [0, 0.06, 0.2]T

3 \3 (0)=175◦, 𝒏3 (0)= [1,0,1]T
‖ [1,0,1] ‖ [−0.1, 0.3,−0.05]T

4 \4 (0)=70◦, 𝒏4 (0)= [0, 1, 0]T [−0.03, 0.5,−0.2]T
5 \5 (0)=225◦, 𝒏5 (0)= [1, 0, 0]T [0.3, 0,−0.2]T

6 \6 (0)=−80◦, 𝒏6 (0)= [1,1,0]T
‖ [1,1,0] ‖ [−0.1,−0.1, 0]T

A
B

C
D

E
F

G
H

X
Y

N
M

Case
No. 500 s 750 s 500 s 750 s 500 s 750 s

Case 1 1 2 3 4 5 6
Case 1 7 8 9 10 11 12
Case 1 13 14 15 16 17 18

The external disturbance of each spacecraft is

𝒅𝑖 = 10−3 ×


−1 + 3 cos(0.1𝑖𝑡) + 4 sin(0.03𝑖𝑡)
1.5 − 1.5 sin(0.02𝑖𝑡) − 3 cos(0.05𝑖𝑡)
1 + sin(0.1𝑖𝑡) − 1.5 cos(0.04𝑖𝑡)

 N ·m (73)

where 𝑖 = 1, 2, · · · , 6. The saturation limit of the actuators of the
𝑖-th spacecraft is given as 𝑢𝑖, 𝑝,sat = 1 N·m, 𝑝 = 1, 2, 3, resulting in
‖�̄�𝑖 ‖ ≤

√
3 N·m.

The initial states of the MSS are given in Table 1, and the
map 𝑹 = exp(\, 𝒏) → SO(3) is defined as

𝑹 = exp(\, 𝒏) = 𝑰3 + sin(\) �̂� + (1 − cos(\)) �̂�2 (74)

In addition, the desired attitude 𝑹0 = 𝑰3, and the correspond-
ing desired unit-quaternion 𝑸d = [𝒒Td , 𝑞d]

T = [0, 0, 0, 1]T. In
addition, the unit-quaternion attitude consensus error is computed
as 𝑸c,e,𝑖 = [𝒒Tc,e,𝑖 , 𝑞c,e,𝑖]

T =
∑
𝑗∈N𝑖

𝑸∗
𝑗
⊗ 𝑸𝑖 , where ⊗ is the

quaternion multiplication operator,36 𝑸𝑖 is the current attitude of
the 𝑖-th spacecraft. The unit-quaternion attitude stabilization error
is computed as 𝑸s,e,𝑖 = [𝒒Ts,e,𝑖 , 𝑞s,e,𝑖]

T = 𝑸∗
d ⊗ 𝑸𝑖 . Next, we con-

sider two parts of numerical simulation to illustrate the performance
of the proposed controller Eq. (47) under different stochastic links
modeling methods.

6.1. Comparison of different control situations
In this subsection, the proposed controller based on SO(3) for
a leader-follower MSS and the existing controller based on unit-
quaternion for a leaderless MSS in the study of Rezaee and Abdol-
lahi24 are compared to illustrate that the proposed one can avoid

fuzziness of unit-quaternion and reach the desired attitude. Three
control situations are considered.
Situation 1. The proposed controller Eq. (47) is applied to the
SO(3)-based leader-follower MSS with stochastic links failure. In
this control situation, we set 𝑘1 = 𝑘2 = 10.5, 𝑘3 = 150 to meet the
condition Eq. (56).
Situation 2. The attitude consensus controller (4) in the study of
Rezaee and Abdollahi24 acts on a leaderless MSS using the unit-
quaternion with stochastic links failure. The control parameters are
set as 𝛾 = 10.5 and 𝑘𝑖 = 150.
Situation 3. It is the same with Situation 2, but the initial unit-
quaternions 𝑸𝑖 (0) of the Spacecrafts 1, 3, 4 and 6 are changed to
−𝑸𝑖 (0) (𝑸𝑖 (0) and −𝑸𝑖 (0) are the same attitude).
In this subsection, the stochastic links failure in the three situa-

tions of interestmay occur at each sampling instancewith a sampling
period 𝑇step = 0.02 s, i.e., random numbers 𝑐𝑖, 𝑗 or 𝑐𝑖,0 are gener-
ated at each sampling instance to determine the connectivity of the
communication links according to Eq. (71).
Figs.3–5 show the time history of attitude consensus error, at-

titude stabilization error, angular velocity and control torque under
different modeling methods of MSS, respectively. For the leader-
follower MSS on SO(3), the proposed controller Eq. (47) can
achieve attitude consensus and attitude stabilization, where the
attitude consensus is completed in 150 s with steady-state error
Ψc,𝑖 ≤ 5 × 10−6, as shown in Fig.3(a). The attitude stabilization
is completed in 300 s with steady-state error Ψs,𝑖 ≤ 3 × 10−5, as
shown in Fig.3(b). Moreover, the angular velocity ‖𝛀𝑖 ‖, as shown
in Fig.3(c), tends to be stable at 300 s with the steady-state error
‖𝛀𝑖 ‖ ≤ 5×10−3 ◦/s. In addition, it can be seen from the controller
Eq. (47) that considering the stochastic links failure, 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) and
𝑎𝑖,0 (𝑝𝑖,0) have a probability of 1 or 0, which sometimes leads to
the absence of the attitude consistency error 𝒆c,𝑖 and the attitude
stabilization error 𝒆s,𝑖 , which further leads to the jump fluctuation
of the controller output, as observed in Fig.3(d).
From Fig.4(a) and Fig.5(a), the controller (4) in the study

of Rezaee and Abdollahi24 can achieve attitude consensus under
stochastic links failure. Since the controller (4) in the study of
Rezaee and Abdollahi24 is only applicable to the leaderless MSS,
the attitude stabilization and convergence to the desired attitude can-
not be guaranteed, as observed in Fig.4(b) and Fig.5(b). In addition,
because the initial unit-quaternions 𝑸𝑖 (0) of the Spacecrafts 1, 3, 4
and 6 are changed to −𝑸𝑖 (0), the actual attitude of the spacecraft
is not changed. However, the attitude stabilization errors of the two
approaches are not equal, indicating that although the final attitude
of the MSS has achieved attitude consensus, the converged attitude
is different. This may lead to the failure of the observation mission.
The process of angular velocity (Fig.4(c) and Fig.5(c)) and control
torque (Fig.4(d) and Fig.5(d)) also show that the attitude conver-
gence of MSS based on unit-quaternion is different in Situation 2
and Situation 3. On the contrary, because the rotation represented
by Lie group SO(3) is unique, the proposed controller Eq. (47)
using SO(3)-based modeling method avoids this unwinding issue.

6.2. Comparison of different stochastic links failure modelings
In the previous subsection, the connectivity of the communication
links is considered to be nondeterministic at each sampling instance,
i.e., the failure or reconstruction of the link connection may occur
at each sampling instance (cf. 𝑇step = 0.02 s), which could result
in too fast connectivity change. In practice, the connectivity of the
link can be regarded as unchanged in every finite time interval 𝑇 ,
i.e., the links failures happen in a periodic manner. We consider dif-
ferent methods of selecting the instance 𝑑𝑘 , at which the stochastic
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Fig. 3 Time history of attitude state of each spacecraft in MSS under Situation 1.
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Fig. 4 Time history of attitude state of each spacecraft in MSS under Situation 2.
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Fig. 5 Time history of attitude state of each spacecraft in MSS under Situation 3.

Table 2 Comparison of three stochastic links failure modeling methods

Consensus
Steady-state Ψc,𝑖

Stabilization
Steady-state Ψs,𝑖

Angular velocity
Steady-state ‖𝛀𝑖 ‖ (◦/s)

Case
No. 500 s 750 s 500 s 750 s 500 s 750 s

Case1 2.8×10−5 8×10−7 1.8×10−4 3×10−6 0.025 5×10−3

Case2 1.2×10−5 1.5×10−7 8.5×10−4 4×10−7 0.02 2×10−3

Case3 1.6×10−6 2.3×10−9 1×10−5 2×10−8 3.5×10−3 1.5×10−4

communication failures occur, to model the periodically happened
stochastic links failures. Specifically, we consider the following
three cases that the instance 𝑑𝑘 is selected.
Case 1. The stochastic failure of each link occurs asynchronously,
which is modeled by

𝑑𝑘 = mod (𝑡 + (𝑘 − 1)Δ𝑡, 𝑇) 𝑘 = 1, 2, · · · , 10 (75)

Case 2. The stochastic failure of each link occurs concurrently,

which is modeled by

𝑑𝑘 = mod(𝑡, 𝑇) 𝑘 = 1, 2, · · · , 10 (76)

Case 3. The stochastic links failure does not occur, i.e., the com-
munication links are always connected. That is, ∀𝑡, controller Eq.
(47) with 𝑎𝑖, 𝑗 (𝑝𝑖, 𝑗 ) = 𝑎𝑖,0 (𝑝𝑖,0) = 1, where 𝑖 ∈ {1, 2, · · · , 6} and
𝑗 ∈ N𝑖 .
whereΔ𝑡 = 3 s and𝑇 = 27 s denote the time delay and the generation
interval in the simulation, respectively. In addition, mod(𝑎, 𝑚) is
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Fig. 6 Time history of attitude state of each spacecraft on SO(3) proposed controller Eq. (47), in which the stochastic links failure model is
constructed as Case 1.
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Fig. 7 Time history of attitude state of each spacecraft on SO(3) under proposed controller Eq. (47) in Case 2.
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Fig. 8 Time history of attitude state of each spacecraft on SO(3) under proposed controller Eq. (47) in Case 3.

the modulo operation and returns the remainder after division of
𝑎 by 𝑚. Then, the value of 𝑑𝑘 can be used to determine whether
a new random number is generated for the 𝑙𝑘 -th link. If 𝑑𝑘 =

0, a new random number 𝑐𝑖, 𝑗 or 𝑐𝑖,0 is generated, otherwise the
previous randomnumber ismaintained. These simulate the periodic
occurrence of stochastic links failure.
In this subsection, the performance of the SO(3)-based leader-

follower MSS using the proposed controller Eq.(47) under the fore-
going three stochastic links failure modeling methods is compared.
The controller parameters of Eq.(47) 𝑘1 = 𝑘2 = 0.6, 𝑘3 = 10 are
selected to satisfy condition Eq. (56).
Figs.6–8 show the time history of attitude consensus error, atti-

tude stabilization error, angular velocity and control torque of each
spacecraft on SO(3) under the proposed controller Eq. (47) with
three modeling methods of the stochastic links failure, respectively.
It is observed that the proposed controller Eq. (47) can realize atti-
tude consensus and attitude stabilization control of the MSS under
different modelingmethods of the stochastic links failure. When the
stochastic links failure does not change at the same time (Case 1),
the complexity of the control problem increases. On one hand, both
the attitude consensus convergence speed and attitude stabilization
convergence speed are slower than those when the stochastic links
failure changes at the same time (Case 2), or thosewithout stochastic
links failure (Case 3). On the other hand, the convergence accuracy

is lower than that of the other two stochastic links failure modeling
methods, and more detailed comparison is shown in Table 2. It is
considered that the stochastic links failure will delay the time of
attitude convergence and cause the jump fluctuation of controller
output.
In addition, it is noted that the stochastic links failure model

of Situation 1 of the previous subsection is constructed to occur at
each sampling time (𝑇step = 0.02 s), resulting in high-frequency
oscillation of control torque (cf. Fig.3(d)) due to the frequent link
failures. This is an extreme situation in actual space missions, and
may occur rarely. In real MSS, the stochastic links failure modes
in Case 1 and Case 2 of this subsection may be more practical, and
the high-frequency oscillation of the control torque in Fig.3(d) can
be avoided, as shown in Fig.6(d) and Fig.7(d).

7. Conclusions

In this paper, an attitude controller of the leader-follower multi-
spacecraft system on SO(3) is proposed to realize attitude consen-
sus and attitude stabilization under the stochastic links failure and
actuator saturation. It is suitable for the multi-spacecraft system in
a directed topology link and with a static virtual leader.
The main conclusions are drawn as follows:
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(1) The proposed multi-spacecraft system attitude error model is
based on SO(3) and considers that the attitude error on SO(3)
cannot be defined based on algebraic subtraction.

(2) Despite the stochastic connectivity of the communication links,
the proposed controller can achieve attitude consensus and at-
titude stabilization at the same time by leveraging the super-
martingale convergence theory.

(3) Simulation results demonstrate the efficiency of the proposed
attitude controller. The results show that the proposed con-
troller for the multi-spacecraft system on SO(3) can avoid the
fuzziness of the unit-quaternion, and can realize attitude con-
sensus and attitude stabilization control of the multi-spacecraft
system under different modeling methods of stochastic links
failure.

In futureworks, the attitude control ofmulti-spacecraft systemunder
the stochastic failure of communication link and the change of
communication topology will be explored.
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