Saturated attitude control of multi-spacecraft systems on SO(3) subject to mixed attitude constraints with arbitrary initial attitude

Zeyu Kang
Shanghai Jiao Tong University, Shanghai, 200240, China
Qiang Shen, Member, IEEE
Shanghai Jiao Tong University, Shanghai, 200240, China
Shufan Wu
Shanghai Jiao Tong University, Shanghai, 200240, China
Christopher J. Damaren
University of Toronto, Toronto, Ontario M3H 5T6, Canada

Abstract—In this paper, for multi-spacecraft systems (MSSs) with a directed complete communication topology and a time-varying virtual leader, an adaptive saturated attitude controller is proposed to achieve attitude consensus and attitude tracking under arbitrary initial attitude, mixed attitude constraints, input saturation and external disturbances. Firstly, considering the time-varying desired attitude provided by the virtual leader in a directed complete topology, an MSS attitude error function and an MSS attitude error dynamics based on SO(3) are developed. Next, an effective mixed potential function for the MSS on SO(3) is proposed for the static attitude-forbidden zones, the relative dynamic attitude-forbidden zones and the attitude-mandatory zones. In particular, different from the existing potential functions, the proposed mixed potential function is suitable for arbitrary initial attitude of the spacecraft in MSS, relaxing the restriction on the initial attitude associated with each static and dynamic attitude constraint zones. Then, an adaptive saturated attitude controller is designed to realize attitude consensus and tracking for the MSSs on SO(3) under arbitrary initial attitude, mixed attitude constraints, saturation constraints and external disturbances. Finally, simulation results of an MSS with a time-varying virtual leader spacecraft are demonstrated to illustrate the efficiency of the proposed attitude controller.

Index Terms—Attitude Consensus; Attitude Tracking; Mixed attitude constraints; Saturated control

I. Introduction

In recent years, the attitude control of multi-spacecraft systems (MSSs) has attracted tremendous attention. An MSS consists of a number of small spacecraft with low cost, simple structure and shorter development cycles. Through the exchange of information, the spacecraft of MSS can cooperate with each other to complete the space mission to replace the large single spacecraft with complex structure, expensive cost and a longer development cycle. The MSS not only brings modularity to spacecraft design, but also makes the space mission more flexible. At present, MSS has been widely used in the fields of earth observation missions, climate monitoring, deep space exploration, geological survey and spacecraft on-orbit maintenance and service [1]–[3]. Therefore, as an important part of MSSs, the research on attitude control has very important scientific value.

Previous studies have developed many attitude representation methods for rigid body attitude control, such as Euler angles, modified Rodriguez parameters (MRPs), unit-quaternion and the special orthogonal group SO(3) [4]. Euler angles and MRPs have the disadvantage of singularity [5]. Thus, they are not suitable for the needs of spacecraft attitude motion with large-angles. Although the unit-quaternion is a non-Euclidean global parameterization with no singularity, the double coverage of the unit-quaternion results in that two different unit-quaternions represent the same attitude [6]. The attitude model of rigid spacecraft based on SO(3) can avoid the problems of the above three methods [7], which has attracted extensive research interests. In [8], an adaptive controller on SO(3) for a rigid spacecraft was designed, which can realize spacecraft attitude redirection under attitude-forbidden constraints. Meanwhile, for the attitude tracking problem of MSS, the distributed strategy has been widely used in missions of MSS to improve the robustness and reduce the communication burden. Each spacecraft of an MSS can only determine its own attitude control command according to its current state and information from neighboring spacecraft [9]–[13]. However, the above works do not take into account the nonlinear input saturation constraint.

Input saturation is a common phenomenon in practical nonlinear control systems, which may lead to the decline of control performance and even the instability of the closed-loop system. In [14], for a class of nonlinear systems with saturation, a robust adaptive controller was proposed by using a Prandtl-Ishlinskii model with play and stop operations. In [15], these operations were further evolved into a dead-zone operator based model of saturation, and the controller was designed using the backstepping method for a group of nonlinear systems with input saturation. For MIMO systems with nonlinear saturated
inputs, a robust constrained controller based on dead-zone operation was developed [16]. In [17], the adaptive dynamic surface control of a class of stochastic nonlinear systems with input saturation was studied, where the saturation nonlinearity was modeled by dead-zone operation and a neural network was used to fit the unknown density function. In [18], the tracking control of marine surface vessels with actuator failure and input saturation was studied, in which the nonlinear saturation was also modeled based on dead-zone operation. For spacecraft attitude control under input saturation control, an adaptive model-free attitude tracking control method was proposed for a rigid spacecraft [19], where a dead-zone based model was used to describe the saturation nonlinearity. In above mentioned works, the input saturation density functions were assumed to be unknown and is treated as a bounded disturbance to be estimated in the controller design. This treatment is obviously conservative and will produce large errors when the extent of saturation is large.

In addition, spacecraft is usually equipped with spaceborne instruments that need to meet multiple attitude constraints in actual space missions [20]. For example, in the process of attitude movement, the spaceborne sensitive equipment (e.g., infrared telescope) needs to avoid direct exposure to the sun or other bright objects, and the communication equipment (e.g., high gain antenna) needs to be kept within the range of the ground station for continuous communication. Currently, the nonlinear optimization method (path planning method [21], [22] or nonlinear model predictive control [23], [24]) and the potential function method are proposed to solve this problem. The method based on nonlinear optimization can obtain the feasible or optimal tracking trajectory of spacecraft attitude. Nevertheless, it may have a complex structure and expensive computational cost, making it not suitable for on-board application. On the contrary, since the attitude controller using potential functions is analytical, it has received extensive attention. In [25], under multiple attitude constraints and angular velocity constraints, the rest-to-rest attitude control of spacecraft was realized by using a quadratic potential function. In [26], the attitude control problem of a single spacecraft with attitude constraints was solved by using the potential function. In [27], using the special orthogonal group SO(3) attitude parameterization, an adaptive controller based on potential functions was designed to realize the attitude consensus and tracking of MSS under attitude constraints. However, the potential functions in [25]–[27] assume that the initial attitude of the spacecraft must meet the attitude constraints, resulting in limited application range. Moreover, in the MSS, due to the close distance among spacecraft, the bright flame generated by the thrust engines of the neighbor spacecraft will also damage the sensitive spaceborne instruments, which can be considered as a relative dynamic attitude constraint. Due to the complexity caused by this dynamic constraint, there are few studies that take into account this kind of attitude constraint in spacecraft attitude control.

To the best of our knowledge, for MSS with mixed attitude constraints, nonlinear input saturation external disturbances and arbitrary initial attitude, designing an attitude controller on SO(3) with a time-varying desired attitude provided by the virtual leader spacecraft is still an open problem. To solve this challenging problem, an MSS attitude tracking error model on SO(3) under a time-varying virtual leader and a directed communication topology (i.e., the information exchange between spacecraft is directional.) is established. Then, the input saturation model based on a dead-zone operation is constructed. For the mixed attitude constraints including static attitude-forbidden zones, the relative dynamic attitude-forbidden zones and the static attitude-mandatory zones, a mixed potential function under the arbitrary initial attitude is proposed. Finally, an adaptive controller is designed to realize consensus and tracking the time-varying desired attitude of MSS on SO(3) subject to mixed attitude constraints, input saturation and external disturbances. The main contributions of this work are stated as follows:

1) Compared with the existing attitude error function of MSSs on SO(3) [9], [13], [28], the proposed attitude error function on SO(3) includes attitude consensus error and time-varying attitude tracking error, making it applicable for a directed communication topology link with a time-varying desired attitude provided by the virtual leader.

2) We design a mixed potential function on SO(3) accounting for the static attitude-forbidden zones, the relative dynamic attitude-forbidden zones and the static attitude-mandatory zones, which can be effective for arbitrary initial attitude of MSS including the situation that the initial attitude may violate attitude constraints.

3) Considering the mixed attitude constraints, actuator saturation and external disturbances, an adaptive saturated attitude controller is designed for the MSS on SO(3) to achieve attitude consensus and track the time-varying desired attitude.

The remainder of this paper is organized as follows. The models of the attitude kinematics and dynamics of MSS on SO(3), the input saturation and the mixed attitude constraints are constructed in Section II. Problem statements are given in Section III. In Section IV, an MSS attitude tracking error model on SO(3) or a directed communication topology with a time-varying virtual leader is proposed. The potential function suitable for mixed attitude constraints and arbitrary initial attitude of MSS is designed in Section V. Then, an adaptive controller is developed for MSS on SO(3) to achieve attitude consensus and track the time-varying desired attitude in Section VI. Simulation results are shown in Section VII. Finally, the conclusions are given in Section VIII.

II. Preliminaries

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 04,2023 at 08:54:01 UTC from IEEE Xplore. Restrictions apply.
A. Attitude Kinematics and Dynamics

In this paper, the attitude dynamics of a rigid body is considered. Let \( \mathcal{I} \) denote an inertial reference frame and \( \mathcal{B} \) denote the body-fixed frame with origin being located at the center of mass. A special group of \( 3 \times 3 \) orthogonal matrices used to parameterize attitude is defined as

\[
\text{SO}(3) = \{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = I_3, \det R = 1 \}. \tag{1}
\]

Consider a multi-spacecraft system (MSS) consisting of \( N \) spacecraft. Let \( R_i \in \text{SO}(3) \) represent the rotation matrix of the \( i \)-th spacecraft from the body frame \( \mathcal{B} \) to the inertial reference frame \( \mathcal{I} \). The attitude kinematics of the \( i \)-th spacecraft can be expressed as \cite{27}

\[
\dot{R}_i = R_i \dot{\Omega}_i, \tag{2}
\]

where \( \Omega_i \in \mathbb{R}^3 \) is the inertial angular velocity vector of the \( i \)-th spacecraft with respect to an inertial frame \( \mathcal{I} \) and expressed in the body-fixed frame \( \mathcal{B} \).

In (2), the hat map \( \hat{\cdot} : \mathbb{R}^3 \to \text{so}(3) \) is used to convert a vector in \( \mathbb{R}^3 \) to a \( 3 \times 3 \) skew-symmetric matrix, which is also the Lie algebra of \( \text{SO}(3) \). More explicitly, for a vector \( x = [x_1, x_2, x_3]^T \in \mathbb{R}^3 \), we have

\[
\dot{x} = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix} \in \text{so}(3). \tag{3}
\]

The attitude of rigid spacecraft can also be expressed as a rotation angle \( \theta \leq \pi \in \mathbb{R} \) around a unit vector \( n \in \mathbb{R}^2 \). This is defined as the exponential mapping \cite{29} of \( \text{SO}(3) \), which is given by the map \( R = \exp(\theta, n) \to \text{SO}(3) \) as follows

\[
R = \exp(\theta, n) = I_3 + \sin(\theta) \hat{n} + (1 - \cos(\theta)) \hat{n}^2. \tag{4}
\]

The attitude dynamics of the \( i \)-th spacecraft is given by \cite{8, 30}

\[
J_i \dot{\Omega}_i = -\Omega_i \times J_i \Omega_i + w_i + d_i, \tag{5}
\]

where \( J_i \in \mathbb{R}^{3 \times 3} \) and \( d_i \in \mathbb{R}^3 \) denote the symmetric positive definite inertia matrix in the body-fixed frame, the control torque, and the external disturbance of the \( i \)-th spacecraft, respectively. In addition, \( w_i = [w_{1,i}, w_{2,i}, w_{3,i}]^T \in \mathbb{R}^3 \) is the saturated control torque input of the \( i \)-th spacecraft.

**ASSUMPTION 1.** The external disturbance \( d_i \) of the \( i \)-th spacecraft is bounded by an unknown positive constant \( d_{i,\text{max}} \), i.e., \( \|d_i\| \leq d_{i,\text{max}} \), where \( \|\cdot\| \) denotes the Euclidean norm.

B. The saturated control input model

The nonlinear saturated control torque input of the \( i \)-th spacecraft \( w_i = [w_{1,i}, w_{2,i}, w_{3,i}]^T \in \mathbb{R}^3 \) in (5) is defined as \cite{16}:

\[
w_{m,i} = \text{sat}(u_{m,i}) = \text{sign}(u_{m,i}) \min(\text{sat}_{m,i}, |u_{m,i}|), \tag{6}
\]

where \( \text{sign}(\cdot) \) is signum function and \( \text{sat}_{m,i} \) represents the saturation limit of the \( m \)-th actuator of the \( i \)-th spacecraft with \( m = 1, 2, 3 \). In order to facilitate the controller design, similar to the method proposed in \cite{14, 31}, the nonlinear saturation \( w_i = [w_{1,i}, w_{2,i}, w_{3,i}]^T \) can be approximately modeled as \( w_i = [\bar{w}_{1,i}, \bar{w}_{2,i}, \bar{w}_{3,i}]^T \) by using a dead-zone based model with the following relation:

\[
\bar{w}_{m,i} = \rho_{0,m,i} |u_{m,i}| - \int_0^{K_{m,i}} \rho_{m,i}(k) Z(k, u_{m,i}) dk, \tag{7}
\]

where

1) \( \rho_{m,i}(k) \) is considered a unknown density function, which vanishes at a finite horizon \( K_{m,i} \) and satisfies \( \rho_{m,i}(k) \geq 0, \forall k > 0 \).
2) \( \rho_{0,m,i} = \int_0^{K_{m,i}} \rho_{m,i}(k) dk \) is a positive unknown constant parameter.
3) The dead-zone operator \( Z(k, u_{m,i}) \) is defined by

\[
Z(k, u_{m,i}) = \max(u_{m,i} - k, 0, u_{m,i} + k). \tag{8}
\]

4) The saturated value \( u_{\text{sat},m,i} \) can be calculated by

\[
u_{\text{sat},m,i} = \lim_{u_{m,i} \to \infty} \bar{w}_{m,i} = \pm \int_0^{K_{m,i}} k \rho_{m,i}(k) dk, \tag{9}
\]

which means that \( \rho_{m,i}(k) \) can be designed to adapt to the saturation value of the \( m \)-th actuator of \( i \)-th spacecraft.

In this work, suppose that \( \rho_{m,i}(k) \) is designed as

\[
\rho_{m,i}(k) = \begin{cases} 
\frac{1}{K_{m,i}} & k \leq K_{m,i} \\
0 & k > K_{m,i} 
\end{cases}, \tag{10}
\]

we can further get \( u_{\text{sat},m,i} = \pm \frac{K_{m,i}}{2} \) from (9).

**REMARK 1.** In order to illustrate the performance of the dead-zone based saturation operation, we compare the dead-zone based operation (7) with density function (10) (DZ (7) with DF (10)) and the operation with nonlinear saturation function (6) directly (SF (6)). The actual torque output of the controller command torque under two input saturation operations is shown in Fig. 1.

Compared with the nonlinear saturation function (6), the dead-zone based saturation operation (7) with density function (10) makes the process of actual torque reaching or exiting the saturation value smoother without sudden change. In particular, if the dead-zone based operation (7)
with density function (10) is adopted, the command torque does not reach the saturation value in the range of \([-2, 2]\) Nm, and the absolute value of the actual torque output is smaller than the operation with nonlinear saturation function (6) in the unsaturated stage. Thus, the saturation operation (7) with density function (10) can reduce the saturation duration.

Then, the attitude dynamics of the \(i\)-th spacecraft can be rewritten as

\[
J_i \dot{\Omega}_i = -\Omega_i \times J_i \Omega_i + \dot{\omega}_i + d_i, \tag{11}
\]

with

\[
\dot{\omega}_i = \rho_{0,i} \odot u_i - h_i \tag{12}
\]

where \(\rho_{0,i} = [\rho_{0,1,i}, \rho_{0,2,i}, \rho_{0,3,i}]^T\), \(h_i = [h_{1,1,i}, h_{2,1,i}, h_{3,1,i}]^T\) with \(b_{m,i} = \int_0^{K_{m,i}} \rho_{m,i}(k)Z(k, u_{m,i})dk\) and \(m = 1, 2, 3\), \(\odot\) represents the controller output to be designed, and the symbol \(\odot\) denotes the Hadamard product [32].

### C. Graph Theory

The necessary results from algebraic graph theory are introduced in this section. The information communication topology between the leader spacecraft and the follower \(N\) spacecraft can be described by a directed graph \(G = (V, E)\) [27], where \(V = \{1, 2, \cdots, N\}\) denotes the node set and \(E \subset V \times V\) is the edge set. The associated adjacency matrix is denoted as \(A = [a_{ij}] \in \mathbb{R}^{N \times N}\), where \(a_{ij} = 1\) if \((i, j)\) is an edge of \(E\), i.e., the node \(i\) sends information to the node \(j\), and \(a_{ij} = 0\) otherwise. Since there is no self-loop for each node in this work, \(a_{ii} = 0\) holds. The set of in-neighbors of the node \(i\) is denoted by \(N_i = \{j \mid (j, i) \in E\}\). The in-degree matrix of the graph \(G\) is denoted by \(D = \text{diag}\{D_1, D_2, \cdots, D_N\}\), where \(D_i = \sum_{j \in N_i} a_{ij}\). The out-neighbors set of the node \(i\) is denoted by \(O_i = \{j \mid (i, j) \in E\}\). The out-degree matrix of the graph \(G\) is denoted by \(Q = \text{diag}\{Q_1, Q_2, \cdots, Q_N\}\), where \(Q_i = \sum_{j \in O_i} a_{ji}\). Note that \(D_i\) indicates the number of nodes (except the leader) sending information to the node \(i\) and \(Q_i\) indicates the number of nodes (except the leader) receiving information from the node \(i\). For a directed complete graph, it satisfies \(D_i = O_i = N - 1\) for all \(i = 1, 2, \cdots, N\), i.e., the node \(i\) not only receives information from all other nodes \(j\), but also sends information to all other nodes \(j\) \((j = 1, 2, \cdots, N, j \neq i)\). To describe the information flow from the virtual leader (i.e., node 0) to the followers, the leader adjacency matrix is defined as a diagonal matrix \(B = \text{diag}\{b_1, b_2, \cdots, b_N\}\), where \(b_i = 1\) if the virtual leader sends information to node \(i\), and \(b_i = 0\) otherwise.

### D. Mixed Attitude Constraints

According to the geometric relationship between the center pointing of spaceborne equipment and the center pointing of attitude-constrained zones, the attitude-constrained zones is divided into attitude-forbidden zones and attitude-mandatory zones.

The attitude-forbidden zone is defined as an attitude set on which spaceborne sensitive equipment (e.g., infrared telescope) directly exposes to certain bright objects (e.g., bright celestial bodies or bright flames of thrust engines of neighbor spacecraft). The attitude-forbidden zones can be further divided into static and relative dynamic attitude-forbidden zones. We can specify multiple attitude-forbidden zones for a spaceborne sensitive equipment, whether it is the static attitude-forbidden zones or the relative dynamic attitude-forbidden zones.

The attitude-mandatory zone is defined as an attitude set on which the center pointing of the spaceborne communication equipment keeps in (e.g., the high gain antenna has to point to the ground station to maintain communication.). We specify an attitude-mandatory zone for a spaceborne communication equipment.

The static attitude-forbidden zones, the relative dynamic attitude-forbidden zones and the static attitude-mandatory zones constitute the mixed attitude constraints in this work. Fig. 2 shows an MSS with mixed attitude constraints. For the \(i\)-th \((i = 1, 2, \cdots, N)\) spacecraft of the MSS, \(a_{q,i}\) is the center pointing vector of the \(q\)-th \((q = 1, 2, \cdots, Q)\) spaceborne sensitive equipment (e.g., infrared telescope). In order to meet the static attitude-forbidden constraint, the vector \(v_{p,i}\) pointing only changes with the attitude \(R_i\) of spacecraft \(i\) in the body-fixed frame \(B\), i.e., \(v_{p,i} = R_i^T v_{p,i}^0\) is the vector \(v_{p,i}\) expressed in inertial frame \(\mathcal{I}\).

Meanwhile, \(h_{k,j}\) is the center pointing vector of the \(k\)-th \((k = 1, 2, \cdots, H)\) thrust engine of \(j\)-th spacecraft of the MSS, which is the neighbor of \(i\)-th spacecraft. In order to satisfy the relative dynamic attitude-forbidden constraint, the direction of vector \(h_{k,j}\) must also be outside the field of view of the \(q\)-th spaceborne sensitive
equipment. Since the \( h_{k,j} \) is fixed on the \( j \)-th spacecraft, its representation in the body-fixed frame \( B \) of the \( i \)-th spacecraft is determined by the relative motion of spacecraft \( i \) and spacecraft \( j \), i.e., \( h_{k,j} = R_i^T R_j h_{k,j} \).

In addition, \( b_{l,i} \) is the center-pointing vector of the \( l \)-th \((l = 1, 2, \ldots, L)\) spacecraft in MSSs, and it is assumed to be static in the inertial frame \( I \). The center direction of the ground station is assumed to be static in the inertial frame \( I \), thus, the vector \( x_i \) pointing only changes with the attitude \( R_i \) of spacecraft \( i \) in the body-fixed frame \( B \), i.e., \( x_i = R_i^T x_i^l \), \( x_i^l \) is the vector \( x_i \) expressed in inertial frame \( I \).

In order to simulate that different bright objects have different effects on the spacecraft communication equipment, the field of view of the spacecraft communication equipment is assumed to be different for different bright objects. Similarly, the receiving range of ground station for different spacecraft communication equipment is also assumed to be different. The field of view of the spacecraft communication equipment and the receiving range of the ground station are assumed to be cones.

Then, the modeling of mixed attitude constraints is as follows.

1. **Static Attitude-Forbidden Zone**

   The half cone angle of the field of view of the \( p \)-th \((p = 1, 2, \ldots, P)\) spacecraft sensitive equipment to the \( q \)-th \((q = 1, 2, \ldots, Q)\) bright celestial body is represented by \( (\theta_p^q)_{F,i} \in [0, \frac{\pi}{2}] \). Then, the corresponding static attitude-forbidden zone can be expressed as

   \[
   a_{q,i}^T v_{p,i} = a_{q,i}^T R_i^T v_{p,i}^l < \cos((\theta_p^q)_{F,i}) .
   \]  

2. **Relative Dynamic Attitude-Forbidden Zone**

   The half cone angle of the field of view of the \( p \)-th \((p = 1, 2, \ldots, P)\) spacecraft sensitive equipment to the \( k \)-th \((k = 1, 2, \ldots, H)\) thrust engine of the \( j \)-th neighbor spacecraft is represented by \( (\theta_p^{j,k})_{F,i} \in [0, \frac{\pi}{2}] \). Then, the corresponding relative dynamic attitude-forbidden zone can be expressed as

   \[
   a_{q,i}^T h_{k,j} = a_{q,i}^T R_i^T R_j h_{k,j} < \cos((\theta_p^{j,k})_{F,i}) .
   \]  

3. **Static Attitude-Mandatory Zone**

   The half cone angle of the receiving range of the ground station to the \( l \)-th \((l = 1, 2, \ldots, L)\) spacecraft communication equipment is expressed by \( (\theta_l)_{M,i} \in [0, \frac{\pi}{2}] \). Then, the corresponding attitude-mandatory zone can be expressed as

   \[
   b_{l,i}^T x_i = b_{l,i}^T R_i^T x_i^l > \cos((\theta_l)_{M,i}) .
   \]  

**ASSUMPTION 2.** The desired attitude \( \mathbf{R}_d \) of the virtual leader spacecraft provided to the MSS satisfies the mixed attitude constraint model (13), (14) and (15).

### III. Problem Statement

The objective of this paper is to design an attitude saturation control scheme for an MSSs with \( N \) spacecraft on \( \text{SO}(3) \) subject to mixed attitude constraints to achieve attitude consensus and the desired attitude tracking of MSSs with arbitrary initial attitude.

In this work, we consider that \( N \) spacecraft in MSSs are connected in a directed complete topology, and a virtual leader spacecraft provides the time-varying desired attitude \( \mathbf{R}_d \) for the MSSs. Such as shown in Fig. 3, the virtual leader is only connected to the 1-st spacecraft. It is supposed that there is no isolated node in the communication graph, i.e., \( N_l \neq \emptyset \) \( \forall i \).

In addition, we assume that each spacecraft of the MSSs is equipped with \( Q \) sensitive spacecraft equipment (infrared telescopes) to complete the observation missions, \( L \) communication spacecraft equipment (high-gain antennas) to communicate with the ground station, \( H \) thrust engines and reaction flywheels to change the position and attitude.

Meanwhile, the distance between spacecraft in MSS is assumed to be very close, and the thrust engine continues to work to maintain a specific formation configuration (e.g., equilateral triangle configuration). Therefore, the spacecraft needs to avoid not only the certain bright celestial bodies (e.g., the sun), but also the bright flames of the neighbor spacecraft thrust engines to protect the sensitive spacecraft equipment.

This work mainly solves the following three problems:

**PROBLEM 1.** [**Attitude Error Function and Dynamics on \( \text{SO}(3) \) with Time-varying Desired Attitude**] Considering the time-varying desired attitude provided by the virtual leader, develop a multi-spacecraft attitude error function and attitude error dynamics on \( \text{SO}(3) \) suitable for a directed complete communication topology.

**PROBLEM 2.** [**Mixed Potential Function**] Considering the static attitude-forbidden zones, the relative dynamic attitude-forbidden zones and the attitude-mandatory zones, propose a mixed potential function on \( \text{SO}(3) \) to be effective for MSSs with arbitrary initial attitude and to avoid reaching the local minimum of the mixed potential function.

**PROBLEM 3.** [**Adaptive saturated Continuous Controller**] Considering the mixed attitude constraints, saturation constraints and external disturbances, design an...
adaptive saturation continuous controller to realize attitude consensus and tracking on SO(3) for MSSs.

IV. Attitude Error Function and Dynamics on SO(3) with Time-varying Desired Attitude

In this section, we mainly solve Problem 1. The attitude error function and the attitude error dynamics for an MSSs on SO(3) suitable for a directed complete communication topology with a time-varying desired attitude are developed.

A. Attitude Error Function

Motivated from [8], [30], the attitude error function on SO(3) of MSSs is given in the following proposition.

**PROPOSITION 1.** For the i-th spacecraft, define a local neighborhood attitude error function \( \Psi_i(R_i, R_j, R_d) \) \( \in \mathbb{R} \), an attitude consensus error function \( \Psi_{c,i}(R_i, R_j) \) \( \in \mathbb{R} \), an attitude tracking error function \( \Psi_{t,i}(R_i, R_d) \) \( \in \mathbb{R} \), an attitude error vector \( e_{R,i}(R_i, R_j, R_d) \in \mathbb{R}^3 \), an attitude consensus error vector \( e_{R,c,i}(R_i, R_j) \in \mathbb{R}^3 \), an attitude tracking error vector \( e_{R,t,i}(R_i, R_d) \in \mathbb{R}^3 \), an angular velocity error vector \( e_{\Omega,i}(\Omega_i, \Omega_j, \Omega_d, R_i, R_j, R_d) \in \mathbb{R}^3 \), an angular velocity consensus error vector \( e_{\Omega,c,i}(\Omega_i, \Omega_j, \Omega_d, R_i, R_j) \in \mathbb{R}^3 \) and an angular velocity tracking error vector \( e_{\Omega,t,i}(\Omega_i, \Omega_j, \Omega_d, R_i, R_d) \in \mathbb{R}^3 \) as follows:

\[
\Psi_i = \sum_{j \in N_i} \Psi_{c,i} + \Psi_{t,i}, \quad (16)
\]
\[
\Psi_{c,i} = \frac{1}{2} \text{tr}[I_3 - R_j^T R_i], \quad \forall j \in N_i \quad (17)
\]
\[
\Psi_{t,i} = b_i \frac{1}{2} \text{tr}[I_3 - R_d^T R_i], \quad (18)
\]
\[
e_{R,i} = \sum_{j \in N_i} e_{R,c,i} + e_{R,t,i}, \quad (19)
\]
\[
e_{R,c,i} = \frac{1}{2} (R_j^T R_i - R_i^T R_j)^\top, \quad \forall j \in N_i, \quad (20)
\]
\[
e_{R,t,i} = \frac{1}{2} b_i (R_d^T R_i - R_i^T R_d)^\top, \quad (21)
\]
\[
e_{\Omega,c,i} = \Omega_i - R_j^T R_i \Omega_j, \quad \forall j \in N_i, \quad (22)
\]
\[
e_{\Omega,t,i} = b_i (\Omega_i - R_d^T R_i \Omega_d). \quad (23)
\]

Then, we can get the following properties:

1) \( \Psi_{c,i}, \Psi_{t,i} \) and \( \Psi_i \) are positive semi-definite and their zeros are at \( R_i = R_j = R_d = R_j \), respectively.
2) The left-trivialized derivatives of \( \Psi_{c,i}, \Psi_{t,i} \) and \( \Psi_i \) with respect to the infinitesimal variation \( \delta R_i = R_i \tilde{\eta} \) for \( \tilde{\eta} \in \mathbb{R}^3 \) are given by

\[
D_{R_i}(\Psi_{c,i}) \cdot \delta R_i = \sum_{j \in N_i} \eta_j^T e_{R,c,i}, \quad (24)
\]
\[
D_{R_i}(\Psi_{t,i}) \cdot \delta R_i = \eta_i^T e_{R,t,i}, \quad (25)
\]
\[
D_{R_i}(\Psi_i) \cdot \delta R_i = \eta_i^T e_{R,i}. \quad (26)
\]

3) The vectors \( e_{R,c,i} \) and \( e_{R,t,i} \) are bounded by

\[
0 \leq \|e_{R,c,i}\| \leq 1, \quad (27)
\]
\[
0 \leq \|e_{R,t,i}\| \leq b_i. \quad (28)
\]

**Proof:**

According to Rodrigues function, for any \( Q = R_j^T R_i \in SO(3) \), there exists \( n \in \mathbb{R}^3 \) with \( \|n\| \leq \pi \) such that

\[
Q = \exp(n) = I_3 + \frac{\sin(\|n\|)}{\|n\|} n + \frac{1 - \cos(\|n\|)}{\|n\|^2} n^2. \quad (29)
\]

Substituting the foregoing equation into (17), we can get

\[
\Psi_{c,i}(R_j \exp(n), R_j) = \left( \frac{1}{2} \text{tr}[I_3 - \exp(\tilde{\eta})] \right)
\]
\[
= 1 - \cos(\|n\|). \quad (30)
\]

Therefore, it is clear that \( 0 \leq \Psi_{c,i} \leq 2 \) and \( \Psi_{c,i} = 0 \) when \( R_i = R_j \). Similarly, we can get \( 0 \leq \Psi_{t,i} \leq 2b_i \) and \( \Psi_{t,i} = 0 \) when \( R_i = R_d \) or \( b_i = 0 \) indicating that the i-th spacecraft is not connected to the virtual leader spacecraft. Because \( \Psi_i \) is the addition of \( \Psi_{c,i} \) and \( \Psi_{t,i} \), \( \Psi_i \) is also positive semi-definite and zero at \( R_i = R_j = R_d \). These show property 1.

The infinitesimal variation of a rotation matrix can be written as \( dR_i = \frac{d}{de} \exp(e\tilde{\eta}) = R \tilde{\eta} \) for \( \tilde{\eta} \in \mathbb{R}^3 \) [30]. By leveraging this, the left-trivialized derivative of \( \Psi_{c,i} \) with respect to \( R_i \) is given by

\[
D_{R_i}(\Psi_{c,i}) \cdot \delta R_i = \frac{d}{de} \Psi_{c,i}(R_i \exp(e\tilde{\eta}), R_j)
\]
\[
= -\frac{1}{2} \text{tr}[R_j^T R_i \tilde{\eta}] \tilde{\eta}. \quad (31)
\]

Using the fact \( \text{tr}[R_j^T R_i \tilde{\eta}] = -\eta_i^T (R_j^T R_i - R_i^T R_j) \) [30], \( D_{R_i}(\Psi_{c,i}) \cdot \delta R_i = \eta_i^T e_{R,c,i} \) is further obtained. Similarly, we can also have \( D_{R_i}(\Psi_{t,i}) \cdot \delta R_i = \eta_i^T e_{R,t,i} \) and \( D_{R_i}(\Psi_i) \cdot \delta R_i = \sum_{j \in N_i} (\eta_j^T e_{R,c,i}) + \eta_i^T e_{R,t,i} = \eta_i^T e_{R,i}. \)

These show property 2.

Finally, substituting (29) into (20), we obtain

\[
e_{R,c,i} = \frac{\sin(\|n\|)}{\|n\|} n. \quad (32)
\]

Thus, \( \|e_{R,c,i}\|^2 = \sin^2(\|n\|) \leq 1 \), which implies that \( 0 \leq \|e_{R,c,i}\| \leq 1 \). Similarly, we can also obtain \( 0 \leq \|e_{R,t,i}\| \leq b_i \). These show property 3.

This completes the proof.

**REMARK 2.** Proposition 1 defines an attitude consensus error function \( \Psi_{c,i}(R_i, R_j) \) and an attitude consensus error vector \( e_{R,c,i}(R_i, R_j) \) for attitude consensus requirements, and an attitude tracking error function \( \Psi_{t,i}(R_i, R_d) \) and an attitude tracking error vector \( e_{R,t,i}(R_i, R_d) \) for desired attitude tracking requirements. The local neighborhood attitude error function (16) includes both attitude consensus error and attitude tracking error, corresponding to the control objective. The minimum point of \( \Psi_i \) is \( R_i = R_j = R_d \), which ensures the realization of control objective. In addition, as in \( \Psi_i(R_i, R_j, R_d) \), \( b_i \) indicates whether the i-th spacecraft is connected to the virtual leader spacecraft, i.e., it determines whether the attitude tracking requirements need to be considered for the i-th spacecraft.
B. Attitude Error Dynamics

In this section, we derive the attitude error dynamics of the i-th spacecraft. For any desired attitude \( \mathbf{R}_d \in \text{SO}(3) \), \( \mathbf{R}_d^T \mathbf{R}_d = \mathbf{I}_4 \). Then, taking the time derivative on both sides results in \( \dot{\mathbf{R}}_d^T \mathbf{R}_d + \mathbf{R}_d^T \dot{\mathbf{R}}_d = 0 \), which further implies

\[
\dot{\mathbf{R}}_d^T = -\mathbf{R}_d^T \mathbf{R}_d \dot{\mathbf{R}}_d. \tag{33}
\]

Then, in view of (33), the derivative of \( \dot{\mathbf{R}}_d^T \) is obtained as

\[
\dot{\mathbf{R}}_d^T \mathbf{R}_i + \dot{\mathbf{R}}_d^T \mathbf{R}_i = \dot{\mathbf{R}}_d^T [\mathbf{R}_i - \mathbf{R}_d \dot{\mathbf{R}}_d] = \dot{\mathbf{R}}_d^T [\mathbf{R}_i \mathbf{\bar{\Omega}}_d - \mathbf{R}_d \dot{\mathbf{R}}_d] = \dot{\mathbf{R}}_d^T \mathbf{R}_i \mathbf{\bar{\Omega}}_d - \dot{\mathbf{R}}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) \tag{34}
\]

and

\[
\dot{\mathbf{R}}_d^T \mathbf{R}_i \mathbf{\bar{\Omega}}_d - \dot{\mathbf{R}}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) = \mathbf{R}_d^T \mathbf{R}_i \dot{\mathbf{\Omega}}_d - \mathbf{R}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) \tag{35}
\]

where the fact \( \mathbf{R}_d \dot{\mathbf{R}}_d^T = (\mathbf{R}_d \dot{\mathbf{R}}_d) \) is used for any \( \mathbf{x} \in \mathbb{R}^3 \) and \( \dot{\mathbf{\Omega}}_d \in \text{SO}(3) \), as is shown.

Then, taking the time derivative on both sides results in \( \dot{\mathbf{R}}_d^T \mathbf{R}_i \mathbf{\bar{\Omega}}_d - \dot{\mathbf{R}}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) = \mathbf{R}_d^T \mathbf{R}_i \dot{\mathbf{\Omega}}_d - \mathbf{R}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) \).

Similarly, by leveraging (34) and (18), we can also show

\[
\dot{\mathbf{R}}_d^T \mathbf{R}_i \mathbf{\bar{\Omega}}_d - \dot{\mathbf{R}}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) = \mathbf{R}_d^T \mathbf{R}_i \dot{\mathbf{\Omega}}_d - \mathbf{R}_d^T \dot{\mathbf{R}}_d (\mathbf{R}_d^T \mathbf{R}_i) \tag{36}
\]

Obviously, the attitude error dynamics of the i-th spacecraft can be rewritten as

\[
\dot{\mathbf{R}}_d^T = -\mathbf{R}_d^T \mathbf{R}_d \dot{\mathbf{R}}_d. \tag{37}
\]

where \( \dot{\mathbf{R}}_d = J_i^{-1}(\dot{\mathbf{\Omega}}_d \mathbf{w}_i + \mathbf{d}_i) \).

V. Mixed Potential Function

In this section, we mainly solve Problem 2. Based on whether the initial attitude \( \mathbf{R}_{i,0} \) of the i-th spacecraft meets the mixed attitude constraints (13), (14) or (15), the mixed potential function composed of attractive potential function and repulsive potential function on \( \text{SO}(3) \) is proposed.

For the static attitude-forbidden zones (SFZ), the static attitude-mandatory zones (SMZ) and the relative dynamic attitude-forbidden zones (DFZ), the mixed potential function \( \Phi_i \) is used to represent the mixed potential function of the i-th spacecraft of the MSSs. The mixed potential function \( \Phi_i \) that determines whether the attractive potential function is effective or the repulsive potential function is effective according to the initial attitude \( \mathbf{R}_{i,0} \) is defined as

\[
\Phi_i = \sum_{j \in N_i} \Phi_{SF,i,j} + \sum_{j \in N_i} \Phi_{DF,i,j} \tag{40}
\]

where

\[
\Phi_{SF,i,j} = \frac{\sum_{p=1}^{P} \sum_{q=1}^{Q} \left(\gamma_{i}^{2}\mathbf{1}_{F,i} \left(\mathbf{R}^{T}_{p,i} \mathbf{R}_{j,i} \mathbf{h}_{k,i,j} + 1\right)\right)^{2}}{2} \tag{41}
\]

is the repulsive potential function of SFZ

\[
\Phi_{SM,i} = \lambda \sum_{l=1}^{L} \left(\gamma_{i}^{2} \mathbf{1}_{M,i} \left(1 - b \mathbf{R}^{T}_{l,i} \mathbf{R}_{j,i} \mathbf{x}_{l,i} \right)^{2}ight) \tag{42}
\]

is the repulsive potential function of SMZ

\[
\Phi_{DF,i,j} = \beta \sum_{k=1}^{H} \sum_{q=1}^{Q} \left(\gamma_{i}^{2} \mathbf{1}_{F,i} \left(\mathbf{R}^{T}_{q,i} \mathbf{R}_{j,i} \mathbf{h}_{k,i,j} + 1\right)\right)^{2} \tag{43}
\]

is the repulsive potential function of DFZ

with

\[
\left\{\begin{array}{l}
\left(\gamma_{i}^{2}\mathbf{1}_{F,i}ight) \mathbf{R}_{j,i} = 1, \left(\gamma_{i}^{2}\mathbf{1}_{F,i}ight) \mathbf{R}_{j,i} = 0 \text{ if } \mathbf{R}^{T}_{p,i} \mathbf{R}_{j,i} \mathbf{h}_{k,i,j} \geq \cos \left(\theta_{i}^{(p)}\mathbf{R}_{F,i}\right), \\
\left(\gamma_{i}^{2}\mathbf{1}_{F,i}ight) \mathbf{R}_{j,i} = 0, \left(\gamma_{i}^{2}\mathbf{1}_{F,i}ight) \mathbf{R}_{j,i} = 1 \text{ if } \mathbf{R}^{T}_{p,i} \mathbf{R}_{j,i} \mathbf{h}_{k,i,j} < \cos \left(\theta_{i}^{(p)}\mathbf{R}_{F,i}\right),
\end{array}\right. \tag{44}
\]

where \( \gamma \), \( \beta \), and \( \lambda \) are the positive constant weighting parameters for the static attitude-forbidden potential function \( \Phi_{SF,i} \), the static attitude-mandatory potential function \( \Phi_{SM,i} \), and the relative dynamic attitude-forbidden potential function \( \Phi_{DF,i,j} \), respectively.

Remark 3. Compared with the potential functions in [25–27], the proposed potential function \( \Phi_i \) additionally considers the DFZ, which is very necessary in practical space missions.

In particular, for the i-th spacecraft in MSSs, when the initial attitude \( \mathbf{R}_{i,0} \) does not meet the attitude constraints (13), (14) or (15), the attractive potential function works and generates the attractive potential to make the spacecraft quickly satisfy the attitude constraints. (e.g., when the attractive potential function in the static attitude-forbidden potential function \( \Phi_{SF,i} \) is effective. The attitude \( \mathbf{R}_i \) will tend to to \( \mathbf{R}_{i,0} \), and the potential is the largest) to make the p-th spaceborne sensitive equipment quickly

Zeyu Kang ET AL.: Attitude control of multi-spacecraft systems

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 04, 2023 at 08:54:01 UTC from IEEE Xplore. Restrictions apply.
where respect to time (i.e., the edge of the constraint zone (e.g., potential function is effective. When the attitude approaches leave the Φ

According to the attitude kinematics (2), \( \dot{\Omega}_i \) in detail. The time derivative of the can be computed as

Next, we take the static attitude-forbidden potential \( \Phi_{SF,i} \) as an example to derive its derivative with respect to time \( t \). The time derivative of the potential function \( \Phi_{SF,i} \) can be computed as

Applying the fact [30] \( \dot{\hat{y}}x = -\dot{\hat{y}}x \) for any \( x, y \in \mathbb{R}^3 \) to the term \( a_{q,i}^T \Gamma_i^j v_{p,i}^l \) yields

where the fact that \((\Gamma_i^j v_{p,i}^l)^{\top} = - (\Gamma_i^j v_{p,i}^l)^{\top}\) is used.

Then, substituting (47) into \( \Phi_{SF,i} \) (46), we can obtain

Similarly, we can get \( \Phi_{SM,i} = \Omega_i T^j \Phi_{SM,i} \). In addition, for the relative dynamic attitude-forbidden potential function \( \Phi_{DF,ij} \), the difference is that the time derivative of term \( R_i^j R_j^l \) needs to be obtained. Specifically, we have

\[
\frac{d}{dt} (R_j^l R_j^l) = (R_j^l R_j^l)[N] = -\epsilon_{\Omega,i}^j \epsilon_{\Omega,i}^j T = -\epsilon_{\Omega,i}^j \epsilon_{\Omega,i}^j T,
\]

where the facts (34), (35) and \( \epsilon_{\Omega,i}^j \epsilon_{\Omega,i}^j T \) are used. Then, following the same steps above (45)-(47), we can also get

\[
\sum_{j \in \mathbb{N}_i} \Phi_{DF,ij} = \sum_{j \in \mathbb{N}_i} (e_{\Omega,i}^j P_{DF,i}^j) \tag{49}
\]

**Proposition 2.** The mixed potential function in (40) has the following properties:

1. \( \Phi_i \) is positive definite.
2. \( \Phi_i \geq 1 \).
3. The minimum point of \( V_{R,i} = \Psi_i \Phi_i \), is \( R_i = R_d \).
4. The left-trivialized derivative of \( V_{R,i} \) with respect to the infinitesimal variation \( \delta R_i = R_i \eta \) for \( \eta \in \mathbb{R}^3 \) is \( D_{R_i}(V_{R,i}) \cdot \delta R_i = \eta^T F_i \), where \( F_i = e_{R,i}^j \Phi_i + \Psi_i (P_{SF,i} + P_{MF,i} + \sum_{j \in \mathbb{N}_i} P_{DF,ij}) \).

**Proof:**

It is obvious that the attractive potential functions in \( \Phi_{SF,i} \), \( \Phi_{SM,i} \), and \( \Phi_{DF,ij} \) are all positive definite, since they are defined as quadratic forms. Meanwhile, in view of the fact that \( \left( \theta_i^{k,j} \right)_{F,i} \in \left[ 0, \frac{\pi}{4} \right] \), \( \left( \theta_i^{k,j} \right)_{F,i} \in \left[ 0, \frac{\pi}{2} \right] \) and \( \left( \theta_i^{k,j} \right)_{M,i} \in \left[ 0, \frac{\pi}{2} \right] \), \( \cos(\theta_i^{k,j})_{F,i} \in [0, 1] \), then \( \cos(\theta_i^{k,j})_{F,i} \in [0, 1] \) and \( \cos(\theta_i^{k,j})_M \in [0, 1] \) can be obtained. In addition, the terms \( a_{q,i}^T R_i^j v_{p,i}^l \), \( a_{q,i}^T R_i^j h_{j,k} \), and \( b_{q,i}^T R_i^j x_i^l \) represent the cosine of the angle between two unit vectors. According to the mixed attitude constraint zone model (13), (14) and (15), we can further obtain,

\[
0 < \cos \left( \left( \theta_i^{l,j} \right)_{F,i} \right) - a_{q,i}^T R_i^j v_{p,i}^l \leq 1,
\]

\[
0 < \cos \left( \left( \theta_i^{k,j} \right)_{F,i} \right) - a_{q,i}^T R_i^j h_{j,k} \leq 1,
\]

\[
0 < b_{q,i}^T R_i^j x_i^l - \cos \left( \left( \theta_i^{k,j} \right)_{M,i} \right) \leq 1,
\]

Then, \( 0 \leq -\log(x) \), \( \forall x \in [0, 1] \). These show that properties 1 and 2 are correct.

In addition \( V_{R,i} = \Psi_i \Phi_i \) is composed of two positive terms. Since \( \Phi_i \geq 1 \), \( V_{R,i} = \Psi_i \Phi_i = 0 \) is equivalent to \( \Psi_i = 0 \), then the minimum point of \( V_{R,i} \) is the same as that of \( \Psi_i \). These show property 3.
Since $V_{R,i} = \Psi_i \Phi_i$, we have
\[
D_{R_i}(V_{R,i}) \cdot \delta R_i = \left(D_{R_i}(\Psi_i) \cdot \delta R_i\right) \Phi_i + \Psi_i \left(D_{R_i}(\Phi_i) \cdot \delta R_i\right),
\] (51)
in which the first part can be expanded to
\[
D_{R_i}(\Psi_i) \cdot \delta R_i = \sum_{j \in \mathcal{N}_i} \left( \frac{d}{de} \bigg|_{e=0} \Psi_{c,i}(R_i(\exp(\epsilon \eta)), R_d) \right)
+ \frac{d}{de} \bigg|_{e=0} \Psi_{c,i}(R_i(\exp(\epsilon \eta)), R_d)
= \sum_{j \in \mathcal{N}_i} \left( \frac{1}{2} \text{tr}[-R_j^T R_i(\exp(\epsilon \eta)) \eta]\right)_{|e=0}
+ b_1 \frac{1}{2} \text{tr}[-R_j^T R_i(\exp(\epsilon \eta))]_{|e=0}
= -\sum_{j \in \mathcal{N}_i} \left( \frac{1}{2} \text{tr}[R_j^T R_i \eta]\right) - b_1 \frac{1}{2} \text{tr}[R_d^T R_i \eta].
\] (52)

Applying the fact \[30\] $\text{tr}[A \dot{x}] = -x^T (A - A^T) \dot{x}$ for any $x \in \mathbb{R}^3$, $A \in \mathbb{R}^{3 \times 3}$, we further obtain
\[
D_{R_i}(\Psi_i) \cdot \delta R_i = \sum_{j \in \mathcal{N}_i} \left( \frac{1}{2} \eta^T (R_j^T R_i - R_i^T R_j)^\nu \right)
- b_1 \frac{1}{2} \eta^T (R_d^T R_i - R_i^T R_d)^\nu
= \sum_{j \in \mathcal{N}_i} (\eta^T e_{R,c,i}) + \eta^T e_{R,t,i} = \eta^T e_{R,i}.
\] Therefore, the first part can be written as
\[
\left(D_{R_i}(\Psi_i) \cdot \delta R_i\right) \Phi_i = \eta^T e_{R,i} \Phi_i.
\] (54)

For the second part of (51), we have
\[
D_{R_i}(\Phi_i) \cdot \delta R_i = \left(\frac{d}{de}\right)_{e=0} \Phi_{S,i}(R_i(\exp(\epsilon \eta))
+ \frac{d}{de}\bigg|_{e=0} \Phi_{S,i}(R_i(\exp(\epsilon \eta))
+ \sum_{j \in \mathcal{N}_i} \left( \frac{d}{de} \bigg|_{e=0} \Phi_{DF,i}(R_i(\exp(\epsilon \eta))\right)
\] (55)
Taking the first term in (55) as an example, we can obtain
\[
\left.\frac{d}{de}\bigg|_{e=0} \Phi_{S,i}(R_i(\exp(\epsilon \eta))\right)
= \alpha_0 \sum_{p=1}^{P} \sum_{q=1}^{Q} \left( (\gamma_i^q)^2 F_{i,p} (R_i^T v_{i,p}^T \eta)^2 \cos((\theta_i^p F_i), a_{q,i} R_i^T v_{i,p}^T \eta)\right)_{|e=0}
+ (\gamma_i^q F_{i,p} ( R_i^T v_{i,p}^T + 1) a_{q,i} R_i^T v_{i,p}^T \eta)_{|e=0}
= \alpha_0 \sum_{p=1}^{P} \sum_{q=1}^{Q} \left( - (\gamma_i^q F_{i,p} ( R_i^T v_{i,p}^T + 1) a_{q,i} R_i^T v_{i,p}^T \eta)_{|e=0}
+ (\gamma_i^q F_{i,p} a_{q,i} R_i^T v_{i,p}^T - \cos((\theta_i^p F_i))\right)
= \eta^T \mathcal{F}_i.
\] (58)

These show property 4.

**Remark 4.** The property 3 of the proposition 2 shows that it will not make the system fall into the local minimum, since it does not change the minimum value of $\Psi_i$, i.e., the spacecraft attitude finally converges to the desired attitude $R_d$. Therefore, in Assumption 2, only the attitude of the virtual leader spacecraft is reasonably limited, and the initial attitude $R_{i,0}$ of the $i$-spacecraft in the MSS is not limited.

VI. Adaptive Saturation Continuous Controller Design

In this section, we solve Problem 3. An adaptive saturation attitude continuous controller is designed to realize attitude consensus and tracking for the MSSs on $SO(3)$ with considering the mixed attitude constraints and saturation constraints.

In practical applications, the unknown parameters $\rho_{0,m,i}$ and $\rho_{m,i}$ in (11) are upper bounded by known scalar constants, thus their estimation can also be limited to a bounded convex set with known bounds \[33\]. Meanwhile, considering the upper-bounded unknown disturbances $d_{i,\text{max}}$ together (cf. Assumption 1), the following relationship is defined:
\[
(\Gamma_{1,i}, \Gamma_{2,i}, \Gamma_{3,i}) \triangleq (\chi_{\rho_{0,i}}, \rho_i, d_{\text{max}}).
\] (59)
The estimated values corresponding to (59) are defined as
\[
(\hat{\Gamma}_{1,i}, \hat{\Gamma}_{2,i}, \hat{\Gamma}_{3,i}) \triangleq (\hat{\chi}_{\rho_{0,i}}, \hat{\rho}_i, \hat{d}_{\text{max}}).
\] (60)

Then, we define convex sets for $\Gamma_{v,i}$ and $\Gamma_{v,i}$ as
\[
\Pi_{\Gamma_{v,i}} \triangleq \{ \Gamma_{v,i} \in \mathbb{R}^n | \Gamma_{v,i}^T \Gamma_{v,i} \leq \epsilon_{v,i} \}
\] (61)
\[
\Pi_{\hat{\Gamma}_{v,i}} \triangleq \{ \hat{\Gamma}_{v,i} \in \mathbb{R}^n | \hat{\Gamma}_{v,i}^T \hat{\Gamma}_{v,i} < \epsilon_{v,i} + \delta_{v,i} \}
\] (62)
where $\epsilon_{v,i} > 0$ is the upper bound for $\Gamma_{v,i}$, and $\delta_{v,i} > 0$ is a small constant, $v \in \{1, 2, 3\}$, and superscript $n$ represents the dimension of $\Gamma_{v,i}$. Then, the smooth projection for $\Gamma_{v,i}$ is defined as

$$\hat{\Gamma}_{v,i} = \text{Proj}(\Gamma_{v,i}, Y_{v,i})$$

where

$$\text{Proj}(\Gamma_{v,i}, Y_{v,i}) \triangleq \begin{cases} \eta_0 \Gamma_{v,i} & \text{if } ||\Gamma_{v,i}||^2 < \epsilon_{v,i} \text{ or } \\ \eta_0 \left( Y_{v,i} - \frac{(\Gamma_{v,i}^T - \epsilon_{v,i})W}{\delta_{v,i}||\Gamma_{v,i}||^2} \Gamma_{v,i} \right) & \text{if } ||\Gamma_{v,i}||^2 \geq \epsilon_{v,i} \text{ and } W \leq 0 \end{cases}$$

where $W = Y_{v,i}^T \hat{\Gamma}_{v,i}$ and $\eta_0$ is a positive constant.

\[
Y_{1,i} \triangleq -\Omega_i \circ \hat{u}_i, \\
Y_{2,i} \triangleq -\Omega_i \circ Z(r, u_i), \\
Y_{3,i} \triangleq -||\Omega_i||.
\]

**Remark 5.** In practical application, the values of $\epsilon_{v,i}$ and $\delta_{v,i}$ can be set according to experience to avoid that the estimation of unknown parameters is not conform to their physical meaning. If the initial estimate of the unknown parameter $\hat{\Gamma}_{v,i}$ satisfies $||\hat{\Gamma}_{v,i}(0)|| < \epsilon_{v,i} + \delta_{v,i}$, then we can limit the estimate of $\hat{\Gamma}_{v,i}$ to a bounded range by the smooth projection $\hat{\Gamma}_{v,i} = \text{Proj}(\hat{\Gamma}_{v,i}, Y_{v,i})$.

Then, in light of attitude error function (16), error dynamics (39) on SO(3) and mixed potential function (40), an adaptive attitude controller is designed as

$$u_i = \hat{\chi}_{p,i} \circ \hat{u}_i = \hat{\chi}_{p,i} \circ (u_i^0 + \hat{H}_i),$$

where $u_i^0$ is a virtual controller, and

$$u_i^0 = -k_i \Psi_i S_{1,i} - k_2 ||\Omega_i|| S_{2,i} - k_3 e_{\Omega,i} - k_4 F_i - k_4 M_i S_{3,i} - d_{i,\max} S_{4,i}$$

with

$$S_{1,i} = \frac{\Omega_i}{||\Omega_i||^2 + \kappa_{1,i}^2}, \quad S_{2,i} = \frac{\Omega_i}{||\Omega_i||^2 + \kappa_2^2},$$

$$S_{3,i} = \frac{\Omega_i}{||\Omega_i||^2 + \kappa_3^2}, \quad S_{4,i} = \frac{\Omega_i}{||\Omega_i||^2 + \kappa_4^2},$$

where $\kappa_{1,i}, \ldots, \kappa_{4,i} \in \mathbb{R}$ are adaptive parameters to be given later, $M_i = \Psi_i \sum_{j \in N_i} \left( \left( R_i^T R_i \Omega_j \right)^T e_{\Omega,i,j} \right) + \Phi_i \sum_{j \in N_i} \left( \left( R_i^T R_i \Omega_j \right)^T e_{\Omega,i,j} \right) + \Phi_i \left( b_i \left( R_i^T R_i \Omega_i \right)^T e_{\Omega,i,j} \right)$, $k_1, k_2, k_3$ and $k_4$ are positive constants. In addition, $\hat{H}_i = [\hat{h}_{1,i}, \hat{h}_{2,i}, \hat{h}_{3,i}]^T$, and $\hat{h}_{m,i} = \int_{\rho_{m,i}}^{\rho_{m,i} + \hat{\chi}_{p,i}} Z(k, u_{m,i}) \, dk$, $m = 1, 2, 3$.

The updating laws for parameters $\hat{\chi}_{p,i}, \rho_i, d_{i,\max}, k_{1,i}, k_{2,i}, k_{3,i}, k_{4,i}$ of the i-th spacecraft are proposed as

$$\begin{cases} \dot{\hat{\chi}}_{p,i} = \text{Proj}(\hat{\chi}_{p,i}, Y_{1,i}), \\
\dot{\rho}_i = \text{Proj}(\rho_i, Y_{2,i}), \\
\dot{d}_{i,\max} = \text{Proj}(d_{i,\max}, Y_{3,i}), \\
\dot{k}_{1,i} = -\frac{\mu_1 \kappa_{1,i}}{||\Omega_i||^2 + \kappa_1^2} k_{2,i} \Psi_i, \\
\dot{k}_{2,i} = -\frac{\mu_2 \kappa_{2,i}^2}{||\Omega_i||^2 + \kappa_2^2} k_{2,i} \Omega_i ||e_{\Omega,i}||, \\
\dot{k}_{3,i} = -\frac{\mu_3 \kappa_{3,i}}{||\Omega_i||^2 + \kappa_3^2} k_{3,i} M_i, \\
\dot{k}_{4,i} = -\frac{\mu_4 \kappa_{4,i}}{||\Omega_i||^2 + \kappa_4^2} ||\Omega_i|| d_{i,\max}, \end{cases}$$

where $\mu_1, \mu_2, \mu_3$ and $\mu_4$ are positive constants.

Then, according to (12), the proposed adaptive saturated attitude controller with the dead-zone input saturation operation can be expressed as

$$\begin{aligned} \omega_i &= \rho_{0,i} \circ \hat{\chi}_{p,i} \circ \hat{u}_i - H_i \\
&= \rho_{0,i} \circ \hat{\chi}_{p,i} \circ (u_i^0 + \hat{H}_i) - H_i. \end{aligned}$$

Using the proposed adaptive saturated attitude controller in (67) with the adaptive law (66), the stability of the MSSs is summarized in the following theorem.

**Theorem 1.** For the local neighborhood attitude error kinematics and dynamics on SO(3) represented by (16) and (39), the proposed adaptive saturated attitude controller (67) with the adaptive law (66) and the parameters $k_2 \geq k_3 > 0$ ensures that \( \lim_{t \to \infty} R_i = R_d \) and \( \lim_{t \to \infty} \Omega_i = \Omega_d \), i.e., the proposed adaptive saturated attitude continuous controller (67) can achieve consensus and tracking of time-varying virtual attitude commands of MSSs despite the mixed attitude constraints, input saturation and external disturbances.

**Proof:**
Consider the following Lyapunov candidate function:

$$V = \sum_{i=1}^{N} \left( \frac{1}{2} \Omega_i^T J_i \Omega_i + k_4 V_{\chi,i} + V_{\rho,i} + V_d_{\max} + V_{\kappa_{3,i}} + V_{\kappa_{3,i}} + V_{\kappa_{4,i}} \right),$$

where

$$V_{\chi,i} = \frac{1}{2\mu_1} (\rho_{0,i} \circ \hat{\chi}_{p,i})^T \hat{\chi}_{p,i},$$

$$V_{\rho,i} = \frac{1}{2\mu_2} \sum_{m=1}^{3} \int_{0}^{\kappa_{2,i}} \rho_{m,i}^2 \, dk,$$

$$V_d_{\max} = \frac{1}{2\mu_3} \kappa_1^2,$$

$$V_{\kappa_{3,i}} = \frac{1}{2\mu_4} \kappa_2^2,$$

$$V_{\kappa_{3,i}} = \frac{1}{2\mu_4} \kappa_2^2,$$

with $\hat{\chi}_{p,i} = \hat{\chi}_{p,i} - \hat{\chi}_{p,i} \circ \hat{u}_i - \hat{H}_i$, $\hat{\rho}_i = \hat{\chi}_{p,i} \circ (\rho_i + \hat{H}_i)$ and $d_x \max = d_{i,\max} - \hat{d}_{i,\max}$.

The proposed adaptive saturated attitude controller in (67) can be rewritten as

$$\omega_i = \rho_{0,i} \circ \hat{\chi}_{p,i} \circ \hat{u}_i - H_i = \rho_{0,i} \circ (\hat{\chi}_{p,i} - \hat{\chi}_{p,i}) \circ \hat{u}_i - H_i = u_i^0 - \rho_{0,i} \circ \hat{\chi}_{p,i} \circ \hat{u}_i - (\hat{H}_i - \hat{H}_i).$$

Then, substituting the attitude error function (11) and the proposed controller (69) into the the time derivative of $V$
yields
\[
\dot{V} \leq \sum_{i=1}^{N} \left( -k_1 \Psi_i - (k_2 - k_3) \| \Omega_i \| \| e_{\Omega_i} \| \right. \\
- \Omega_i^T (\rho_{0,i} \circ \hat{\chi}_{p_{0,i}} \circ \hat{u}_i) + \hat{d}_{i,\max} \| \Omega_i \| \\
- \Omega_i^T (\hat{H}_i - \hat{H}_i) \frac{1}{\eta_1} (\rho_{0,i} \circ \hat{\chi}_{p_{0,i}})^T \hat{\chi}_{p_{0,i}} \\
- \frac{1}{\eta_2} \sum_{m=1}^{3} \int_{0}^{K_{m,i}} \hat{\rho}_{m,i} \hat{d}_{m,i} dk - \frac{1}{\eta_3} \hat{d}_{i,\max} \hat{d}_{i,\max},
\]
where the following facts are sued:
- \( k_1 \Omega_i^T \Psi_i S_{1,i} + \frac{1}{\mu_1} k_1 \Omega_i \| e_{\Omega_i} \| + C_{1,i} \| e_{\Omega_i} \| + C_{2,i} \| e_{\Omega_i} \| + C_{3,i} \) \\
- \( k_2 \Omega_i^T \| e_{\Omega_i} \| S_{2,i} + \frac{1}{\mu_2} k_2 \Omega_i \| e_{\Omega_i} \| + C_{2,i} \| e_{\Omega_i} \| + C_{3,i} \) \\
- \( k_3 \Omega_i^T \| e_{\Omega_i} \| S_{3,i} + \frac{1}{\mu_3} k_3 \Omega_i \| e_{\Omega_i} \| + C_{3,i} \) \\
and
\[
k_i \dot{V}_{R_i} = k_4 \left( \hat{\Psi}_i \Phi_i + \Psi_i \dot{\Phi}_i \right) = k_4 \Omega_i^T \Phi_i - k_4 M_i.
\]
Then, we have
\[
\dot{V} \leq \sum_{i=1}^{N} \left( -k_1 \Psi_i - (k_2 - k_3) \| \Omega_i \| \| e_{\Omega_i} \| + C_{1,i} + C_{2,i} + C_{3,i} \right),
\]
where
- \( C_{1,i} = -\frac{1}{\eta_1} (\rho_{0,i} \circ \hat{\chi}_{p_{0,i}})^T \hat{\chi}_{p_{0,i}} + \eta_1 \Omega_i \| e_{\Omega_i} \| \) \\
- \( C_{2,i} = -\sum_{m=1}^{3} \int_{0}^{K_{m,i}} \rho_{m,i} \hat{d}_{m,i} dk + \eta_2 \Omega_i \| e_{\Omega_i} \| \) \\
- \( C_{3,i} = -\frac{1}{\eta_3} \hat{d}_{i,\max} \hat{d}_{i,\max} - \eta_3 \Omega_i \| e_{\Omega_i} \| \).

According to the adaptive updating law (66), \( C_{1,i} = 0 \) if \( \| \hat{\chi}_{p_{0,i}} \| \leq \epsilon_{1,i} \) or if \( \| \hat{\chi}_{p_{0,i}} \| \leq \epsilon_{2,i} \) and \( \hat{\chi}_{p_{0,i}} \neq 0 \) in addition, since when \( \| \hat{\chi}_{p_{0,i}} \| \leq \epsilon_{2,i} \) and \( \hat{\chi}_{p_{0,i}} \neq 0 \), we can get
\[
C_{1,i} = \gamma_1 \left( \| \hat{\chi}_{p_{0,i}} \| - \epsilon_{1,i} \right) \frac{\| \hat{\chi}_{p_{0,i}} \|}{\| \hat{\chi}_{p_{0,i}} \|} \Omega_i \| e_{\Omega_i} \| \leq 0,
\]
which is true because \( \hat{\chi}_{p_{0,i}} \hat{\chi}_{p_{0,i}} = \hat{\chi}_{p_{0,i}} \hat{\chi}_{p_{0,i}} - \| \hat{\chi}_{p_{0,i}} \| \leq 0 \) when \( \| \hat{\chi}_{p_{0,i}} \| \geq \epsilon_{1,i} \). Therefore, \( C_{1,i} \leq 0 \).

Similarly, we can obtain \( C_{2,i} \leq 0 \) and \( C_{3,i} \leq 0 \) by following the above analysis. Thus, \( \dot{V} \) satisfies
\[
\dot{V} \leq \sum_{i=1}^{N} \left( -k_1 \Psi_i - (k_2 - k_3) \| \Omega_i \| \| e_{\Omega_i} \| \right)
\]
and the system asymptotically converges to the minimum point \( R_i = R_j = R_d \) of \( \Psi_i \) while satisfies the mixed attitude constraints in the convergence process.

When the system reaches the minimum point \( R_i = R_j = R_d \), \( R_i = R_j = R_d \) is easy to get. Then, according to the attitude kinematics (2), \( \lim \Omega_i = \Omega_d = \Omega_d \) is obtained.

In summary, \( \lim \dot{R}_i \rightarrow \infty \) and \( \lim \Omega_i \rightarrow \infty \) means that while considering the mixed attitude constraints, input saturation and external disturbance, the attitude of the spacecraft in MSSs tends to be consistent, and track the time-varying desired attitude provided by the virtual leader spacecraft. This completes the proof.

**Remark 6.** Without considering the input saturation (6), the attitude dynamic of the \( i \)-th spacecraft in MSS can be defined as
\[
J_i \dot{\Omega}_i = -\Omega_i \times J_i \Omega_i + \dot{\hat{u}}_i + \dot{d}_i,
\]
the adaptive controller can be designed as \( \hat{u}_i = u_i^0 \), \( u_i^0 \) is the virtual controller, which has been given in (65). Its stability can be proved by the Lyapunov function without considering the input saturation of MSS
\[
\dot{V}' = \sum_{i=1}^{N} \left( \frac{1}{2} \Omega_i \dot{J}_i \Omega_i + k_1 \dot{V}_{R_i} + V_{d,\max} \right),
\]
The proof process is similar to Theorem 1 and is omitted.

In other words, the proposed adaptive saturated controller (67) actually adopts the dead-zone based operation on the virtual controller \( u_i^0 \) in (65). In addition, if the nonlinear saturation operation (6) is directly applied to \( u_i^0 \) in (65), the actual torque input of the spacecraft can be obtained as \( m = 1, 2, 3 \)
\[
w_{m,i} = \text{sat}(u_{m,i}^0) = \text{sign}(u_{m,i}^0) \min(\text{sat} m, \| u_{m,i}^0 \|).
\]

The main difference between the proposed controller (67) and the controller (72) is that different input saturation operations are applied to the virtual controller \( u_i^0 \) in (65). We will compare the two operations/controllers in the Simulation Results section.

**Remark 7.** Motivated by [31], to implement the proposed controller (67), the integral term \( \hat{\rho}_{m,i} = \int_{0}^{K_{m,i}} \rho_{m,i}(k) Z(k, u_{m,i}) dk \) with \( m = 1, 2, 3 \), is approximated as:
\[
\int_{0}^{K_{m,i}} \rho_{m,i}(k) Z(k, u_{m,i}) dk \approx \sum_{s=1}^{M_{m,i}} \rho_{m,i}(s \Delta k) Z(s \Delta k, u_{m,i}) \Delta k.
\]
Then, the corresponding \( \hat{\rho}_{m,i}(s \Delta k) \) becomes
\[
\hat{\rho}_{m,i}(s \Delta k) = \text{Proj} \left( \hat{\rho}_{m,i}(s \Delta k), \hat{Y}_{2,i} \right),
\]
with \( \hat{Y}_{2,i} \neq \Omega_{m,i} \circ Z(s \Delta k, u_{m,i}) \), where \( \Delta k \) is a step size and \( M_{m,i} = \frac{K_{m,i}}{\Delta k} \).

Obviously, the smaller parameter \( \Delta k \) is selected, the more accurate the approximation is, but it will increase the computational complexity. On the contrary, the larger \( \Delta k \), the larger the approximation
error will be. Therefore, it is very important to select the value of parameter $\Delta k$.

**Remark 8.** Compared with the adaptive update law in [15], [31], we design the projection operator (62) to make the corresponding parameters closer to the actual physical value in the adaptive estimation process.

**Remark 9.** The initial values of the adaptive parameters $\kappa_{1,i}(0) \neq 0$, $\kappa_{2,i}(0) \neq 0$, $\kappa_{3,i}(0) \neq 0$, $\kappa_{4,i}(0) \neq 0$ to prevent singularity. Taking advantages of the adaptive parameters $\kappa_{1,i}$, $\kappa_{2,i}$, $\kappa_{3,i}$, $\kappa_{4,i}$, the proposed controller (67) is a continuous controller, even though the sliding mode control method is used.

**Remark 10.** The proposed controller (67) can be degenerated into an attitude controller, which is suitable for a single spacecraft tracking system. As for the mixed potential function, only the terms related to the SFZ and the SMZ need to be considered, and the terms related to the DFZ are set to 0. Specifically, the proposed adaptive controller in (67) for MSSs can be degenerated into a single spacecraft attitude tracking adaptive controller for spacecraft 1 as

$$\dot{w}_1 = \rho_{0,1} \circ \dot{\chi}_{w_1} \circ (u_1^{0} + \dot{h}_1) - H_1,$$

where

$$u_1^{0} = -k_1 \Psi_{1,1} S_{1,1} - k_2 \|e_{\Omega,1}\| S_{2,1} - k_3 e_{\Omega,1} - k_4 u_1 F_1 + k_5 M_1 S_{1,1} - \beta_{\max} S_{1,1},$$

and

$$\Psi_1 = \Psi_{1,1}, e_{\Omega,1} = e_{\Omega,1}, F_1 = e_{R_1} \Phi_1 + \Psi_{1,2} \mathcal{P}_{1} + \Psi_{1,3} \mathcal{P}_{MF,1}$$

with $e_{R_1} = e_{R_1}, \Phi_1 = I$, $\mathcal{P}_{1} = \gamma_{1,1}(R_1^T R_1 \Omega_{d}) T e_{R_1,1}$.

The definitions of other parameters are the same as those of the proposed controller (67).

### VII. Simulation Results

In this section, the effectiveness of the proposed controller (67) is verified by numerical simulation of an MSS with mixed attitude constraints, input saturation and external disturbances.

We consider three spacecraft in the formation flying with a virtual leader providing a time-varying desired attitude $R_0$. As shown in Fig. 3, in the directed complete communication topology, the virtual leader is only connected to the 1-st spacecraft in the MSS. In addition, the spacecraft in the MSS is assumed to have the same configuration. The inertia matrix of each spacecraft is

$$J_i = \begin{bmatrix}
60 & 0 & -5 \\
0 & 65 & 0 \\
-5 & 0 & 70
\end{bmatrix} \text{kg} \cdot \text{m}^2, \quad i = 1, 2, 3.$$

The external disturbance of each spacecraft is

$$d_i = 10^{-3} \times \begin{bmatrix}
-1 + 3 \cos(0.1t) + 4 \sin(0.03t) \\
1.5 - 1.5 \sin(0.02t) - 3 \cos(0.05t) \\
1 + \sin(0.1t) - 1.5 \cos(0.04t)
\end{bmatrix} \text{N} \cdot \text{m},$$

where $i = 1, 2, 3$. The saturation limit of the actuators of the $i$-th spacecraft is given as $u_{\text{sat}}, m_i = 1 \text{ N} \cdot \text{m}$.

| TABLE I Parameters of static constrained-zones (In the inertial reference frame $I$) |
|-----------------|-----------------|-------------------|
| Constrained zones | Center vector | Angle |
| Static Forbidden Zone 1 (SFZ1) | $[0, -1, 0]$ | 30 deg |
| Static Forbidden Zone 2 (SFZ2) | $[0.68, 0.67, 0.028]$ | 25 deg |
| Static Forbidden Zone 3 (SFZ3) | $[0.38, 0.0, 0.925]$ | 20 deg |
| Static Mandatory Zone 1 (SMZ1) | $[-0.813, 0.548, -0.192]$ | 50 deg |

| TABLE II The initial states of the MSS |
|-----------------|-----------------|-------------------|
| $i$ | $\theta_{i,0} = \exp(\theta_i, n_i)$ | $\Omega_{i,0}$ rad/s |
| 1 | $\theta_1 = -80^\circ$, $n_1 = [0.2298, 0, -0.9732]$ | $[0.03, 0.02, -0.03]$ |
| 2 | $\theta_2 = -40^\circ$, $n_2 = [0.7071, 0.7071]$ | $[-0.02, 0.02, -0.03]$ |
| 3 | $\theta_3 = -120^\circ$, $n_3 = [0.2298, 0, -0.9732]$ | $[0.03, 0.03, 0.04]$ |

Meanwhile, for the $i$-th spacecraft in the MSS, three spacecraft are equipped, including one sensitive spaceborne instrument (infrared telescope) to complete scientific observation, one communication spaceborne instrument (high gain antenna) to maintain ground communication, and three thrust engines to maintain the configuration of the MSS. The unit vectors $a_i$, $b_i$, and $h_{k,i}$, $k = 1, 2, 3$ of the above three instruments installed the body-fixed frame $B$ of the $i$-th spacecraft are $a_i = [0, 0, 1], b_i = [0, 1, 0], h_{1,i} = [-1, 0, 0], h_{2,i} = [0, -1, 0], h_{3,i} = [0.750, 0.433, 0.500], \ldots$ respectively. The detailed information of the four static attitude-constrained zones in the inertial reference frame $I$ is given in Table I. The constraint angle of relative Dynamic attitude-forbidden zone relating to center pointing vectors $h_{k,1}$, $h_{k,2}$, $h_{k,3}$ for the $k$-th thrust engine of three spacecraft is assumed to be 30 deg.

| TABLE III Satisfaction of initial attitude and Mixed attitude constraints of the MSS (Y: satisfied; N: not satisfied) |
|-----------------|-----------------|-------------------|
| $i$ | SFZ 1 | SFZ 2 | SFZ 3 | SMZ 1 | $h_{k,1}$ | $h_{k,2}$ | $h_{k,3}$ |
| 1 | Y | Y | Y | Y | - | Y | Y |
| 2 | Y | N | Y | Y | - | Y | Y |
| 3 | Y | Y | Y | N | Y | Y | Y |

<p>| TABLE IV Controller simulation parameters |
|-----------------|-----------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Controller</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1 = 0.01$, $k_2 = k_3 = 55$, $k_4 = 16$, $\mu_1 = \mu_2 = \mu_3 = 0.001$, $\mu_4 = 3$, $\kappa_{1,i}(0) = \kappa_{2,i}(0) = 0.05$, $\kappa_{3,i}(0) = \kappa_{4,i}(0) = 0.05$, $\alpha = \lambda = \beta = 0.05$, $\Delta r = 0.005$</td>
<td></td>
</tr>
<tr>
<td>Proposed controller (67)</td>
<td></td>
</tr>
<tr>
<td>Virtual leader controller $k_1 = 0.01$, $k_2 = k_3 = 30$, $k_4 = 0.2$</td>
<td></td>
</tr>
</tbody>
</table>

The initial states of the MSS are given in Table II, and the compliance of the initial attitude of the MSS with the
mixed attitude constraints is shown in Table III, where we see that some attitude constraints are not satisfied initially. The parameter settings of the proposed adaptive saturation attitude continuous controller (67) and adaptive update law (66) of MSS are shown in Table IV.

In order to generate a reasonable time-varying desired attitude \( R_d \), the virtual leader spacecraft (spacecraft 0) is assumed to have a rest-to-rest maneuver in the absence of external disturbances but subject to static attitude constraints (static attitude-forbidden zones and static attitude-mandatory zones). The gains of the proposed controller \( u_{R_{d,i}} \) are shown in Table IV and other parameters are the same as those in the MSS. In the simulation, the virtual leader spacecraft completes the attitude redirection from \( R_{d,0} = \exp(-0.9903, [0.2298, 0, -0.9732]^T) \) to \( R_{d,d} = \exp(-1.8546, [0.7030, -0.7112, 0]^T) \), which satisfies Assumption 2.

Next, we consider three numerical simulations to illustrate the overall performance of the proposed controller (67) and its ability to deal with input saturation.

A. Simulation Results of A Single Spacecraft Tracking

In this subsection, a single spacecraft attitude tracking system on \( SO(3) \) consisting of spacecraft 1 and the virtual leader spacecraft under attitude constraints, input saturation and external disturbances, is considered. Then, the performance of the degenerated attitude tracking adaptive controller (75) for spacecraft 1 subject to three attitude forbidden zones and one attitude mandatory zones given in Table III is evaluated.

The 2D projection in the inertial frame \( I \) of attitude trajectory of the single spacecraft tracking system using the degenerated attitude tracking adaptive controller (75) is shown in Fig. 4(a). It is obvious from Fig. 4(a) that the degenerated controller (75) realizes the tracking of the time-varying desired attitude, while the pointing directions of the mounted telescopes avoid the three SFZ, and the pointing direction of the antenna is always in the SMZ. Fig. 4(b) and Fig. 4(c) show the attitude tracking error and actual torque of the single spacecraft tracking system, respectively. We can observe that attitude tracking error converge to zero asymptotically and the actual control torque satisfies the saturation constraint.

In summary, the degenerated controller (75) can achieve the time-varying rest-to-rest attitude tracking of a single spacecraft tracking system on \( SO(3) \) under attitude constraints, input saturation and external disturbances.

B. Overall Simulation Results of MSSs

In this subsection, the overall performance of the proposed adaptive controller in (67) for the MSS on \( SO(3) \) with a time-varying rest-to-rest virtual leader under mixed attitude constraints, input saturation and external disturbances, is simulated.

The 2D projection in the inertial frame \( I \) of attitude trajectory of the MSS using the proposed controller (67) is shown in Fig. 5(a), where the red curve is the pointing trajectory of the two spaceborne instruments of the virtual leader spacecraft, and the other three colored curves represent the pointing trajectory of the two spaceborne instruments of the three following spacecraft in the MSS. It is obvious from Fig. 5(a) that the proposed controller (67) realizes the attitude consensus and the tracking of the time-varying desired attitude provided by the virtual leader of the MSS, while the pointing directions of the mounted telescopes avoid the three SFZ. It is also noted that the initial pointing direction of the telescope amount on the 2-nd spacecraft (i.e., TPD2) is within the SFZ3 and the initial pointing direction of the antenna of the 3-rd spacecraft (i.e., APD3) is outside the SMZ1. That is, the initial attitudes \( R_{d,0} \) and \( R_{d,0} \) violate attitude constraint (15) in the simulation. However, since the proposed controller (67) leverages the mixed potential function (15), it is observed from Fig. 5(a) that the attractive potential can make the TPD2 quickly leave SFZ3 and the APD3 quickly enter into SMZ1. Fig. 5(b)-(d) show the attitude consensus error, attitude tracking error and angular velocity error of the MSS under the proposed controller (67), respectively. For the time-varying leader-follower MSS on \( SO(3) \), the proposed controller (67) can achieve attitude consensus and tracking of the time-varying desired attitude, where the attitude consensus is completed in 30 s with a steady-state error \( \| \Psi_{c,i} \| \leq 1.5 \times 10^{-7} \) in 150 s, as shown in Fig. 5(b). The attitude tracking is completed in 45 s with a steady-state error \( \| \Psi_{t,i} \| \leq 1.5 \times 10^{-6} \) in 150 s, as shown in Fig. 5(c). Based on the above results, the convergence rate of attitude consensus is faster than that of attitude tracking. Moreover, the angular velocity error, as shown in Fig. 5(d), tends to be stable in 90 s with a steady-state error \( \| \epsilon_{\omega,i} \| \leq 6 \times 10^{-3} \) deg/s in 150 s. In addition, it is noted that the attitude tracking error and the angular velocity error of spacecraft 1 are less than those of spacecraft 2 and spacecraft 3, but the attitude consensus error of spacecraft 1 is greater than that of spacecraft 2 and spacecraft 3. This is because spacecraft 1 is connected with the virtual leader and can directly obtain the desired attitude. Therefore, the adjustment of attitude tracking error of spacecraft 1 is faster than that of the other two spacecraft, whereas spacecraft 2 and spacecraft 3 only need to adjust the attitude consensus error to track the desired attitude. In addition, it can be seen from Fig. 4(b) that the single spacecraft can track the desired attitude in 30 s, while for the MSSs can track the desired attitude in 55 s from Fig. 5(c). This is because the attitude consensus of spacecraft is considered in the MSSs, and the desired attitude tracking can be completed only after the consensus of the MSSs is achieved.

The angle between the pointing of the spaceborne equipment of each spacecraft and the central pointing of several attitude-constrained zones in the MSS is shown in Fig. 6. It can be seen that the telescope axis of spacecraft 2 initially points inside SFZ3 and the antenna axis of spacecraft 3 initially points outside SMZ1. Since the proposed potential function (40) considers arbitrary
initial attitude of the spacecraft, the spacecraft quickly reaches the state that meets the attitude constraints. In addition, from Fig. 6(c), the relative dynamic attitude constraint is always satisfied. Compared with the previous potential functions in [25]–[27], the proposed one in (40) is effective for arbitrarily initial attitude of the spacecraft.

Fig. 7 shows the actual torque of each spacecraft in the MSS with a time-varying rest-to-rest virtual leader under the proposed controller (67). It is obvious that the actual torque of each spacecraft meets the input saturation.

In summary, the proposed controller (67) with the adaptive update law (66) can achieve attitude consensus and the time-varying rest-to-rest attitude tracking of MSS on SO(3) under arbitrary initial attitude, mixed attitude constraints, input saturation and external disturbances.

C. Comparison of Different Input Saturation Operations

In this subsection, we demonstrate the effectiveness and advantages of the input saturation model under the dead-zone operation (7). For comparison, the following two input saturation operations are simulated:

1) Operation 1 [SF (6)]: The saturation function (6) is directly applied to the virtual controller (65), i.e., the saturated controller (72).
Fig. 6. The time history of the angle between the pointing of the spaceborne equipment of each spacecraft and the central pointing of several attitude-constrained zones in the MSS with a time-varying rest-to-rest virtual leader. (SFZ3 CA: constraint angle (CA) of SFZ3, SMZ1 CA: constraint angle of SMZ1, TE CA: constraint angle of thrust engine (TE))

(a) Telescope axis and SFZ3
(b) Antenna axis and SMZ1
(c) Telescope axis of the 1-st Sp and three thrust engines of the 3-rd Sp

Fig. 7. The time history of actual torque of each spacecraft in the MSS under the proposed controller (67).

(a) Spacecraft 1
(b) Spacecraft 2
(c) Spacecraft 3

Fig. 8. Comparison of the attitude error time history of each spacecraft in the MSS under different input saturation operations.

(a) Spacecraft 1
(b) Spacecraft 2
(c) Spacecraft 3

Fig. 9. The time history of actual torque of each spacecraft in the MSS under the controller (72) with saturation function (6).

(a) Spacecraft 1
(b) Spacecraft 2
(c) Spacecraft 3

2) Operation 2 [DZ (7) with DF (10)]: The dead-zone operation (7) under density function (10) is applied to the virtual controller (65), i.e., the proposed saturated controller (67).
In order to obtain fair comparison results, the parameters of the two operations are set to the same, as shown in Table IV. Fig. 8 shows the comparison of the attitude error \( \Psi_i \) of each spacecraft in MSS under two input saturation operations. The convergence speed of operation 2 is slower than that of Operation 1 in the initial stage of attitude error, but the attitude convergence accuracy is higher than that of Operation 1. From Fig. 9 and previous result in Fig. 7, the saturation duration of the operation 2 is significantly reduced compared with the operation 1. In order to illustrate this in detail, we count the total saturation duration of all attitude actuators of the MSS under two operations. The total saturation duration under Operation 1 is 58.56 s, while operation 2 has 36.02 s, indicating that the saturation duration under Operation 2 decreases by 38.49% compared with operation 1. Meanwhile, when the actuators exit the saturation, the dead-zone based operation has a relatively gentle and soft transition without sharp changes of control inputs. In addition, we also use \( \sum_{i=1}^{S} \int_0^T ||\omega_i|| dt \) to represent the energy consumption of the MSS, where \( T \) is the total maneuvering time. As shown in Fig. 10, it is obvious that operation 2 consumes less energy than Operation 1, which is consistent with the theoretical analysis in Remark 1.

Through the above analysis, the proposed adaptive saturated attitude controller (67) using the dead-zone operation (7) can approximate the nonlinear saturation on the premise of ensuring the stability of the MSS. Meanwhile, the dead-zone operation (7) under density function (10) reduces the saturation duration significantly.

VIII. Conclusions

In this paper, an adaptive attitude controller of the leader-follower MSS on SO(3) is proposed to realize attitude consensus and attitude tracking with arbitrary initial attitude under mixed attitude constraints, saturation constraints and external disturbances. Firstly, considering the time-varying desired attitude provided by the virtual leader, attitude error function and dynamics are developed for MSS on SO(3), which is suitable for a directed complete communication topology. Next, a mixed potential function on SO(3) is proposed for the static attitude-allowed zones, the relative dynamic attitude-forbidden zones and the attitude-mandatory zones, although the MSS may have arbitrary initial attitude. Then, an adaptive saturated controller is designed to realize attitude consensus and tracking, while satisfying mixed attitude constraints and saturation constraints. Finally, simulation results demonstrate that the proposed controller for MSS on SO(3) can achieve attitude consensus and the time-varying desired attitude tracking of MSS on SO(3) with arbitrary initial attitudes. In future works, to obtain the optimal control performance for constrained MSSs, the application of nonlinear model predictive control method for MSSs on SO(3) will be explored.

REFERENCES


