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Abstract— In this paper, the attitude reorientation prob-
lem for over-actuated rigid spacecraft subject to multi-
ple attitude constrained zones is studied. Considering
the pointing direction deviation of sensitive equipments
and constraint operating set, a robust potential function
for attitude constrained zones is proposed and is further
leveraged to design a high-level attitude controller, which
achieves asymptotic convergence of attitude reorientation
error while avoiding attitude constrained zones. Moreover,
to distribute the desired control torque from high-level
controller to each actuator dynamically, a finite-time adap-
tive control allocation is developed, resulting in an im-
proved allocation error convergence rate when compared
with existing control allocation methods. Simulation exam-
ples involving a rest-to-rest attitude maneuver are given
to demonstrate the effectiveness of the proposed overall
control strategy.

Index Terms— Constrained control; Robust adaptive
control; Lyapunov methods

I. INTRODUCTION

SPACECRAFT attitude control is widely studied in the con-
trol community. A series of nonlinear control algorithms

are proposed for attitude control, such as backstepping control
[1], sliding mode control [2], adaptive control [3], inverse
optimal control [4] and others. To improve the autonomy and
safety, large angle reorientation under attitude constraints and
actuator redundancy have attracted great interest recently.

Spacecraft is often equipped with sensitive instruments that
have to avoid direct exposure to bright celestials during attitude
maneuver. Approaches for solving this constrained attitude
control problem can be categorized into path planning-based
and potential function-based methods. Several attitude path
planning strategies have been developed to find the allowable
rotation trajectory [5]. However, these methods have complex
structure and expensive computation. In contrast, the potential
function-based method incorporates an artificial potential in
attitude controller design, so that the derived analytical con-
troller is suitable for on-board application. In [6], Lee pro-
posed a convex logarithmic barrier potential in unit-quaternion
space, which was subsequently utilized to design an attitude
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controller that ensures attitude convergence and satisfies con-
straints caused by attitude mandatory and constrained zones.
In [7], the potential function was constructed as a Gaussian
function for spacecraft attitude control. In [8], [9], based on
the unit-quaternion parameterized attitude-constrained zones,
a quadratic potential function was developed to parametrize
the constrained zones. However, above mentioned potential
functions do not consider pointing direction deviation of
airborne equipment caused by installation misalignments, vi-
brations and measurement errors, which could lead to attitude
constraint violation and damages to sensitive equipments.

For over-actuated systems, control allocation (CA) is widely
used to manage actuator redundancy, which assigns the desired
control command from the high-level virtual controller to
available low-level actuators optimally [10]. In [11], [12], the
adaptive high-level controllers and robust CA obtained by
solving a second-order cone program were proposed for fault-
tolerant attitude tracking of spacecraft. Although these CA
methods work well theoretically, they require solving a con-
strained optimization problem statically within each sampling
period, which may not be practical due to the limited on-board
computation resources. To tackle this issue, the dynamic CA
is developed by constructing an updating law such that the
CA optimization problem converges to the optimal solution
dynamically [13]. In [14], the adaptive CA was studied com-
prehensively. In [15], adaptive CA scheme was proposed for
over-actuated vehicles. In [16], a dynamic near optimal control
allocation combined with saturated baseline controller was
proposed for attitude control. However, the CA convergence
time is not addressed in above mentioned methods, which may
lead to large allocation errors during CA convergence process.

In this paper, we proposed a finite-time adaptive CA-
based attitude controller for over-actuated spacecraft subject
to attitude constrained zones and pointing direction deviation
of sensitive equipment. First, A warning angle-based robust
potential function being leveraged for constructing a high-
level attitude controller is proposed for attitude constraints.
Then, a finite-time adaptive CA that distributes the desired
control torque from high-level controller to each actuator is
developed. The main contributions of this paper are two-fold:
1) Comparing with existing potential functions [6]–[9] for at-
titude constraints, the proposed warning angle-based potential
function not only is robust against pointing direction deviation
but also prevents from using the constrained zones far away
from sensitive instruments, and hence enhances safety for
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Fig. 1: Demonstration of attitude constrained zone.

sensitive equipment; 2) Different from existing dynamical CA
approches in [14]–[16], the proposed approach achieves finite-
time convergence of the dynamical CA, resulting in improved
convergence rate and steady-state accuracy of allocation error.
To our best knowledge, this is the first time that warning angle
and pointing direction deviation of sensitive instrument are
simultaneously considered in synthesizing potential functions
for attitude constraints. Finally, we demonstrate the effective-
ness of the proposed overall controller.

II. PRELIMINARIES

A. Kinematics and Dynamics Equation
In this paper, the unit quaternion given by

Qu = {Q =
[
qT , q0

]T ∈ R3 × R | qTq + q2
0 = 1}, (1)

is used to parameterize the attitude, where q ∈ R3 and q0 ∈ R
represent vector part and scalar part of the quaternion.

The unit-quaternion conjugate or inverse is defined as
Q∗ =

[
−qT , q0

]T
. Let Qd ∈ Qu denote the desired atti-

tude. The unit-quaternion error Qe = [qe1, qe2, qe3, qe0]
T

=[
qTe , qe0

]T ∈ Qu is given by Qe = Q∗d ⊗ Q =
[
qTe , qe0

]T
,

where ⊗ denotes the quaternion multiplication operator. Let
ωd denote the desired angular velocity in the desired reference
frame N . Since the rest-to-rest attitude maneuver is consid-
ered, ωd = 0, and hence ωe = ω, where ω ∈ R3 is the
angular velocity of the spacecraft with respect to an inertial
frame I and expressed in the body frame B.

Then, the kinematics and dynamics of the over-actuated
spacecraft with N > 3 actuators can be described as [11]:

Q̇e =
1

2

[
S (qe) + qe0I3

−qTe

]
ω (2)

Jω̇(t) = −S(ω)(t)Jω(t) + u(t) + d(t), (3)

where the matrix S(x) ∈ R3×3 is a skew-symmetric matrix,
J ∈ R3×3 is the inertia matrix of the spacecraft, the environ-
mental disturbance is denoted as d(t) ∈ R3, and u(t) ∈ R3 is
the total external control torque given by

u(t) = Dτ (t), (4)

where D ∈ R3×N and τ (t) ∈ RN are actuator configuration
matrix and the output vector, respectively. Since the spacecraft
is over-actuated, the condition rank(D) = 3 is satisfied. For
brevity, the time argument t is hereafter left out.

Assumption 1: The external disturbance d is bounded by
‖d‖ ≤ dmax, where dmax is a positive constant and ‖∗‖
denotes the Euclidean norm.
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Fig. 2: Schematic of equipment pointing deviation and warn-
ing zone.

B. Attitude Constrained Zones

Definition 1 (Attitude Constrained Zone): The set of atti-
tudes that airborne sensitive equipments (e.g., infrared tele-
scopes) directly expose to certain celestial objects (e.g., the
sun) is considered an attitude constrained zone. Multiple
constrained zones can be specified with respect to a single
airborne equipment boresight vector.

Attitude constrained zone is associated with instrument
boresight vector, whose nominal and actual pointing directions
are expressed in the body frame B as yi and yi,c. The actual
pointing direction vector in the inertial frame I is obtained by

y′i,c = Q⊗ yi,c ⊗Q
∗

= yi,c−2(qTq)yi,c + 2(qTyi,c)q + 2q0(yi,c × q).
(5)

As shown in Fig. 1, for the i-th sensitive equipment (e.g., an
infrared telescope), to avoid the attitude-forbbidden zone, an
angle βji being strictly greater than (θg)

j
i should be maintained

between the normalized actual pointing direction vector y′i,c
and the normalized vector xj pointing toward a certain bright
object and represented in the inertial frame I, i.e., βji > (θg)

j
i

with 0 < (θg)
j
i < π. The index j represents the j-th celestial

objects associated with the i-th airborne equipment. This
constraint can be expressed by

xj · y′i,c < cos((θg)
j
i ), (6)

Combining (6) and (5) yields

2qTyi,cq
Txj − qTqxTj yi,c + q2

0x
T
j yi,c

+ 2q0q
T (xj × yi,c) < cos((θg)

j
i ).

(7)

Note that the nominal pointing direction yi of airborne
equipment may have a deviation ∆yi. Then the actual pointing
direction is yi,c = yi + ∆yi.

Assumption 2: The deviation ∆yi is bounded by ‖∆yi‖ ≤
εi < 1, where εi is a positive constant.

Since the deviation is caused by external disturbances,
installation errors, vibrations and measurement errors, it is
reasonable to assume that this deviation is upper bounded by
a small constant εi being less than 1. Moreover, let δi denote
the angle between yi,c and yi of the i-th sensitive equipment
represented in the body frame. Then, the following lemma
holds:

Lemma 1: If Assumption 2 holds, δi is bounded by a
constant, i.e., 0 ≤ δi ≤ δi,max with δi,max = arcsin (εi).

Proof: As shown in Fig, 2(a), three vectors yi, ∆yi,
yi+∆yi form a triangle. Because ‖∆yi‖ ≤ εi, ∆yi can only
be in a sphere of radius εi. In addition, since ‖∆yi‖ < 1, δi,



0 ≤ δi < π
2 . Let σi be the angle between ∆yi and yi + ∆yi.

Then, in view of the law of sines, we have

‖yi‖
sin(σi)

=
‖∆yi‖
sin(δi)

≤ εi
sin(δi)

. (8)

Since 0 ≤ δi < π
2 , sin(δi) > 0 and ‖yi‖ = 1, we

have sin(δi) ≤ εi sin(σi) from (8). Due to the facts that
max
σi

sin(σi) = 1 and sin(δi) is monotonically increasing, the
allowable maximum value of δi is obtained as

δi,max = arcsin (εi) (9)

when σi = π
2 . This completes the proof.

Based on Lemma 1, we further have the following lemma.
Lemma 2: Considering the deviation of airborne

equipment, the angle requirement of constrained zones
ang(xj ,y

′
i,c) > (θg)

j
i is equivalent to ang(xj ,y

′
i) >

(θg)
j
i + arcsin(εi), where (θg)

j
i is the known constant angle

constraint and the function ang(a, b) represents the angle
between vectors a and b.

Proof: To satisfy ang(xj ,y
′
i,c) > (θg)

j
i for any devia-

tions, we have to ensure

min
0≤δi≤δi,max

ang(xj ,y
′
i,c) > (θg)

j
i . (10)

In view of the trigonometric inequality, it is clear that

min
0≤δi≤δi,max

ang(xj ,y
′
i,c) = ang(xj ,y

′
i)− δi,max. (11)

Therefore, we have ang(xj ,y
′
i) > (θg)

j
i + arcsin(εi) accord-

ing to Lemma 1. This completes the proof.
Then the constraint (7) can be further written as [6]

QTM j
iQ < 0, (12)

where for i = 1, . . . , n and j = 1, . . . ,m,

M j
i =

[
Aj
i bji

bjTi dji

]
, bji = xj × yi,

Aj
i =xjy

T
i + yix

T
j

− (xTj yi + cos((θg)
j
i + arcsin(εi)))I3,

dji =xTj yi − cos((θg)
j
i + arcsin(εi)).

(13)

As a result, for the i-th sensitive instrument subject to
pointing direction deviations, the set of attitudes QF ji

⊆ Qu
that avoids the j-th constrained zone can be represented as

QF ji
=
{
Q ∈ Qu | QTM j

i (θ
j
i )Q < 0

}
, (14)

where θji = (θg)
j
i + arcsin(εi). In general, the attitude

constrained zones are defined for all n on-board sensitive
instruments and the associated m constraint objects.

Moreover, we define the warning angle to specify when
attitude constrained zones need to be taken into consideration.

Definition 2 (Warning Angle): Consider that the spacecraft
rotates toward to the constrained zone about its major principal
axis with inertia Jmax, the initial pointing direction is y′i,0,
and initial angular velocity is the allowable maximum angular
velocity ωmax. As shown in Fig. 2b, if the maximum torque
umax is applied to decelerate the spacecraft such that the
angular velocity reduces to zero at the moment that the
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Fig. 3: The overall schematic diagram of control system.

pointing direction reaches the nearest boundary y′i,f of the
constrained zone, then the warning angle (θw)ji can be defined
as the angle between y′i,0 and xj .

According to Definition 2 and Lemma 2, we have

(θg)
j
i +arcsin(εi)=

1

2

umax

Jmax
(tf−t0)2−ωmax (tf − t0)+(θw)ji

where t0 and tf represent the initial time instant and the
warning time instant that the pointing direction reaches the
nearest boundary of attitude constrained zone, respectively.
Solving above equation such that tf−t0 has a unique solution,
the warning angle can be obtained as

(θw)ji =
1

2

Jmax

umax
ω2

max + (θg)
j
i + arcsin(εi). (15)

Remark 1: According to [6], if the attitude Q ∈ QF ji
,

then we further have −2 < QTM j
i (θ

j
i )Q < 0. Specifically,

QTM j
i (θ

j
i )Q = 0 indicates that the pointing direction of

the sensitive equipment is on the boundary of the attitude
constrained zone, while QTM j

i (θ
j
i )Q = −2 means that the

pointing direction of sensitive instrument is far away from the
constrained zone. In light of the warning angle in Definition
2, we set QTM j

i (θ
j
i )Q = −2 when ang(xj ,y

′
i) > (θw)ji .

III. PROBLEM STATEMENT

The overall diagram of attitude control system is shown in
Fig. 3. In design process, two problems are to be solved:

Problem 1: [High-level controller] Under attitude con-
straints and instrument pointing direction deviation, design an
attitude controller to complete the attitude reorientation.

Problem 2: [Control allocation] Considering output limita-
tion of actuator, design a finite-time adaptive CA to realize
the commanded control action from high-level controller.

IV. HIGH-LEVEL CONTROLLER

In this section, we solve Problem 1 by designing a robust
potential function-based adaptive attitude controller.

A. Robust Potential Function
In view of warning angle (cf. Definition 2), we define the

operating set Ω.
Definition 3 (Constraint Operating Set): The constraint

operating set is defined as Ω , {(i, j) | θji < ang(xj ,y
′
i) <

(θw)ji}, which is a collection of (i, j) pairs satisfying the
condition θji < ang(xj ,y

′
i) < (θw)ji for all i = 1, . . . , n and

j = 1, . . . ,m.



Based on Definition 3 and Remark 1, the operating set
indicates constrained zones considered in potential function.
Now, a logarithmic potential function V1 is proposed as

V1(Q)=‖Qd−Q‖
2

[ ∑
(i,j)∈Ω

−α log

(
−Q

TM j
i (θ

j
i )Q

2

)]
, (16)

where α is a positive constant. Since the pointing direction
deviation of sensitive instrument is considered in the po-
tential function design, the proposed potential function (16)
has stronger robustness than that in [6]–[9]. Moreover, the
proposed potential function is synthesized by only using pairs
in the operating set, and hence avoids considering constrained
zones that are far away from sensitive instruments. In addition,
the proposed robust potential function is also convex with
respect to Q, which can be found in Proposition 6 of [6].

B. Adaptive Controller Design

Motived by [9], the high-level controller is designed as

uC =− k2s+ S(ω)Jω − k1

2
J [S(qe) + qe0I3]ω

− k1k3qe
TVec[(∇V ∗1 ⊗Q)]

s

‖s‖2

+ k3Vec[(∇V ∗1 ⊗Q)]− d̂ s

‖s‖2

(17)

with

˙̂
d = ρ[‖s‖ − µ(d̂− d̂max)],

˙̂
dmax = δ(d̂− d̂max), (18)

where s = [s1, s2, s3]
T ∈ R3 is a sliding vector defined as s =

ω+k1qe, k1, k2, k3, ρ, µ, δ are positive constants. The stability
of the closed-loop system with the above adaptive sliding
mode controller is summarized in the following theorem.

Theorem 1: Consider the attitude kinematics and dynamics
expressed by (2) and (3). The high-level attitude controller (17)
with adaptive law (18) solves Problem 1 such that all closed-
loop signals are bounded and that limt→∞ qe(t) = 0 and
limt→∞ ω(t) = 0 despite the existence of attitude-constrained
zones and instrument pointing direction deviations.

Proof: Consider the following Lyapunov candidate:

VC =2k1k2

(
qe
Tqe + (1− qe0)2

)
+ 2k3V1 +

1

2
sTJs

+
1

2ρ

(
d̂− dmax

)2

+
µ

2δ

(
d̂max − dmax

)2

.
(19)

The time derivative of VC is

V̇C =2k1k2qe
Tω + 2k3∇V T1

[
1

2
Q⊗ v (ω)

]
+ sTJṡ

+
1

ρ

(
d̂− dmax

)
˙̂
d+

µ

δ

(
d̂max − dmax

)
˙̂
dmax.

(20)

Then, using k3∇V T1 [Q⊗ v (ω)] = −k3ω
TVec [∇V ∗1 ⊗Q]

and substituting the controller (17) and adaptive law (18) into
the above equation yields

V̇C ≤− k2‖ω‖2 − k1
2k2‖qe‖

2
, (21)

which leads to limt→∞ qe(t) = 0 and limt→∞ ω(t) = 0.

V. FINITE-TIME ADAPTIVE CONTROL ALLOCATION

Consider that the high-level controller (17) and N > 3
actuators are used. The CA problem is formulated as

min
τ

Je =
1

2
τTW vτ

s.t.
Dτ = uC ,
τi,min ≤ τi ≤ τi,max, i = 1, . . . , N

(22)

where W v is a positive definite weighting matrix and τi,min

and τi,max are constants representing the lower and upper
bounds of saturation limits of each actuator. To solve the
constrained optimization problem in (22), we introducing a
Lagrange multiplier λ = [λ1, λ2, λ3]

T ∈ R3 and define the
corresponding Lagrangian function as

L (uC , τ ,λ) =
1

2
τTW vτ − p

2∑
l=1

N∑
i=1

ln (Cl,i(τi))

+ (uC −Dτ )Tλ,

(23)

where p is a positive constant defining the barrier function
slopes, the functions C1,i = τi− τi,min and C2,i = τi,max− τi
for all i ∈ {1, . . . , N}. Consequently, the CA problem (22) is
reformulated as an unconstrained optimization problem:

min
τ ,λ

L (uC , τ ,λ) . (24)

Define the first-order optimal set of Eq.(24) as

Z =

{(
τT ,λT

)T ∣∣ ((∂L
∂τ

)T
,

(
∂L

∂λ

)T)T
= 0

}
, (25)

where
∂L

∂τ
= W T

v τ−D
Tλ−p (τ r,min−τ r,max) ,

∂L

∂λ
= uC−Dτ

(26)

with τ r,min ,
[

1
τ1−τ1,min

, . . . , 1
τN−uN,min

]T
∈ RN and

τ r,max ,
[

1
τ1,max−τ1 , . . . ,

1
τN,max−τN

]T
∈ RN . The first

equation ∂L
∂τ = 0 ensures the actuator saturation constraint.

The second equation ∂L
∂λ = 0 guarantees the equality constraint

in original CA problem.
Lemma 3: The CA problem (24) achieves local minima if

and only if the first-order optimal set Z is reached.
Proof: Necessity: If the set Z is reached, then it is clear

that the CA problem in (24) achieves its local minima.
Sufficiency: In view of (26), if ∂L

∂λ = 0, we have uC = Dτ ,
implying the equality constraint in original CA problem is
satisfied. Moreover, the Lagrangian function defined in (23)
is independent of λ when ∂L

∂λ = 0. In this case, based on
the second-order sufficient condition [17], the local minima is
achieved if ∂L

∂τ = 0 and ∂2L
∂τ2 > 0. From (26), we have

∂2L

∂τ 2
= W T

v + p diag
{
τ r2,min + τ r2,max

}
, (27)

where τ r2,min ,
[

1
(τ1−τ1,min)2

, . . . , 1
(τN−τmin)2

]T
∈ RN and

τ r2,max ,
[

1
(τ1,max−τ1)2

, . . . , 1
(τN,max−τN )2

]T
∈ RN . Since

the second term of (27) is a positive-definite diagonal matrix,
we have ∂2L

∂τ2 > 0. Hence, the sufficiency is ensured.



Then, motived by [14], a dynamic update law for calculating
the optimal parameters τ and λ is proposed as[

τ̇

λ̇

]
= −k4G

−1 sig

(
∂L
∂τ
∂L
∂λ

)
+ φ, (28)

where

G =

[
∂2L
∂τ2

∂2L
∂τ∂λ

∂2L
∂λ∂τ 0

]
(29)

sig(x) = [|x1|γ sgn (x1) , · · · , |xN+3|γ sgn (xN+3)]
T (30)

with 0 < γ < 1, φ ∈ RN+3 satisfies the following equation[(
∂L
∂τ

)T (
∂L
∂λ

)T ]
Gφ+ z = 0, (31)

where the auxiliary parameter z is defined as

z = (
∂L

∂λ
)T

∂2L

∂uC∂λ
u̇C . (32)

Remark 2: To calculate φ from (31), we can solve a least-
square problem. Define a new Lagrangian function

La (φ, λa)=
1

2
φTφ+ λa

([
(∂L∂τ )T (∂L∂λ )T

]
Gφ+z

)
(33)

where λa is a Lagrangian multiplier. Through first-order
optimality conditions ∂La

∂φ = 0 and ∂La
∂λa

= 0, we have IN+3 GT

[
(∂L∂τ )
(∂L∂λ )

]
[
(∂L∂τ )

T
(∂L∂λ )

T
]
G 0

[φλa
]
=

[
0
−z

]
. (34)

Note that the above equation always has a unique solution for
φ when [(∂L∂τ )

T
(∂L∂λ )

T
]G 6= 0.

Now, we are ready to present the main result of the proposed
finite time adaptive control allocation and its solution.

Theorem 2: The update law (28) solves Problem 2, leading

to that
(
τT ,λT

)T
→ Z in finite time.

Proof: Select a Lyapunov-like function as

V2(uC , τ ,λ) =
1

2

((
∂L

∂τ

)T
∂L

∂τ
+

(
∂L

∂λ

)T
∂L

∂λ

)
. (35)

According to (28) and (31), ∂2L
∂uC∂τ

= 0 and ∂2L
∂λ2 = 0. Then,

the time derivative of V2(uC , τ ) is

V̇2 = −k4

[(
∂L
∂τ

)T (∂L
∂λ

)T ]
sig

([
∂L
∂τ
∂L
∂λ

])
≤ −2

γ+1
2 k4V

γ+1
2

2 .

(36)
Therefore, based on Theorem 4.2 of [18], the optimal set Z
is reached in finite time, and the reaching time is

Treach ≤
V

1−γ
2

2 (uC(0), τ (0),λ(0))

2
1−γ
2 β(1− γ)

. (37)

Thus, the proof can be completed by showing G in (28) is
nonsingular. In view of (27), we obtain ∂2L

∂τ2 is positive-definite
and nonsingular. Then, the determinant of G is

det(G) = det

(
∂2L

∂τ 2

)
det

(
−DT

(
∂2L

∂τ 2

)−1

D

)
, (38)

where D is the installation position of actuators, which is
positive-definite and nonsingular. Therefore, it is clear that
det(G) 6= 0, i.e., the matrix G is nonsingular.

TABLE I: Control parameters chosen

Control schemes Control gains
Controller (17) using

proposed potential function in (16)
or potential function in [6]

k1 = 0.056, k2 = 0.4853J ,
k3 = 0.1422J , α = 0.01

ρ = 0.005, µ = 0.1, δ = 0.5
PD controller [19] kp = 0.0272J , kd = 0.4853J
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Fig. 4: Trajectories of sensitive instrument pointing direction
in 2-D cylindrical projection. (PF: potential function, NPD:
nominal pointing direction, APD: actual pointing direction)

VI. SIMULATION RESULTS

The inertia of spacecraft is J = diag([20, 15, 20]) kg·m2.
The environmental disturbance is assumed to be same as in
[9]. The spacecraft carries a light-sensitive instrument with a
fixed boresight vector in the spacecraft body axis y, and the
deviation ∆y = [∆y1,∆y2,∆y3]T ∈ R3 caused by inaccurate
installation or vibration is ∆yk = 0.045rand (∆tk) for k ∈
{1, 2, 3}, where the output of function rand (∆tk) is a random
number in interval [−1, 1] every ∆tk and 0 otherwise. In simu-
lation, we set ∆tk = 1 s. Then, based on (9), we have δmax =
arcsin(0.078) = 4.4658 deg. Four reaction wheels with dis-
tribution matrix D = 1√

3
[−1,−1, 1, 1; 1,−1,−1, 1; 1, 1, 1, 1]

are used and limited by |τi| ≤ 0.2 N·m for i = 1, . . . 4, so the
high-level controller satisfies ‖u‖ ≤ 0.5774 N·m. Moreover,
the angular velocity is limited by ‖ω‖ ≤ 8.66 deg/s.

Four attitude constrained zones (i.e., CZ 1-CZ 4 in Fig. 4)
are considered and their details can be found in [6]. The warn-
ing angles of four constrained zones are (θw)1

1 = 57.15 deg,
(θw)2

1 = 52.15 deg, (θw)3
1 = 52.15 deg and (θw)4

1 = 47.15
deg. Initial attitude is Q(0) = [0.33, 0.66,−0.62,−0.2726]T

and initial angular velocity is ω(0) = [0, 0, 0]T deg/s. The
desired attitude is set as Qd = [0.2,−0.5,−0.5,−0.6782]T ,
which lies outside of four attitude constrained zones.

A. High-Level Virtual Controller Comparison

Here, we verify the proposed high-level controller. For com-
parison, in addition to the controller (17) using the proposed
potential function (16), the controller (17) using potential
function in [6] without considering pointing deviation, and
PD controller in [19] are also simulated. Table I shows gains
of the three controllers. In this subsection, the virtual control
torque is directly acted on spacecraft.

Trajectories of nominal and deviated/actual instrument
pointing direction in 2-D projection are shown in Fig. 4. It
is clear that both nominal and deviated pointing trajectories



TABLE II: Control allocation parameters chosen

Control allocation schemes Parameters

Proposed FTACA in (28) k4 = 1.5, γ = 0.65
W v = 0.05I3, p = 0.008

ACA in [16] Γ = 1.5, W = 1.5,
W v = 0.05I3, p = 0.008

PICA τ = DT (DDT )−1uC

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

30 35 40 45
0

0.05

0.1

1 2 3
0

0.05

0.1

0.15

(a) Control allocation error

0 50 100 150 200 250
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Actuator output τ with PICA

0 50 100 150 200 250

-0.2

-0.1

0

0.1

0.2

(c) Actuator output τ with FTACA

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

40 42 44 46 48

0.525

0.53

(d) ‖qe‖

Fig. 5: Comparison of three control allocation methods.

using the PD controller violate attitude constraints. Although
the nominal pointing direction using controller (17) with
potential function in [6] can avoid the four attitude constraints,
the actual pointing direction enters into constrained zones
occasionally since the potential function in [6] does not con-
sider pointing direction deviations. In contrast, the proposed
potential function-based controller guarantees attitude con-
straints for both the nominal and actual pointing trajectories.
Moreover, the controller using the proposed potential function
may spend more time and control efforts than that using
potential function in [6] due to the introduction of robustness.

B. Control Allocation Comparison
This subsection verifies the efficiency of the proposed finite-

time adaptive CA (FTACA) approach in (28). Two other
existing CA methods, i.e., adaptive CA (ACA) in [16] and
pseudoinverse-based CA (PICA), are also implemented for
comparison. Table II shows parameters of these three CA
methods. Controller (17) with proposed potential function (16)
is used for all three CA methods.

As seen from Fig. 5a, the CA error ‖uact − uC‖ can
converge to zero asymptotically by the proposed FTACA and
ACA, where uact is the actual output of actuators. However,
the proposed one requires less convergence time. Moreover,
the CA error under PICA is always close to zero since
it solves the CA problem exactly and does not consider
saturation constraint. The actuator outputs of the proposed
control allocation and the PICA are depicted in Fig. 5b-5c,
from which it is clear that both FTACA scheme satisfies the
actuator saturation constraint, while the PICA scheme cannot.
Fig. 5d demonstrates that the required attitude reorientation
can be achieved by all three CA schemes.

VII. CONCLUSIONS

In this paper, a finite-time CA-based attitude controller for
spacecraft subject to attitude-constrained zones and pointing
direction deviation of sensitive instrument is proposed. A high-
level adaptive controller using a warning angle-based robust
potential function is designed to realize rest-to-rest attitude
maneuver and avoid attitude constraints. In addition, we also
designed a finite-time adaptive control allocation approach
to distribute desired control actions to actuators dynamically.
Simulation results verify the proposed overall attitude control
scheme. Future work includes extending the proposed potential
function to intersected constrained zones.
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