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Abstract—This paper considers the problem of piecewise affine
abstraction with polytopic partitions of nonlinear systems, i.e., the
over-approximation of nonlinear dynamics by a pair of piecewise
affine functions over polytopic subdomains/partitions in the sense
of the inclusion of all possible trajectories. Specifically, to tackle
the “boundary effect” that may make the over-approximation
incorrect for polytopic partitions, we propose two mesh-based
affine abstraction approaches based on expanding the partitions
to simultaneously find the polytopic partitions and the pair of
piecewise functions over the partitions. The effectiveness of the
proposed approaches are compared with existing methods using
hyperrectangular partitions, and demonstrated by computing
abstractions of swarm dynamics and applying them for swarm
intent identification.

Index Terms—Model/Controller reduction, Computational
methods, Model validation

I. INTRODUCTION

IN recent years, various abstraction-based approaches have
been proposed to analyze and control complex (nonlinear

or hybrid) systems. The idea behind abstraction is to compute
a simpler system which over-approximates the vector fields
of the complex system dynamics (by allowing more system
behaviors) such that existing analysis or synthesis tools can
be leveraged for the simpler systems [1]–[3]. Importantly, the
abstraction process is computed in a manner that includes all
possible behaviors of the original system to preserve certain
system properties of interest, e.g., robust reachability.

Literature Review. In a nutshell, abstraction is a systematic
approximation method that partitions the vector field of a com-
plex system into finite subregions, and then over-approximates
its dynamics f(·) by a simpler inclusion model with f(·) and
f(·) as bracketing functions or framers, such that for all x in
each bounded subregion, f(x) ≤ f(x) ≤ f(x), resulting in a
hybrid system [4], [5]. Various abstraction methods have been
proposed for linear systems [6], nonlinear systems [7], [8],
hybrid systems [9], and uncertain systems [10], [11], as well as
data-driven approaches when the model is unknown [12], [13].
In particular, two important classes of abstraction methods are
symbolic approaches, e.g., [4], [7], and hybridization, e.g., [2],
[14], [15].

Of specific interest to this paper is the hybridization
method [2], [15], where the nonlinear vector fields are over-
approximated with piecewise affine systems and the approx-
imation error is accounted for with an additive disturbance.
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Building upon this framework, the authors in [8]–[11] pro-
posed mesh-based methods to find a pair of piecewise affine
functions/hyperplanes to bracket/frame the vector fields of the
system dynamics and showed that the approximation errors
(i.e., the distance between the hyperplanes) generally were
lower than [2], [14], [15]. These abstractions were also shown
to be effective for reachability analysis [15], control synthesis
[9] and model discrimination [3], [11].

In these existing mesh-based approaches, the abstraction
procedure is carried out over hyperrectangular partitions, ei-
ther evenly-spaced [8]–[11] or based on the variation of the
vector field inspired by Lebesgue integrals [14]. However, this
restriction to hyperrectangular partitions may require a large
number of partitions to achieve a desired abstraction accuracy.
By contrast, this paper will consider more general polytopic
partitions, similar in spirit to the data-driven method in [12]
that is not directly applicable to our setting.

Contributions. In this paper, we propose mesh-based meth-
ods to compute piecewise affine abstractions for nonlinear sys-
tems with polytopic partitions, where the polytopic partitioning
of the state space (as opposed to a priori chosen hyperrectan-
gular partitions) and the bracketing piecewise hyperplanes over
the original nonlinear dynamics are simultaneously obtained.
Specifically, given that a uniform mesh may not be aligned
with the polytopic subregions, we propose two approaches
that rely on expanding the subregions to tackle the “boundary
effect” such that the resulting piecewise affine abstraction is
guaranteed to over-approximate the nonlinear dynamics over
the entire domain. The first approach directly incorporates the
region expansion into the abstraction algorithm and can be
solved as a mixed-integer linear program, whereas the second
consists of two successive steps to first find the piecewise
affine abstraction with polytopic subregions over only the
discrete set of mesh/grid points, before extending the over-
approximation/abstraction to the entire continuous domain
using linear programs with expanded subregions. The second
approach is computationally faster than the first, while the first
method often returns abstractions with smaller approximation
errors.

Furthermore, it is noteworthy that our approaches form
a building block to reduce abstraction errors that can be
used within existing hybridization frameworks, e.g., [2], [9],
[14], [15], including incremental and on-the-fly approaches,
e.g., [1], [16], [17]; thus, the performance of these tools for
reachability analysis and control synthesis can be improved.

Notation. For vectors v, w ∈Rn and a matrix M ∈Rp×q ,
‖v‖i and ‖M‖i denote (induced) i-norm with i ∈ {1, 2,∞}.
|M | is the element-wise absolute value matrix, while v ≤



w and v � w are, respectively, element-wise inequality and
product. Further, [n] , {1, . . . , n} and 1 is a vector of ones.

II. MODELING FRAMEWORK AND PROBLEM STATEMENT

Consider a nonlinear dynamic system model G:

x+ = f(x, u, w), (1)

where x ∈ X is the system state at the current time instant with
a closed interval domain X = [x, x]n ⊂ Rn, u ∈ U is the con-
trol input with a closed interval domain U = [u, u]m ⊂ Rm,
w ∈ W is the disturbance/process noise with a closed interval
domain W = [w,w]nw ⊂ Rnw , and x+ is ẋ for continuous-
time systems and the state at the next time step for discrete-
time systems, while f : X × U × W → Rn is the vector
field describing the nonlinear dynamics of the system, which
belongs to several smoothness classes, for example, Lipschitz
continuous (with Lipschitz constant λ), C0, C1, and C2. To
simplify the notation, we write s = [x> u> w>]> as a
stacked state-input-disturbance vector with the interval domain
S = [s, s] = X × U ×W .
Definition 1 (Polytopic Partition). A polytopic partition P of
the closed and bounded region S ⊂ Rn+m+nw is a collection
of p closed and bounded subregions:

Pi := {s | Gis ≤ gi}, (2)

for all i ∈ [p] such that S ⊆
⋃p
i=1 Pi and Pi∩Pj = ∂Pi∩∂Pj ,

∀i 6= j ∈ [p], where ∂Pi is the boundary of set Pi, Gi and gi

are real matrices/vectors.

Definition 2 (Uniform Mesh). A uniform mesh of S is a col-
lection of evenly-spaced interval subregions Ii = [si, si] ⊆ S,
called mesh elements, and its set of grid points M (i.e.,
vertices of Ii) is defined by
{s|s = si +Ki �∆s,i,Ki ∈ {0, 1, 2, . . . , ri − 1}n+m+nw},

where ri is the resolution or number of grid points along each
dimension in each subregion Ii (or r only, if ri is the same
for all subregions), ∆s , ds,i

ri−1 and ds,i , si − si. Further,
given M̃ ⊆ M, we denote by Int(M̃ ∩ Ii) the union of all
simplicial regions formed by the grid points of M̃ ∩ Ii.
Definition 3 (Diameter [8]). The diameter δ of a polytopic
subregion is the greatest distance between its vertices.

For each subregion Pi ∈ P as defined in Definition
1 that partitions the domain of interest, we aim to over-
approximate/abstract the nonlinear f by a pair of affine
functions f

i
and f i such that for all s ∈ Pi, the function

f(s) is bracketed/framed by the pair of affine functions, i.e.,
f
i
(s) ≤ f(s) ≤ f i(s). These affine functions (i.e., framers)

with respect to f over Pi ∈ P are chosen as

f
i
(s) = Ais+ hi, f i(s) = Ais+ hi, (3)

where the matrices Ai, Ai, and the vectors hi and hi are
constant and of appropriate dimensions. Let (F ,F) be a pair
of families of affine functions with F = {f

1
, . . . , f

p
} and

F = {f1, . . . , fp}. Then, the function f : S → Rn is over-
approximated with a pair of affine families (F ,F) over a
partition P by the piecewise affine inclusion model H:

Ais+ hi ≤ x+ ≤ Ais+ hi, ∀i ∈ [p], s ∈ Pi. (4)

Remark 1. By construction, any two partitions Pi, Pj ∈ P
may only overlap at their shared boundary (cf. Definition 1).
Moreover, by design, ∀s ∈ ∂Pi ∩ ∂Pj , fk(s) ≤ f(s) ≤ fk(s)
for both k ∈ {i, j}. In this case, we will choose framers via:
maxk∈{i,j} fk(s)≤f(s)≤mink∈{i,j} fk(s),∀s ∈ ∂Pi ∩ ∂Pj .

To quantify the quality of our abstraction approaches, we
utilize the following definition of their approximation errors.

Definition 4 (Approximation Error [8]). Consider a polytopic
partition P = {Pi|i ∈ [p]} of S ⊂ Rm+n+nw . If a pair of
affine families (F ,F) over-approximates a nonlinear function
f over the partition P , then the approximation error with
respect to the nonlinear dynamics is defined as e(F ,F) =
maxi∈[p] maxs∈Pi

‖f i(s)− f i(s)‖∞.

Further, we rely on the following results in our derivations.

Proposition 1 ([18, Theorem 4.1 & Lemma 4.3]). Let S be
an (n + m + nw)-dimensional mesh element such that S ⊆
Rn+m+nw with diameter δ (cf. Definition 3). Let f : S → R
be a nonlinear function and let fl be the linear interpolation of
f(·) evaluated at the vertices of the mesh element S. Then, the
approximation error bound σ defined as the maximum error
between f and fl on S, i.e., σ = maxs∈S(|f(s)− fl(s)|), is
upper-bounded by

(i) σ ≤ 2 maxs∈S ‖f(s)‖∞, if f ∈ C0 on S,
(ii) σ ≤ λδs, if f is Lipschitz continuous on S,

(iii) σ ≤ δs maxs∈S ‖f ′(s)‖2, if f ∈ C1 on S,
(iv) σ ≤ 1

2δ
2
s maxs∈S ‖f ′′(s)‖2, if f ∈ C2 on S,

where C0, C1 and C2 are sets of continuous, continuously
differentiable and twice continuously differentiable functions
respectively, λ is the Lipschitz constant, f ′(s) is the Jaco-
bian of f(s), f ′′(s) is the Hessian of f(s) and δs satisfies
δs ≤

√
n+m+nw

2(n+m+nw+1)δ, δ∗s . Further, the smallest guaranteed
approximation error σ∗ is obtained for cases (i)–(iv) with δ∗s .

We now formulate the problem of interest to this paper.
Problem 1 (Affine Abstraction with Polytopic Partitions).
For a given nonlinear n-dimensional vector field f(s) with
s ∈ S and a given desired accuracy εf , simultaneously find
a polytopic partition P = {P1, . . . , Pp} and a pair of n-
dimensional families of affine functions F = {f1, . . . , fp}
and F = {f

1
, . . . , f

p
} such that:

e(F ,F) ≤ εf , f i(s) ≤ fi(s) ≤ f i(s),∀s ∈ Pi,∀i ∈ [p], (5)

where e(F ,F) is the approximation error (cf. Definition 4).
The pair of affine families (F ,F) is then the abstracted piece-
wise affine inclusion model (i.e., piecewise affine abstraction
of the nonlinear dynamics).

III. MAIN RESULT ON ABSTRACTION

In this section, optimization-based approaches are intro-
duced for finding piecewise affine abstractions with polytopic
partitions of the nonlinear system (1), i.e., for solving Problem
1. First, we consider the problem with a given number of
subregions p (determined by a given number of hyperplanes L)
in Section III-A. Then, in Section III-B, we discuss a recursive
procedure to reduce computational complexity while searching
for p to satisfy the desired accuracy εf .



A. Mesh-Based Piecewise Affine Abstraction Approach

It is generally nontrivial to abstract a nonlinear function
f(s) over its entire continuous domain. Therefore, similar
to [8], [9], we adopt a mesh-based method to abstract the
function at only the grid points and rely on the result on
interpolation errors in Proposition 1 to compensate for the
generalization error when extending it to the entire contin-
uous domain. However, in contrast to previous approaches
in [8], [9], instead of uniformly partitioning the domain of
interest with hyperrectangles and performing the abstraction
procedure with the grid points over the a priori determined
hyperrectangles, we propose to partition the domain using
polytopic regions that are computed simultaneously with the
abstraction process, with the goal of improving the quality of
the abstraction in terms of reducing its approximation error.

1) Polytopic Partitions: We consider L ≥ 1 hyperplanes to
partition the domain of interest, S, into polytopic subregions,
where each hyperplane i ∈ [L] is represented by:

G>i s = 1, (6)

with to-be-determined Gi ∈ Rn+m+nw , and these hyperplanes
divide the domain of interest into at most 2L polyhedral sets
intersecting only on the boundary (i.e., p ≤ 2L). Specifically,
each polytopic subregion l ∈ [2L] is defined by

Pl ,{s ∈ S | βl,i(G>i s) ≤ βl,i,∀i ∈ [L]}, (7)

with (distinct) permutation vectors βl ∈ {−1, 1}n+m+nw .
2) Piecewise Affine Abstraction with Polytopic Regions:

Armed with the above description of polytopic partitions,
we provide a lemma that simultaneously finds the polytopic
partitions and the affine abstractions for each subregion that
only considers the grid points. This lemma is an extension
of the result in [12], where a similar problem for data-driven
piecewise affine fitting with polytopic partitions is considered,
but the Ai and Ai matrices for the piecewise affine abstraction
in (4) are now allowed to be different.
Lemma 1. Given a nonlinear function f : S → Rn
with a given closed and bounded region S, and let M =
{s1, s2, . . . , sJ} be a set of J grid points in the region S (cf.
Definition 2) and L be the desired number of hyperplanes that
partitions the region. The piecewise affine hyperplanes

f l(s) = Al s+ hl, f l(s) = Al s+ hl, if Gls ≤ gl,

for all l ∈ [2L], bound f from above and below at (only) the
set of grid points, i.e., (4) holds for all s ∈ M ∩ Pl, where
Al, Al, hl, hl, G

l, and gl are obtained from the following
mixed-integer linear program (MILP):

minθ,Al,Al,hl,hl,Gi,z′j,l,z”j,l,i
‖θ‖q

s.t. Al sj + hl ≥ f(sj) +M(1− z′j,l), (8a)
Al sj + hl ≤ f(sj)−M(1− z′j,l), (8b)
(Al−Al)xj + hl−hl ≤ θ −M(1− z′j,l), (8c)
βl,iG

>
i sj ≤ βl,i −M(v − z′′j,l,i), (8d)∑L

i=1 z
′′
j,l,i − L+ 1 ≤ z′j,l, (8e)

z′j,l, z
′′
j,l,i ∈ {0, 1}, ∀l ∈ [2L], ∀j ∈ [J ], ∀i ∈ [L], (8f)

with a large enough M , a pre-defined/given vector norm q and
βl defined in (7), while Gl and gl are row-wise concatenations

Fig. 1: Illustration of the region expansion strategy.

of βl,iG>i and βl,i, respectively.
Proof. This result holds by construction. Each grid point vj
will be in one of the partitions described by Gls ≤ gl, where
z′′j,l,i = 1 for all i ∈ [L]. For this l, (8e) ensures that z′j,l =
1, and in turn, (8a) and (8b) guarantee that the grid points
vj will be bounded by fu,l and fb,l, while (8c) encode its
approximation error θ.

Remark 2. Note that when q = 1, Lemma 1 can also be
carried out dimension-wise for the vector-valued nonlinear
function f , which results in smaller optimization problems.

3) Mesh-Based Methods for Polytopic Regions: However,
when sampling points in a polytopic region, one of the
“complications” is that uniform meshes, as were considered in
[8], [9], no longer conveniently align with the polytopic sub-
regions, as shown in Figure 1 for a polytopic region described
by black solid lines. Although it is theoretically possible to
tailor a non-uniform mesh to coincide with the polytope, this
procedure is non-trivial and can be computationally expensive,
especially when the non-uniform mesh needs to be generated
as a function of the yet to-be-determined polytopic regions,
which is the case we consider.

Hence, a specific contribution of this paper is to find compu-
tationally efficient algorithms to generate appropriate meshes
for polytopic regions, which may not necessarily provide the
optimal non-uniform meshes. To achieve this for an arbitrary
polytopic region P , we can first find the hyperrectangle I that
covers/contains the polytope with minimum volume. Then, we
generate a uniform mesh over I with the set of grid pointsM,
similar to previous approaches. This hyperrectangle that covers
the polytope P is illustrated in red in Figure 1, while the grid
points are marked in light blue. On one hand, since many
of the grid points are not within the (black) polytope P , the
computation of hyperplanes that frame the nonlinear function
(i.e., affine abstraction) over all the grid points in M will
result in unnecessarily suboptimal approximation errors. On
the other hand, there exists a “boundary effect” such that the
resulting abstraction will not over-approximate the nonlinear
function over the entire the polytopic region if we only use
the grid points within the polytope, i.e., the (dark) blue grid
points given by M ∩ P . This is because our correction
mechanism for generalizing the mesh-based method to the
entire continuous polytopic domain using Proposition 1 only
applies for the interpolation over simplices formed by the grid
points in M∩ P , resulting in an abstraction over the region
enclosed by the blue dashed lines, Int(M∩ P ), instead of P
(black).



4) Region expansion method: In order to address this
“boundary effect,” we propose a region expansion method
that seeks to find a larger polytopic region, P̃ ⊇ P , that
contains/covers the polytopic region P , such that the affine
abstraction over the grid points in this enlarged polytopic
region, i.e., Int(M∩ P̃ ), is a true over-approximation of the
nonlinear function f over the original polytope P .

Specifically, we propose to expand the polytopic region
P by extending its boundaries outwards by the distance
between adjacent grid points in each dimension such that the
enlarged polytope P̃ is guaranteed to include the immediate
neighbor grid points to the boundaries. This procedure can be
formalized using the following lemmas.

Lemma 2. Given a polytopic region P = {s ∈ S | Gs ≤
g}, and a tight hyperrectangle I = [s, s] ⊇ P with width
ds = s − s, a uniform mesh over the hyperrectangle I with
resolution r, the expanded polytopic region P̃ that result from
expanding each element s ∈ P by an interval [−∆s,∆s] with
∆s = ds

r−1 − ε and a very small constant ε, is given by

P̃ = {s ∈ S | Gs ≤ g + |G|∆s}. (9)

Proof. By a helpful result in [19, Lemma 1], for each s −
∆s ≤ s′ ≤ s + ∆s, we have Gs′ ≥ Gs − |G|∆s. Hence,
Gs− |G|∆s ≤ Gs′ ≤ g, which simplifies to (9).

Lemma 3. Given an interval region S = [s, s] and a uniform
mesh with M = {s|s = s + K � ∆s,K ∈ {0, 1, 2, . . . , r −
1}n+m+nw} with resolution r, where ∆s = ds

r−1 and ds =
s− s, there exists sm ∈M for any s ∈ S such that

s ∈ [sm, sm + ∆s]⊂ [max(s−∆s, s),min(s+∆s, s)]. (10)

Proof. For an arbitrary s ∈ S, let sm = s+K �∆s and

K(j) =

{
0, s(j) = s(j),⌈
s(j)−∆s,(j)−s(j)

∆s,(j)

⌉
, s(j) < s(j) ≤ s(j),

(11)

∀j ∈ [n+m+ nw], where the subscript (j) denotes the j-th
element. We will show that (10) holds for both cases in (11).

Case I: s(j) = s(j) ⇒ sm,(j) = s(j) ⇒ max(s(j) −∆s,(j),
s(j)) = s(j) ≤ sm,(j) ≤ s(j) ≤ sm,(j) + ∆s,(j) ≤ min(s(j) +
∆s,(j), s(j)) = s(j) + ∆s,(j), which simplifies to (10).

Case II: When s(j) < s(j) ≤ s(j) and from definition, we

have s(j) = s(j)+(r−1)∆s,(j), thus
s(j)−∆s,(j)−s(j)

∆s,(j)
= r−2 ≥

s(j)−∆s,(j)−s(j)
∆s,(j)

>
s(j)−∆s,(j)−s(j)

∆s,(j)
= −1. Hence, r − 2 ≥

K(j) =
⌈
s(j)−∆s,(j)−s(j)

∆s,(j)

⌉
≥ 0. Consequently,

sm,(j) = s(j) +K(j)∆s,(j) ≥ s(j)

sm,(j) + ∆s,(j) = s(j) +K(j)∆s,(j) + ∆s,(j)

≤ s(j) + (r − 2)∆s,(j) + ∆s,(j) = s(j).
(12)

From the definition of the ceiling function, we have
s(j)−∆s,(j)−s(j)

∆s,(j)
≤

⌈
s(j)−∆s,(j)−s(j)

∆s,(j)

⌉
≤ s(j)−∆s,(j)−s(j)

∆s,(j)
+ 1,

⇒sm,(j)+K(j)∆s,(j)≤s(j)+(
s(j)−∆s,(j)−s(j)

∆s,(j)
+1)∆s,(j)=s(j),

sm,(j) ≥ s(j) +
s(j)−∆s,(j)−s(j)

∆s,(j)
∆s,(j) = s(j) −∆s,(j),

⇒ s(j)−∆s,(j)≤sm,(j)≤s(j)≤sm,(j)+∆s,(j) ≤ s(j)+∆s,(j).

Combining with the results of sm,(j) ≥ s(j) and sm,(j) +
∆s,(j) ≤ s(j) in (12), we obtain (10).

Intuitively, by Lemma 2, we ensure that [s−∆s, s+ ∆s] is
a subset of P̃ for all s ∈ P (depicted in magenta in Figure 1),
and by Lemma 3, we show that there exists a mesh element
[sm, sm + ∆s] ⊂ I that contains s and is contained in [s −
∆s, s + ∆s]. In other words, each point s ∈ P is contained
in a mesh element of P̃ , hence the correction mechanism in
Proposition 1 that applies to simplices formed by the grid
points in M∩ P̃ , i.e., Int(M∩ P̃ ) (depicted by green dashed
lines in Figure 1), is guaranteed to contain P , i.e., Int(M∩
P̃ ) ⊃ P , and thus, an affine abstraction with domain Int(M∩
P̃ ) also applies to the (black) region P .

Next, we provide the necessary corrections to account for
interpolation errors and “boundary effects” using two region
expansion methods. As mentioned above, we will show that
the “boundary effects” can be overcome by expanding each
polytopic region using Lemmas 2 and 3, while interpolation
error corrections can be done via Proposition 1 with the
expanded/enlarged polytopic regions.

a) Method I: The first method directly combines the
result from Lemma 2 into the MILP in (8). Instead of only
considering the grid points in partitions Pl, we consider
those in the enlarged polytopic regions P̃l, enabling us to
simultaneously find a polytopic partition P = {Pl}l∈[2L] and
a pair of piecewise affine hyperplanes that over-approximates
the nonlinear function f over the entire domain S .

Theorem 1. Given a nonlinear function f : S → Rn
with a given closed and bounded region S, and let M =
{s1, s2, . . . , sJ} be a set of J grid points in region S and
L be the desired number of hyperplanes that partitions the
region. The piecewise affine hyperplanes

f l(s)=Als+hl+σI , f l(s)=Als+hl−σI , if Gls≤gl, (13)

for all l ∈ [2L], over-approximate/abstract f over the entire
region S, where Al, Al, hl, hl, G

l and gl are obtained from
the MILP in (8) with (8d) replaced by

βl,iG
>
i sj ≤ βl,i + |Gi|>∆s −M(1− z′′j,l,i), (14)

σI is the interpolation error σ∗ from Proposition 1, and the
element-wise absolute value |Gi| can be encoded with mixed-
integer constraints corresponding to if-else statements.

Proof. This result holds by construction. We know from
Lemma 2 that [s − ∆s, s + ∆s] ⊂ P̃l for any s ∈ Pl,
where Pl = {Gls ≤ gl} and P̃l = {Gls ≤ gl + ∆l}.
According to Lemma 3, we can always find an interval region
such that s ∈ [sm, sm + ∆s] ⊂ [max(s − ∆s, s),min(s +
∆s, s)], where sm ∈ M, s and s are upper and lower
bounds of the uniform mesh as defined in Definition 2. From
[sm, sm + ∆s] ⊂ [max(s−∆s, s),min(s + ∆s, s)], we have
[sm, sm + ∆s] ⊂ Int(M) and [sm, sm + ∆s] ⊂ P̃l. Therefore,
∀s ∈ Pl, s ∈ Int(M∩ P̃l). Consequently, Pl ⊂ Int(M∩ P̃l).
According to [8, Lemma 2], if Als+hl ≥ f(s) ≥ Als+hl for
all s ∈M, then f l(s) ≥ f(s) ≥ f

l
(s) for all s ∈ Int(M∩P̃l).

Therefore, f l and f
l

abstract/frame f over Pl.

Note, however, that the integer constraints due to |Gi|
in (14) (encoded with if-else statements) typically result in



increased branches/cuts in MILP solvers and in turn, may
increase the computation time to find the polytopic partitions.

b) Method II: To alleviate the issue of computation time
with Method I, we propose a two-step technique, where the
first step over-approximates the function f over only the grid
points using Lemma 1 to obtain the polytopic partitions and
the second step then finds the affine hyperplanes over each
enlarged polytopic partition P̃l, independently.

Theorem 2. Suppose Theorem 1 hold. Then, the piecewise
affine hyperplanes defined in (13) for all l ∈ [2L], over-
approximate f over the entire region S, where Al, Al, hl
and hl are obtained from the following linear program (LP):

minθ,Al,Al,hl,hl
‖θ‖q

s.t. Al sj + hl ≥ f(sj), Al sj + hl ≤ f(sj), (15a)
(Al−Al)sj + hl−hl ≤ θ, (15b)
∀ sj ∈ {s ∈ V | Gls ≤ gl + |Gl|∆s}, (15c)

while Gl and gl are obtained from the MILP in (8), with σI
as the interpolation error σ∗ from Proposition 1.

Proof. This result holds by a similar reasoning as Theorem
1. Constraint (15) ensures that each grid point in the enlarged
polytopic partition P̃l will be bounded by fu,l and fb,l and by
[8, Lemma 2], the interpolation error σI enables us to extend
the abstraction over the grid points of the expanded/enlarged
polytopic regions to the entire continuous region.

B. Recursive Approach for Piecewise Affine Abstraction
Theoretically, we can solve Problem 1 by applying either

Theorem 1 or Theorem 2 with increasing L and/or the number
of grid points/resolution ri to achieve any desired accuracy
εf . However, the increase of L or ri may lead to increasing
integer constraints or to very large optimization problems,
where computational time and memory can become an issue
for systems with large dimensions.

Thus, we provide an approach that can be recursively
implemented with a smaller L, e.g., L = 1 and with less
grid points/resolution in each recursion. In this procedure,
we begin with the abstraction of the entire domain with
polytopic regions with a (chosen) small L and resolution
using Theorem 1 or 2. If the desired accuracy is not met for
any of the polytopic regions, we will further partition that
polytopic partition by re-applying Theorem 1 or 2 with the
same small L and resolution but for a smaller polytopic region
to obtain a better desired accuracy. This procedure can be
repeated as needed until the desired accuracy is achieved. The
algorithm for this procedure (omitted for brevity) is similar to
[8, Algorithm 1], except that its theorem is replaced by our
Theorem 1 or 2 and that the partitions are found with our
theorems instead of being manually constructed.

IV. SIMULATION RESULTS

In this section, all simulations are implemented in MATLAB
on a 2.2 GHz Intel Core i7 CPU with 16 GB RAM.

A. Dubins Car Dynamics (f(x) = x1cos(x2))
We first recursively applied Theorem 1 and 2 with L = 1

as described in Section III-B to over-approximate one of the

(a) εf = 0.8 (b) εf = 0.05

Fig. 2: Piecewise affine abstraction of x1cos(x2) using Method
I (Theorem 1) with different desired accuracies.

(a) εf = 0.8 (b) εf = 0.05

Fig. 3: Piecewise affine abstraction of x1cos(x2) using Method
II (Theorem 2) with different desired accuracies.

(a) Abstraction error e = 0.5605 (b) Abstraction error e = 0.6596

Fig. 4: Comparison of Method I (Theorem 1) with polytopic
partitions (left) and the method in [8] with hyperectangular
partitions (right), with the number of partitions fixed at 4.

vector fields of a Dubins car dynamics, f(x) = x1cos(x2)
over the interval [−2, 2]× [0, 2π]. Similar results are obtained
for the rest of the Dubins car model but are omitted for brevity.
As shown in Figure 2 and 3, both approaches can obtain
tight abstractions for two different desired accuracies. We
further compared the performance of the proposed recursive
affine abstraction approaches with those in [8] and [9] for the
piecewise affine abstraction of the same function over the same
domain for three different desired abstraction accuracies, i.e.,
εf ∈ {0.05, 0.1, 0.2}. The simulation results are summarized
in Table I, which shows that our first method (Theorem
1) needs the smallest number of partitions for all desired
accuracies, but it takes longer computation times than Method
II (Theorem 2) and the existing approaches in [8], [9], since
it involves more integer constraints.

In addition, when the number of partitions is set to be the
same, Figure 4 shows that the proposed abstraction approaches
achieve a better accuracy than the abstraction approach in [8]
(Similarly, Method II performs better but its figure is omitted
due to space limitation). This is likely because the approach in
[8] partitions the domain evenly with hyperrectangles, while
the proposed methods simultaneously determine the polytopic
partitions along with the abstraction.



TABLE I: Results of piecewise affine abstraction of nonlinear
function x1 cosx2 for varying desired accuracies εf .

Desired Accuracy, εf 0.2 0.1 0.05

(i) C2 function
(Theorem 1)

No. of Subregions 58 108 210
CPU Time (s) 2264 4524 8653

(ii) C2 function
(Theorem 2)

No. of Subregions 61 121 257
CPU Time (s) 391.3 1003 2888

[8] C2 function No. of Subregions 64 232 256
CPU Time (s) 19.68 69.32 86.34

[9] Lipschitz function No. of Subregions 256 1024 4096
Comp. Time (s) 57.18 214.40 786.88

TABLE II: Abstraction results using two partition hyperplanes
for nonlinear function x1 cosx2 over [0, 2]× [0, π].

Method Theorem 1 Theorem 2 Data-Driven [12]
CPU Time (s) 2765 53.73 142.10
Approximation Error (e) 0.5605 0.5757 6.8005

TABLE III: Maximum number of steps and mean CPU time
for model discrimination when using abstractions of swarm
dynamics based on [11] and the proposed methods.

Model I II III
Method I (Theorem 1) with
Polytopic Partitions

Max. No. of Steps 4 8 15
Mean CPU Time (s) 1.81 2.81 4.08

Method II (Theorem 2) with
Polytopic Partitions

Max. No. of Steps 4 8 18
Mean CPU Time (s) 1.81 2.80 4.64

Approach in [11] with
Hyperrectangular Partitions

Max. No. of Steps 4 9 37
Mean CPU Time (s) 1.89 2.82 8.68

Moreover, we compared our abstraction approaches with a
adapted version of [12] that also uses an optimization-based
method to obtain polytopic partitions. The same nonlinear
function on the domain [0, 2] × [0, π] is considered and we
only partitioned the domain with two partition hyperplanes
(i.e., L = 2) for simplicity. As shown in Table II, our first
method (Theorem 1) has the best performance in terms of
the abstraction error, while Method II (Theorem 2) has the
smallest CPU time with a slightly increased abstraction error.

B. Application to Model Discrimination of Swarm Intents
Next, we compare the proposed Methods I and II (Theorems

1 and 2) with the approach using hyperrectangular partitions
in [11] in terms of their effectiveness for the model discrim-
ination problem. In particular, we consider the swarm intent
identification example in [11] with three swarm intent models
(see [11] for details): the swarm intends to move towards the
centroid of the swarm (Model I), the swarm moves away from
the centroid (Model II) and the swarm agents do not interact
with each other (Model III), as well as 10 sampled input-output
trajectories of 40 time steps each with the same inputs, initial
conditions and noise sequences.

To investigate the effects of using different abstraction
methods on the number of time steps needed for model
discrimination, the number of partitions is set to be equal to 4
for all methods. As shown in Table III, when using abstraction
models based on Theorems 1 and 2, the model discrimination
algorithm in [11] takes fewer steps to discriminate Models
II and III than when using abstractions obtained from the
approach in [11]. Further, the mean computation time for the
model discrimination algorithm is also reduced when using
abstractions based on our proposed approaches, presumably
due to the improved model over-approximations.

V. CONCLUSION

In this paper, we proposed mesh-based approaches for
piecewise affine abstraction of nonlinear systems with poly-
topic partitions. To tackle the boundary effect that may make
the abstraction incorrect, two optimization-based abstraction
approaches are developed to obtain the polytopic partitions
and affine abstractions simultaneously. Hence, the original
dynamics can be over-approximated by a pair of piecewise
affine functions with polytopic regions. Specifically, the first
approach directly incorporates a region expansion strategy,
while the second compensates for the boundary effect and
interpolation errors in a 2-step procedure. Finally, we demon-
strated the effectiveness of our approaches and illustrated their
application to model discrimination via simulations.
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