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Abstract—In this paper, we propose an incremental abstraction
method for dynamically over-approximating nonlinear systems
in a bounded domain by solving a sequence of linear programs,
resulting in a sequence of affine upper and lower hyperplanes
with expanding operating regions. Although the affine abstraction
problem can be solved using a single linear program, existing ap-
proaches suffer from a computation space complexity that grows
exponentially with the state dimension. Thus, the motivation for
incremental abstraction is to reduce the space complexity of
abstraction algorithms for high-dimensional systems or systems
with limited on-board resources. Specifically, we start with an
operating region that is a subregion of the state space and
compute a pair of affine hyperplanes that bracket the nonlinear
function locally. Then, by incrementally expanding the operating
region, we dynamically update the two affine hyperplanes such
that we eventually yield hyperplanes that are guaranteed to over-
approximate the nonlinear system over the entire domain. Finally,
the effectiveness of the proposed approach is demonstrated using
several numerical examples.

Index Terms—Computational methods, Large-scale systems,
Optimization

I. INTRODUCTION

ABSTRACTION-BASED methods for analyzing and con-
trolling smart and complex (nonlinear or hybrid) systems

have recently attracted a great deal of interest [1]. The ab-
straction procedure computes a simpler but over-approximated
system that includes all possible behaviors of the original
system while preserving properties of interest. For instance, to
verify that a given complex system satisfies certain properties,
we can test for the desired property on the abstracted simple
system, and the test result is equivalent to or sufficient for
testing for the property on the original complex system.

Literature Review. In general, abstraction is a systematic
approximation method that partitions the state space/vector
field of a complex system into finite subregions, and then
approximates its dynamics in each subregion by a simpler
one, resulting in a hybrid system [2], [3]. Multiple abstraction
approaches have been developed for several classes of systems
in the literature, including nonlinear systems [4]–[10], hybrid
systems [11], and uncertain affine and nonlinear systems [12],
[13]. In particular, symbolic approaches, e.g., [7]–[10], belong
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to an important class of abstraction methods, where the state
and input spaces are discretized to obtain dynamical abstrac-
tion systems with finitely many number of states and inputs,
which symbolizes sets of states and inputs of the original
system. However, the number of symbolic states and inputs
typically grows exponentially with state and input dimensions.
To tackle these scalability issues, [14] presented multirate
symbolic models for incrementally stable switched systems
to reduce the size of the symbolic models. In addition, by
exploiting priorities on the inputs and states, lazy abstraction-
based methods can also be used to compute the discrete
abstraction on the fly [15]–[17].

On the other hand, hybridization approaches [4], [18], [19]
consider the over-approximation of nonlinear vector fields with
piecewise affine systems, where the approximation error is
accounted for with an additive disturbance. In [4], [18], a static
single simpler function with a bounded error term is computed
analytically for each subdomain, while the work in [4], [19]
considers dynamic hybridization that dynamically determines
the subdomains on the fly. By contrast, recent works in [5],
[11]–[13] employ mesh-based optimization methods to obtain
upper and lower affine functions that bracket the original
system dynamics, in the sense of inclusion of all possible
behaviors for each subregion, to obtain lower approximation
errors than [4], [18], [19].

Control synthesis with these piecewise affine abstractions
have been shown to yield comparable results to symbolic
control approaches [11] and these abstractions were also
shown to be effective for reachability analysis [19] and model
discrimination [6], [13]. However, the mesh-based approaches
that promise to improve the approximation errors in hybridiza-
tion approaches do not scale well with the size of the mesh
(with increasing resolution and state dimension). Hence, tools
for computing tight mesh-based abstractions with only limited
memory (statically or dynamically) remains an open and
interesting challenge, especially for high-dimensional systems
and for systems with extremely limited on-board resources,
e.g., light-weight mobile robots.

Contributions. In this paper, we propose an incremental
abstraction method to dynamically over-approximate nonlinear
systems by pairs of bracketing hyperplanes to overcome the
issue of space complexity in mesh-based algorithms [5], [11]–
[13], which can then be integrated into existing static or on-
the-fly hybridization and affine abstraction frameworks, e.g.,
[4], [6], [11], [13], [19], for solving reachability, control
synthesis and model discrimination problems. Specifically, we
propose a novel method to carry out the abstraction process
sequentially, starting with a small operating region that is



a subset of the entire domain and incrementally expanding
to larger domains. At each increment, a local abstraction
consisting of a pair of affine hyperplanes can be obtained
by solving a linear program. This is in contrast to the con-
ventional mesh-based abstraction methods, e.g., in [5], [11],
that construct abstractions statically over the entire domain of
interest and have the aforementioned space complexity issues.
Similar to [5], [11], our approach can also be employed with
iterative partitioning to obtain a piecewise affine abstraction
incrementally for each subpartition.

Our approach gives us control over the amount of memory
that is allocated to solve each linear program, thus enabling
us to abstract high-dimensional nonlinear systems with lim-
ited space resources. Moreover, we derive a rigorous proof
that guarantees that the incremental abstraction is an over-
approximation/abstraction of the original system, which is
an important feature when used for reachability analysis and
control synthesis. The simulation results demonstrate that the
proposed incremental approach is able to obtain abstractions
with limited resources, but at the cost of obtaining a worse
over-approximation and a longer total computation time due
to the sequence of linear programs that need to be solved.

II. PRELIMINARIES

For a vector v ∈ Rn and a matrix M ∈ Rp×q , ‖v‖i and
‖M‖i denote their (induced) i-norm with i = {1, 2,∞}.

A. Modeling Framework and Definitions

Consider the nonlinear system:

x+ = f(x, u), (1)

where x ∈ X ⊆ Rn is the system state with a bounded
and closed interval domain X , u ∈ U ⊆ Rm is the known
control input with a bounded and closed interval domain U
and vector field f : X × U → Rn is a continuous function.
For discrete-time systems, x+ denotes the state at the next
time instant while for continuous-time systems, x+ = ẋ is the
time derivative of the state. We denote a sample point with
(x, u) ∈ Rn+m throughout the paper.

To incrementally abstract the nonlinear system (1), we
introduce the following definitions for each increment k ∈ N
and each partition of the domain, i.e., I ⊆ X × U .

Definition 1 (Uniform Mesh, Mesh Elements and Grid Points).
A uniform mesh of each domain I is a collection of polytopic
partitions, called mesh elements, with a total of smax number
of points, called grid points, uniformly distributed along all
directions and dimensions. The set of grid points is denoted as
M and by construction, the convex hull of M is the domain
I , i.e., I = Conv(M).

Definition 2 (Diameter). The diameter δ of a uniform mesh is
the greatest distance between vertices of each mesh element.

Definition 3 (Sample Set and Operating Region). At any
increment k, a set Sk is called a sample set if it is a subset
of all the existing grid points. Moreover, all grid points in the
convex hull of the sample set is called the operating region
and is denoted by Rk, i.e., Rk , Conv(Sk) ∩M.

Definition 4 (Expanding Operation Region). At each incre-
ment k, the operation region Rk is expanding if Rk−1 ⊂ Rk,
i.e., the new operating region at the current increment is a
strict superset of the previous operating region.

Definition 5 (Vertex Set). Given an operating region Rk at
increment k, the set of all vertices of the convex hull of Rk is
called the vertex set, and denoted as Vk , V er(Conv(Rk)).
Note that the convex hull of the operating region is a polytope
and has a well-defined vertex set.

The process of over-approximating a nonlinear function as
given in (1) can be defined as follows, similar to [5]:

Definition 6 ((Incremental) Affine Abstraction Model). Given
a function f(x, u) and a bounded domain I , the affine func-
tions f(x, u) = Ax+Bu+h and f(x, u) = Ax+Bu+h, are
called upper and lower affine functions of f(x, u), respectively,
if ∀(x, u) ∈ I , f(x, u) ≤ f(x, u) ≤ f(x, u). The pair of
functions F , {f(x, u), f(x, u)} forms an affine abstraction
model that over-approximates the given function f(x, u) over
domain I . Moreover, an affine abstraction model over the
operating regionRk is called an incremental affine abstraction
and is denoted by Fk = {fk(x, u), f

k
(x, u)}.

One major goal when finding affine abstractions is to get
them as tight as possible with a low abstraction error, i.e., with
a small distance between the affine hyperplanes:

Definition 7 ((Incremental) Abstraction Error [5]). The ab-
straction error of an affine abstraction model F of a non-
linear function f(x, u) over its domain I , is defined as
θ = max(x,u)∈I ‖f(x, u) − f(x, u)‖p, for any choice of
p ∈ {1, 2,∞}. Further, for incremental abstraction Fk, the in-
cremental abstraction error is θk = max(x,u)∈Vk ‖fk(x, u)−
f
k
(x, u)‖p.

Next, we reproduce a lemma from [20] that we will rely on
to find linear interpolation error bounds over mesh elements:

Lemma 1 ([20, Theorem 4.1 & Lemma 4.3]). Let S be an
(n+m)-dimensional mesh element such that S ⊆ Rn+m with
diameter δ (see Definition 2). Let f : S → R be a nonlinear
function and let fl be the linear interpolation of f(.) evaluated
at the vertices of the mesh element S. Then, the approximation
error σ defined as the maximum error between f and fl on
S, i.e., σ = maxs∈S(|f(s)− fl(s)|), is upper-bounded by

(i) σ ≤ 2 maxs∈S ‖f(s)‖∞, if f ∈ C0 on S,
(ii) σ ≤ λδs, if f is Lipschitz continuous on S,

(iii) σ ≤ δs maxs∈S ‖f ′(s)‖2, if f ∈ C1 on S,
(iv) σ ≤ 1

2δ
2
s maxs∈S ‖f ′′(s)‖2, if f ∈ C2 on S,

where C0, C1 and C2 are sets of continuous, continuously
differentiable and twice continuously differentiable functions
respectively, λ is the Lipschitz constant, f ′(s) is the Jacobian
of f(s), f ′′(s) is the Hessian of f(s) and δs satisfies

δs ≤
√

n+m

2(n+m+ 1)
δ.

III. PROBLEM FORMULATION

When memory resources are scarce (e.g., when the state di-
mension is high or when on-board memory resources are lim-



ited in small robots), one way to obtain sufficiently tight affine
abstractions is to incrementally compute over-approximations
on smaller subregions of the domain I ⊆ X × U of f(x, u)
over κ total increments1. Then, combining the incremental
abstractions, we obtain the final abstraction over the entire
domain of f(x, u). With this in mind, we now first formally
define our notion of limited memory resources.

Definition 8 (Maximum Number Of Points). Limited memory
resources can be expressed in terms of the limit on maximum
number of points, denoted as s, that can be processed at any
increment. Thus, for a user-specified s, the total number of
increments, denoted as κ, required to process all the grid
points smax, can then be computed as:

κ =
smax − s
s− γ

+ 1, (2)

where γ is the number of points carried over to Rk from
Rk−1. In Section IV, we will discuss the choice of γ.

Using the concept of incremental abstraction, the problem
of affine abstraction of the system in (1) can be recast as:

Problem 1 (Piecewise Affine Abstraction of a High-Dimen-
sional System). Given a high-dimensional nonlinear function
in (1), along with the requirement that at most s sample
points can be taken into consideration at each increment,
find the affine abstraction of f over domain I ⊆ X × U
(cf. Definition 6) using a sequence of incremental abstractions
over expanding operating regions.

Mathematically speaking, our goal is to compute a piece-
wise affine abstraction model F of f over I ⊆ X × U ,
using {Fk}κk=1, obtained from incremental abstractions over
κ increments, each with at most s samples, such that F ≡ Fκ,
by solving the following problem at each increment k:

min θk

s.t.
fk(x, u) ≥ f(x, u) ≥ f

k
(x, u),

fk(x, u)− f
k
(x, u) ≤ θk1n,

∀(x, u) ∈ Rk,
(3)

∀k ∈ {1, . . . , κ}, and Rk is expanding from R0 = ∅ to Rκ =
M, i.e., ∅ = R0 ⊂ R1 ⊂ . . . ⊂ Rκ.

IV. MAIN RESULTS

To overcome the limitations on space complexity, we pro-
pose an incremental abstraction approach, in which at each
increment, at most s number of sample points are processed
to obtain an affine abstraction. To achieve this, we first propose
an incremental abstraction approach, as follows.

Lemma 2. Given the affine abstraction model Fk−1 =
{f

k−1(x, u), fk−1(x, u)} for the nonlinear function f(x, u)
over an operating region Rk−1, at increment k, solving the
following minimization problem over the sample set S ′k =

1For ease and clarity of exposition, throughout this paper, we consider affine
abstraction models with only a single region I ⊆ X × U . The results in this
paper can be extended in a straightforward manner to allow the entire domain
I ⊆ X × U to be iteratively partitioned into multiple subdomains, as was
done in the literature, e.g., [5], [6], [11], to further decrease abstraction errors,
resulting in piecewise affine abstractions.

(Rk \ Rk−1) ∪ Vk−1, where Vk−1,V er(Conv(Rk−1)), ob-
tains an affine abstraction2 of f(x, u) over Rk:

min
θk,Ak,Ak,Bk,Bk,hk,hk

θk (4)

subject to:
∀(x, u) ∈ Rk \ Rk−1 :

Ak x+Bk u+ hk ≥ f(x, u),
Ak x+Bk u+ hk ≤ f(x, u),

(4a)

∀(x, u) ∈ Vk−1 :

Ak x+Bk u+ hk ≥ Ak−1 x+Bk−1 u+ hk−1,
Ak x+Bk u+ hk ≤ Ak−1 x+Bk−1 u+ hk−1,

(4b)

∀(x, u) ∈ Vk = V er(Conv(S ′k)) :

(Ak −Ak)x+ (Bk −Bk)u+ hk − hk ≤ θk1n. (4c)

Proof. In the optimization problem given in (4), the constraints
(4a) and (4b) make sure that the two hyperplanes at increment
k bracket the nonlinear function for all newly added grid
points and the vertices of operating region Rk−1, respectively.
Moreover, in light of [5, Lemma 1], it is obtained from (4b)
that ∀(x, u) ∈ Rk−1,

fk(x, u) ≥ fk−1(x, u), f
k
(x, u) ≤ f

k−1(x, u). (5)

Since the given two affine hyperplanes Fk−1 =
{f

k−1(x, u), fk−1(x, u)} over-approximate the
nonlinear function over operating region Rk−1, i.e,
f
k−1(x, u) ≤ f(x, u) ≤ fk−1(x, u), ∀(x, u) ∈ Rk−1,

we further have

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk−1. (6)

As a result, it follows from (4a) and (6) that

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk, (7)

which implies that the affine hyperplanes obtained at increment
k over-approximate the nonlinear function f(x, u) overall the
current operating region Rk.

Finally, the constraint in (4c) ensures that the two affine
hyperplanes obtained at the increment k are as close to each
other as possible, i.e., the abstraction error is minimized.

Using the above lemma, Algorithm 1 incrementally solves
the abstraction problem formulated in Problem 1, where a se-
quence of linear problems are solved with expanding operating
regions until we achieve the entire domain. The following
theorem guarantees that incremental affine abstraction also
yields an affine abstraction model of system (1).

Theorem 1. Consider the nonlinear system (1) with (x, u) ∈
X × U . Let s indicate the maximum number of sample
points allowed to be taken at each iteration k. Algorithm 1
incrementally solves the abstraction problem formulated in
Problem 1, i.e., ∀(x, u) ∈ I ⊆ X × U , it returns upper
and lower affine functions f(x, u) = fk(x, u) + σ1 and
f(x, u) = f

k
(x, u)− σ1 that over-approximate the nonlinear

system (1), with the corresponding interpolation error σ in
Lemma 1 and 1 is a vector of ones.

2For brevity, we only provide the linear program for when the abstraction
error is defined with p =∞. Corresponding formulations for p = {1, 2} can
be obtained with slight modifications, where we have a linear program when
p = 1, and a quadratically constrained linear program when p = 2.



Algorithm 1 Procedures of Incremental Abstraction

1) Initialize k = 1, R0 = ∅ =⇒ V0 = ∅.
2) At increment k, consider a new sample set S ′k = (Rk \
Rk−1) ∪ Vk−1 of size s, where the set (Rk \ Rk−1) 6=
∅ denotes the newly added grid points such that Rk is
expanding with k.

3) For the sample set S ′k, use Lemma 2 to obtain hy-
perplanes Fk = {fk, fk} that over-approximate the
nonlinear function (1) over S ′k.

4) Go to step 2 with k = k + 1 if k < κ.
5) After obtaining the final hyperplanes Fκ =
{f

κ
(x, u), fκ(x, u)}, the affine abstraction over the

domain X × U for the system (1) is:

f(x, u) = Aκx+Bκu+ hκ + σ1n,

f(x, u) = Aκx+Bκu+ hκ − σ1n,
where σ is the approximation error in Lemma 1.

Proof. Using mathematical induction, we will prove that The-
orem 1 solves the Problem 1 incrementally.

In the first increment k = 1, we have the operating region
R1. Since R0 = ∅, we have V0 = ∅. Therefore, we further
have S ′1 = (R1 \ R0) ∪ V0 = R1. Based on Algorithm 1,
solving the optimization problem defined in Lemma 2 over S ′1
will yield the affine hyperplanes F1 = {f

1
(x, u), f1(x, u)}

with:

f
1
(x, u) = A1x+B1u+ h1, f1(x, u) = A1x+B1u+ h1.

Since S ′1 = R1, these two hyperplanes also bracket the
function f(x) at all sample points in R1, i.e.

f
1
(x, u) ≤ f(x, u) ≤ f1(x, u), ∀(x, u) ∈ R1.

At increment k > 1, suppose that the obtained affine
hyperplanes Fk = {f

k
(x, u), fk(x, u)} over (x, u) ∈ S ′k =

(Rk \ Rk−1) ∪ Vk−1 satisfy:

f
k
(x, u) ≤ f(x, u) ≤ fk(x, u), ∀(x, u) ∈ Rk.

Then, following the same lines in the proof of Lemma 2 for
increment k + 1, we have

f
k+1

(x, u) ≤ f(x, u) ≤ fk+1(x, u), ∀(x, u) ∈ Rk+1.

Therefore, the affine hyperplane obtained at any future in-
crement will also over-approximate the nonlinear function over
all the past operating regions, hence at the last increment k =
κ, the final two affine hyperplanes Fκ = {f

κ
(x, u), fκ(x, u)}

will over-approximate the nonlinear function over the entire
mesh since the operating region Rκ = Conv(Sκ) ∩M =M
contains all smax samples. Finally, using a combination of
the result in [5, Lemma 2] and Lemma 1, the desired affine
abstraction can be obtained by accounting for the interpolation
errors when extending from grid points of the mesh to the
entire continuous domain (cf. step 5 of Algorithm 1). This
completes the proof.

To reduce space complexity, the proposed incremental ab-
straction algorithm only computes affine hyperplanes for s
sample points at each increment k. As shown in step 2 of the
Algorithm 1, at each increment k, we consider a new sample
set S ′k = (Rk \ Rk−1) ∪ Vk−1 of size s and discard the

previous points from the setRk−1\Vk−1 to accommodate new
points. Then, in Lemma 2, we show that retaining these s grid
points at each increment k is enough to provide conservative
over-approximation over all other discarded points at k − 1.

Bounds on the total number of increments κ of the in-
cremental abstraction can be calculated if s is given. For a
state-input domain I ⊆ X × U ⊂ Rn+m, in general at least
n + m + 1 grid points are required to define a hyperplane.
Moreover, since we require the operating region to expand
with each increment, the maximum number of points γ that
can be carried over future increments cannot exceed s − 1.
Therefore, γ is bounded as follows: n+m+ 1 ≤ γ ≤ s− 1.
Hence, using (2), the following bounds on κ apply:

κ ∈
[

smax − s
s− (n+m+ 1)

+ 1, smax − s+ 1

]
.

V. EXAMPLES AND DISCUSSION

In this section, we demonstrate the capability of the pro-
posed incremental abstraction approach3 in the limited re-
source setting using 2 high-dimensional nonlinear systems.

A. Nonlinear Rastrigin’s function [21]
First, we consider a nonlinear system with dynamics de-

scribed by Rastrigin’s function [21]:

ẋi = f(x) = 10d+
∑d
j=1[x2j − 10 cos(2πxj)] (8)

where x = [x1, . . . , xd]
T ∈ Rd with d being the dimension of

state x. In addition, we also assume that xi ∈ [−5.1, 5.1] for
all i ∈ {1, . . . , d}. All simulations are performed on Arizona
State University’s Agave Cluster on a single thread of one of
the cores of Intel Xeon E5-2680 v4 CPU processor running at
2.40GHz. The script is written and run on MATLAB® version
2017a, and uses Gurobi [22] as the linear program solver. The
amount of RAM available for the simulations is also adjusted
to cater to the required environment for the sake of a fair
comparison.

a) Effects of sample size on abstraction error perfor-
mance with unlimited memory: For our first study, we emulate
a virtually unlimited resource environment by setting the maxi-
mum available system RAM to 64GB, and use the function (8)
with a 2-dimensional domain. In each dimension, we consider
51 points, resulting in a total of 512 = 2601 grid points.
The computational times are compared for different cases of
maximum number of grid points that can be considered for
each linear program. In the first case, s = 50 is chosen,
which takes 57 increments to find the over-approximation
of the 2-dimensional nonlinear system. For the second case,
s = 500 solves the problem in 6 increments. Finally, the
last case considers all the points at once, as in [5], to solve
the problem. Figure 1 depicts the resulting lower and upper
affine hyperplanes as well as the original nonlinear function
under these three cases. In all cases, the nonlinear system is
over-approximated by the affine hyperplanes obtained from the
proposed abstraction method. Table I shows the computational
times for each case and the corresponding maximum distances

3We chose p = 1 for the abstraction errors, since the results appear “tighter”
than when p =∞, while p = 2 is computationally intensive.



(a) Abstraction with s = 50 (b) Abstraction with s = 500 (c) Abstraction with all points (same as [5])

Fig. 1: Comparison of abstractions for varying maximum numbers of grid points s̄ (memory allocation) of (8) with d = 2.

(a) With R1 to the left (b) With R1 at the center (c) With grid point x = 0.5 as warm-start

Fig. 2: Comparison of affine abstractions of (8) with d = 1 for different heuristics. The hyperplanes in Fk for k = 1, 3, 5, 7
show the evolution of the abstraction after respective increments. The lengths of each Fk vary as the domain varies.

TABLE I: Effects of Sample Size on Performance
Performance Incremental 1-Step 1-Step

Parameter Abstraction Abstraction [5] Abstraction [11]
s 50 500 All Points All Points

Time Taken (sec) 15 6.21 0.334 0.348
Abstraction Error, θκ 300.4 112.4 80.23 84.19

between the hyperplanes, which demonstrates that the pro-
posed incremental abstraction is suboptimal when compared to
1-step abstraction approaches in [5], [11] and its performance
in terms of abstraction error at the final iteration, θκ, and
total time is dependent on the amount of allocated memory in
terms of s̄. Therefore, taking s as a controllable parameter, the
proposed abstraction method allows the users to determine the
trade-off between computational time and resources required
to solve higher-dimensional nonlinear function abstractions
and the tightness of the resulting abstraction.

b) Effects of sample size on abstraction error perfor-
mance with limited memory: Next, we consider the limited
memory case by setting the maximum available system RAM
to 4GB. Here, in each dimension, 5 grid points are chosen, so,
depending on the dimension d of the domain, the total number
of points will be 5d. For incremental abstraction with 4GB
RAM, the maximum number of grid points we can consider
in each increment is set to s̄ = 106 points. Under this resource
limitation, the comparison between incremental abstraction
and the 1-step abstraction in [5] is summarized in Table II.
We observed that with incremental abstraction, abstractions
of higher dimensional nonlinear systems using only limited
resources can be achieved with more time, whereas the 1-
step abstraction methods in [5], [11] return an error and
cannot compute any abstraction for d ≥ 9. Further, the
results suggest that if time is not a concern (e.g., in offline
implementations), the incremental abstraction problem can, in
principle, be solved for systems with an arbitrarily high state
dimension by computers with limited memory.

c) Effects of dynamic expansion of operating regions:
Inspired by lazy constraints in Gurobi [22] (that still need

TABLE II: Performance Under Limited Resources

Dimension
(d)

Time Taken (sec.) Abstraction Error, θκ
Incremental 1-Step Incremental 1-StepRegular Dynamic Regular Dynamic

1 2.091 2.201 2.179 55.8 55.8 55.8
5 2.26 2.229 2.189 279.2 279.2 279.2
8 14.23 14.88 9.5 446.72 446.72 446.72
9 69.96 106.3 N/A 731 731 N/A
11 2261.2 2763.4 N/A 1226.3 1103.4 N/A
13 69027.8 69326.6 N/A 1442.3 1157.3 N/A

to be formulated within a single optimization problem), a
lazy/dynamic variation of our approach can be employed
to exploit intermediate abstractions to discard samples that
already satisfy the intermediate abstraction, resulting in less
increments. However, from Table II, we observed that the
discard step also takes non-negligible time; hence, we only
expect reduced computational time (when compared to regular
expansion) if the total number of increments is high.

d) Effects of heuristics on abstraction error performance
with limited memory: Additionally, we observed that heuristics
can improve the performance of our incremental abstraction
in terms of decreased abstraction error. To better visualize the
effects of the heuristics, we consider the example in (8) with
d = 1. The example has smax = 250 grid points and the
maximum number of points s is set to 40.

From our analysis, two major reasons are associated with
increased suboptimality of the incremental procedure: (i) con-
servative approximations due to constraints in (4b) for guar-
anteeing future abstractions, and (ii) when using expanding
operating regions, we may start from a closely located cluster
of samples, whose abstraction for very small s may have
higher slope than the Lipschitz constant of the system in (1).
Thus, we conjecture that one of the ways to tackle the first
issue is by choosing the starting region R1 smartly. In Figures
2a–2b, we show the effects of selecting different starting points
on the final abstraction for (8) in 1D. By choosing the starting
region at the center of the domain X , the overall abstraction



TABLE III: Performance of Abstraction of Swarm Dynamics

N Func
-tion

Time Taken (sec.) Abstraction Error, θκ
Incremental 1-Step Incremental 1-StepRegular Dynamic Regular Dynamic

3
fxi (x) 5.05 5.23 5.5 0.1118 0.1118 0.1118
fyi (x) 4.73 4.77 4.66 0.8798 0.8798 0.8798
fθi (x) 6.81 6.25 5.24 2.9157 2.9157 2.9157

5
fxi (x) 2976.6 4100.4 N/A 0.1377 0.1388 N/A
fyi (x) 2959 4191.9 N/A 1.1575 1.1637 N/A
fθi (x) 3014.6 6315.3 N/A 28.0253 27.9949 N/A

is less conservative than the one obtained when the starting
region is on one end of the domain as in Figure 2a. Further,
we conjecture that the second issue can be resolved by picking
sample points that are more spread-out in the domain as a
warm-start for the incremental abstraction. This will prevent
the closely clustered region to be formed in R1. In Figure 2c,
providing a random grid point at x = 0.5 as a warm-start also
results in a better abstraction than the one obtained without
any warm-starts. Instead of random samples, certain properties
of the nonlinear function f(x, u) can also be used for warm-
starting, e.g., global minima or global maxima of f(x, u).

B. Rendezvous of a Robot Swarm
We consider the dynamics of a swarm of robots described

in [23], in the form of (1), with the following parameters:
n = 2N + 1, where N is the number of agents/robots, m = 0
and x is the augmented state of the whole swarm.

In this simulation, we consider swarms with N = 3 and
N = 5 robots1, which correspond to 7- and 11-dimensional
nonlinear systems, respectively. The available system RAM
is set to 500MB to emulate limited on-board resources. In
each dimension, 5 points are taken and s̄ = 105. As shown in
Table III, both the proposed incremental abstraction and the
1-step abstraction in [5] obtain comparable results in terms
of computational time and abstraction error when N = 3.
However, with N = 5, the 1-step abstraction in [5] is unable
to generate an affine abstraction due to the limited memory,
while the proposed incremental approach still can.

VI. CONCLUSIONS

We proposed an incremental affine abstraction approach to
over-approximate a class of nonlinear systems as piecewise
affine systems, by dynamically computing pairs of affine
hyperplanes to envelop the nonlinear systems with expanding
operating regions. Initially, we consider a small operating
region and solve a linear program to obtain two affine hy-
perplanes that locally over-approximate the nonlinear system.
Then, expanding the operating region with new grid points in-
crementally, we can find the corresponding affine hyperplanes
for a larger domain until the entire domain is covered. The
proposed incremental abstraction approach has the capability
of reducing computational space complexity, especially when
the nonlinear system has high dimensions.

Future work will include a comparison of the incremental
abstraction approach with symbolic approaches in the context
of reachability analysis and control synthesis. Moreover, we
will exploit system structure, e.g., incremental stability [14],

1The states are bounded as x1 ∈ [−5, 5], x2 ∈ [−5, 5], x3 ∈ [−7, 7],
x4 ∈ [−7, 7], x5 ∈ [−7, 7], y1 ∈ [0, 0.4], y2 ∈ [0.5, 0.9], y3 ∈ [1, 5],
y4 ∈ [0, 0.876], y5 ∈ [0, 1.67] and θi ∈ [−0.02, 0.02], ∀i ∈ {1, . . . , 5}.

priorities [15]–[17], decomposability [24] and submodularity
[25], to further reduce the size of the abstraction problem and
to more formally analyze the abstraction errors.
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