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Abstract— In this paper, we propose a partition-based output
feedback active model discrimination approach that generates
optimal output feedback inputs in a fixed time horizon for
separating a set of discrete-time affine models subject to
uncontrolled inputs, noises and uncertain initial conditions.
Instead of computing the optimal input by solving a parametric
mixed-integer linear program (MILP) at run time, we move
this computationally demanding optimization task offline by
partitioning the measurement domain and building a partition
tree over the fixed time horizon. Since output measurements
are available at each time instant during run time, we can
update the separating input correspondingly and improve the
model discrimination performance by reducing the input cost.
The effectiveness of the proposed approach is demonstrated
through simulations for identifying intention models of human-
driven vehicles in a lane changing scenario.

I. INTRODUCTION

The discrimination and identification of internal states
(i.e., intention, fault or mode of operation) is essential for
cyber-physical systems. For example, unknown malfunctions
or external attacks during system operation can result in
performance degradation, unsafe behaviors or even critical
situations, although they often cannot be directly measured or
observed by system outputs. Therefore, it is of great interest
to develop model discrimination approaches.

Literature Review: The objective of model discrimination
is to separate all models from each other from a set con-
taining all possible models despite the presence of external
disturbances, process and measurement noises. It has been
widely studied in various research areas such as intention
estimation, fault detection and model discernibility. The
current approaches for model discrimination can be generally
categorized into either passive or active methods. By check-
ing whether the available input-output data is compatible
with each potential model in real time, the passive approach
ensures model discrimination without designing/perturbing
the input applied to the system [1], [2], [3]. The passive ap-
proach is relatively easy to implement but is only applicable
for problems with specific system properties [4]. Moreover,
system uncertainties and the actions of the feedback con-
troller could mask the influence of model differences on the
output and reduce the capability of passive approaches. On
the other hand, the active approach seeks a common input
for all models that minimally intervenes with the system
[5], [6], [7], [8], so that behaviors of different models under
this input are guaranteed to be distinct. Primary techniques
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used for solving the active model discrimination problem
are polyhedral projection [6] and mixed-integer program
(MIP) [7], [8]. However, the above mentioned approaches
are open-loop since the active input is computed offline and
no modification is made at run time.

Closed-loop approaches for active model discrimination
have been studied to achieve less conservative separating
inputs. Instead of injecting the entire input sequence as in
open-loop approaches, the closed-loop one refines the input
at each time step by leveraging real-time measurements. In
[9], the closed-loop active model discrimination problem was
solved in a moving horizon framework by using a constrained
zonotope that represents the polytopic uncertainties and a set-
valued observer that incorporates the online measurements.
In [10], to reduce the computational complexity in resolv-
ing the optimization problem at each time step, a multi-
parametric program that expresses the obtained separating
input as a function of parameters was employed to obtain
parametrized separating input sequences. In [11], the input
design problem for the closed-loop active fault diagnosis
approach was proposed for stochastic linear systems in the
presence of multiple fault models and stochastic disturbances
and measurements, where open-loop inputs are designed us-
ing a receding horizon instead of employing output feedback.
On the other hand, a partition-based parametric active model
discrimination approach is recently presented in [12], where
the model-independent parameter space of the affine time-
invariant systems was partitioned to improve performance
and reduce cost.

Contributions: This paper considers the output feedback
input design problem for active model discrimination of
discrete-time affine systems in the presence of uncontrolled
inputs and measurement noises as well as unknown initial
conditions. By leveraging available output measurements at
each time instant, the output feedback active model discrim-
ination problem can be formulated as a parametric MILP at
each time instant. However, since solving a parametric MILP
could often be computationally expensive, if not intractable,
especially when there is a large number of binary variables,
we partition the measurement space and build a partition tree.
Then, we can compute separating inputs for each node of the
partition tree offline, and at run time, we simply select the
pre-computed input associated with the node that the current
measurements belongs to at each time instant.

In contrast to previous open-loop active model discrimi-
nation approaches in [4], [8], the proposed approach lever-
ages additional information from the output measurements,
resulting in reduced separating input cost over a fixed time
horizon. In addition, we relax a rather limiting assumption



in [4], [8], [12] that the separating input does not affect
the uncontrolled state constraints, and hence, the proposed
approach is applicable to more general systems. Finally,
we demonstrate the effectiveness of the proposed output
feedback active model discrimination approach to separate
intention models of human-driven vehicles for autonomous
vehicles in a lane changing scenario.

II. PRELIMINARIES

A. Notation and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m a matrix,
with transpose M> and M ≥ 0 denotes element-wise non-
negativity. The vector norm of x is denoted by ‖x‖i with
i ∈ {1, 2,∞}, while 0, 1 and I represent the vector of zeros,
the vector of ones and the identity matrix of appropriate
dimensions. The set of positive integers up to n is denoted
by Z+

n , and the set of non-negative integers up to n is denoted
by Z0

n. In addition, the set of non-negative integers from j1
to j2 (0 ≤ j1 ≤ j2) is denoted by Zj1j2 .

Definition 1 (Partition). A partition of a polyhedral set Z is
a collection of ` disjoint subsets Zi such that

⋃
i∈Z+

`

Zi = Z ,

where each partition Zi is also a polyhedral set.

B. Modeling Framework

Consider N discrete-time affine time-invariant models
Gi = (Ai, Bi, Bw,i, Ci, Dv,i, fi, gi), each with states ~xi ∈
Rn, outputs zi ∈ Rnz , inputs ~ui ∈ Rm, process noise
wi ∈ Rmw , measurement noise vi ∈ Rmv . The models
evolve according to the following state and output equations:

~xi(k + 1) = Ai~xi(k) +Bi~ui(k) +Bw,iwi(k) + fi, (1)
zi(k) = Ci~xi(k) +Dv,ivi(k) + gi. (2)

The initial condition for model i, denoted by ~x0
i = ~xi(0),

is constrained to a polyhedral set with c0 inequalities:
~x0
i ∈ X0 = {~x ∈ Rn : P0~x ≤ p0}, ∀i ∈ Z+

N . (3)
The first mu components of ~ui are controlled inputs (i.e.,

to be designed as separating inputs), denoted as u ∈ Rmu ,
which are the same for all ~ui, while the other md = m−mu

components of ~ui, denoted as di ∈ Rmd , are uncontrolled
inputs that are model-dependent. The controlled and uncon-
trolled inputs are constrained to the following polyhedral
domains (for k ∈ Z0

T−1) with cu and cd inequalities:
u(k) ∈ U = {u ∈ Rmu : Quu ≤ qu}, (4)

di(k) ∈ Di = {d ∈ Rmdi : Qd,id ≤ qd,i}. (5)
Correspondingly, the states ~xi are also divided into con-

trolled state xi ∈ Rnx and uncontrolled state yi ∈ Rny ,
constrained to the following polyhedral domains (for k ∈
Z0
T−1) with cx and cy inequalities, respectively:

xi(k) ∈ Xx,i = {x ∈ Rnx : Px,ix ≤ px,i}, (6)
yi(k) ∈ Xy,i = {y ∈ Rny : Py,iy ≤ py,i}. (7)

On the other hand, the process noise wi and measurement
noise vi are also polyhedrally constrained with cw and cv
inequalities, respectively:

wi(k) ∈ Wi = {w ∈ Rmw : Qw,iw ≤ qw,i}, (8)
vi(k) ∈ Vi = {v ∈ Rmv : Qv,iv ≤ qv,i}. (9)

Moreover, for the output measurement zm(k) in real time,
we assume that it satisfies cz polyhedral constraint:

zm(k) ∈ Z = {z ∈ Rnz : Pzz ≤ pz}. (10)
Since zm(k) is revealed in real time, only output measure-
ments obtained so far at the current time t, i.e., zm(k),
∀k ∈ Z0

t , are available for the active input design.

III. PROBLEM FORMULATION

In this paper, we aim to design a sequence of causal active
separating input vector utT (zm,t) as a function of the past and
current output measurements zm,t = vecti=0{zm(i)} for all
t ∈ Z0

T−2, where utT (·) = [ut(0), . . . , ut(t), . . . , ut(T−1)]>

denotes the concatenated separating input (i.e., the controlled
input) over a fixed horizon T at the current time step t and
u−1
T (·) = ∅. By leveraging the newly available output mea-

surements, we can update the separating input at each time
step, and hence obtain better model discrimination results
(e.g., a smaller objective function value) when compared
with open-loop methods [4], [8]. In addition, due to causality,
we enforce that the input variable of the optimization prob-
lem at current time instant t must inherit the first t−1 values
of optimal input sequence u∗,t−1

T , i.e., utT (k) = u∗,t−1
T (k) for

all k ∈ Z0
t−1 and t ∈ Z0

T−2.
Formally, the problem of active model discrimination

leveraging the output measurement is defined as follows:

Problem 1 (Output Feedback Active Model Discrimination).
Consider N affine models Gi, and state, input and noise
constraints defined in (3) and (4)-(9). For each time instant
t ∈ Z0

T−1 (sequentially, starting from t = 0), with all past
and current available measurement zm(k) ∈ Z , ∀k ∈ Z0

t

for output feedback, and given the optimal input sequence
u∗,t−1
T from the previous time instant t− 1, find an optimal

input sequence u∗,tT with fixed horizon T to minimize a given
cost function J(utT ) = ‖utT ‖1 subject to utT (k) = u∗,t−1

T (k)
for all k ∈ Z0

t−1 such that for all possible initial states
x0, uncontrolled inputs dT , unrevealed output measurement
zt+1:T−1, process noise wT and measurement noise vT , only
one model is valid, i.e., the output trajectories of any pair of
models have to differ by a threshold ε in at least one time
instant of the horizon T .

Formally, for each time instant t with all available mea-
surement zm(k) for all k ∈ Z0

t and all previously chosen
inputs, u∗,t−1

T , the optimization problem can be formulated
as a sequence of optimization problems as follows (for
t = 0, . . . , T − 2):

u∗,tT = arg min
ut
T

J(utT )

s.t. ∀k ∈ Z0
T−1 : (4) holds, (11a)

∀i ∈ Z+
N, ∀k ∈ Z0

T−1,
∀~x0

i , yi(k), di(k), wi(k), vi(k) :
(1)-(3), (5), (7)-(9) hold;
∀k ∈ Zt+1

T−1 : (10) holds;
∀i ∈ Z+

N , ∀k ∈ Z0
t : zi(k) = zm(k);

∀k ∈ Z0
t−1 : utT (k) = u∗,t−1

T (k)


:

{∀k ∈ Z+
T :

(6) holds}∧
{∀i, j ∈ Z+

N , i 6= j,
∃k ∈ Z0

T−1 :
|zi(k)− zj(k)| ≥ ε}.

(11b)

Note that the constraint (11b) not only enforces that con-
straint of the controlled state is satisfied but also guarantees
that all models are separated using the input u∗,tT . Moreover,
we only compute the sequence of utT up until t = T − 2



because we consider the output separation constraint (11b)
up to time T − 1 and hence, it is not meaningful to further
improve u(T − 1) that can only affect the output at time T .

IV. MAIN APPROACH

In this section, we propose a partition-based approach
to solve the output feedback active model discrimination
defined in Problem 1. To solve Problem 1 offline, the
optimization formulated in (11) would need to be solved
with zm(k) for all k ∈ Z0

t as yet unknown outputs. How-
ever, solving (11) could be computationally expensive using
current multi-parametric optimization toolboxes, especially
when there exists a large number of binary variables. To
tackle this issue, we propose a more tractable approach by
partitioning the measurement space and solving the active
model discrimination problem for each partition. Although
partitioning the measurement space leads to a slightly con-
servative solution and marginally reduces the benefit of using
output measurement, we can move the computation offline
without the need for multi-parametric optimization and make
the process more practical and tractable.

A. Partition Tree

Recall the measurement domain Z (cf. (10) for its def-
inition) of the measurement zm(k). At each time instant
t ∈ Z0

T−1, let {Zs(t)}s(t)∈N+
`t

be a partition of Z (cf.
Definition 1) with `t subregions. Each subregion Zs(t) is
a polyhedral set:

Zs(t) = {z ∈ Rnz : Pz,s(t)z ≤ pz,s(t)}. (12)
As a result, any newly revealed measurement zm(t) ∈ Zs(t)
at time instant t ∈ Z0

T−2 can be over-approximated by
zm(t) = z(t) with z(t) ∈ Zs(t). Then, we use a partition
tree to capture all possible combinations of partitions of the
measurement space over the time interval of interest.

Definition 2 (Partition Tree). A partition tree T is a collec-
tion of nodes connected by directed edges, where each node
contains a partition of the whole domain. The node at the
top of the tree is called the root node. Every node (excluding
the root node) is connected by a directed edge from exactly
one other node with the direction “parent → children”. The
node which does not have any child node is called the leaf
node. The depth γ of a node is the number of edges from
the root to the node. The depth γ is associated with the time
instant t, satisfying the relation γ = t+ 1. A trajectory/path
P refers to the sequence of nodes (excluding the root node)
along the edges of a tree from the root node to a leaf node.

Example 1. Fig. 1 shows the partition tree over time instant
t ∈ Z0

T−2 with T = 3, where the measurement space is
partitioned into 2 subregions at each time step, i.e., `t = 2,
s(t) ∈ {1, 2} for all t ∈ Z0

2 and Zs(t) ∈{Z1,Z2}. Since
no output measurement is available before the initial time
instant (t = −1), the root is the entire domain and the
corresponding separating input u−1

T (·) = ∅. At time instant
t = 0, the measurement domain Z is partitioned into two
subregions Z1 and Z2. As a result, the root has two children,
i.e., two nodes with depth γ = 1, each of which represents
a subregion. Moving to the next time instant t = 1 of
interest, we partition the measurement domain again into two

Fig. 1: Partition tree for the output measurement zm over time
instants t = 0 and t = 1.

subregions, which means that each node with depth γ = 1
has two children, resulting in 4 nodes with depth γ = 2 in
total, which are leaf nodes as they do not have any child.
Moreover, it is clear from Fig. 1 that there are 4 different
trajectories/paths in this partition tree with P1 = {Z1,Z1},
P2 = {Z1,Z2}, P3 = {Z2,Z1} and P4 = {Z2,Z2}.

Problem 2 (Partition-Based Output Feedback Model Dis-
crimination). For each trajectory of the partition tree given
by {Zs(k)}T−1

k=0 , the output feedback active model discrimina-
tion problem in Problem 1 can be reformulated as a sequence
of optimization problems as follows (for t = 0, . . . , T − 2):

u∗,tT = arg min
ut
T

J(utT )

s.t. ∀k ∈ Z0
T−1 : (4) holds, (13a)

∀i ∈ Z+
N, ∀k ∈ Z0

T−1,
∀~x0

i , yi,T , di,T , wi,T , vi,T :
(1)-(3), (5), (7)-(9) hold;
∀k ∈ Zt+1

T−1 : (10) holds;
∀i ∈ Z+

N , ∀k ∈ Z0
t : zi(k) ∈ Zs(k);

∀k ∈ Z0
t−1 : utT (k) = u∗,t−1

T (k)


:

{∀k ∈ Z+
T :

(6) holds}∧
{∀i, j ∈ Z+

N , i 6= j,
∃k ∈ Z0

T−1 :
|zi(k)− zj(k)| ≥ ε},

(13b)

where u∗,t−1
T is the optimal input sequence from the previous

time instant t−1. Note that any pair of trajectories that share
the same node at time instant t on the partition tree, their
optimal input subsequences up to t must be the same. The
total number of optimization problems (corresponding to the
nodes excluding the root node) is

∑T−2
i=0

∏i
t=0 `t.

Comparing with Problem 1, the equality constraints with
measurement zm(k) for all k ∈ Z0

t are replaced by its
over-approximation in Problem 2, which corresponds to the
subregion that the revealed measurement zm(k) lies in.
Moreover, since this enlarges the uncertainty set of Problem
1 and thus, shrinks its feasibility set, it is straightforward to
see that the solution of Problem 2 also solves Problem 1,
albeit with a slight loss of optimality.

B. Time-Concatenated Model

Before proceeding with the main approach, we introduce
some time-concatenated notations and write the consid-
ered N models in a time-concatenated form. The time-
concatenated states and outputs are defined as

~xi,T = vecTk=0{~xi(k)}, xi,T = vecTk=0{xi(k)},
yi,T = vecTk=0{yi(k)}, zi,T = vecT−1

k=0 {zi(k)},
while the time-concatenated inputs and noises are defined as

~ui,T = vecT−1
k=0 {~ui(k)}, utT = vecT−1

k=0{ut(k)},
di,T = vecT−1

k=0 {di(k)}, wi,T = vecT−1
k=0 {wi(k)},

vi,T = vecTk=0{vi(k)}.



In addition, for 0 ≤ j1 ≤ j2 ≤ T − 1, we
also define the measurement sequence as zm,j1:j2 =
[zm(j1)>, . . . , zm(j2)>]> ∈ R(j2−j1+1)nz . Therefore, at
each time instant t ∈ Z0

T−1 with the past and current
revealed output measurements {zm(k)}tk=0 lying in subre-
gions {Zs(k)}tk=0, we have revealed output measurements
zm,0:t = vectk=0{zm(k)}, where zm(k) ∈ Zs(k),∀k ∈
Z0
t , and unrevealed output measurements zm,t+1:T−1 =

vecT−1
k=t+1{zm(k)}, where zm(k) ∈ Z,∀k ∈ Zt+1

T−1. The time-
concatenated measurement vector over the entire horizon is
further defined as zm,T =

[
z>m,0:t z>m,t+1:T−1

]>
.

Given N discrete-time affine models, there are I =
(
N
2

)
model pairs and let the mode ι ∈ {1, · · · , I} denote the pair
of models (i, j). Then, concatenating each model pair yields
~xι0 = veci,j{~x0

i }, ~xιT = veci,j{~xi,T }, ~uιT = [u>T , d
ι>
T ]>,

xιT = veci,j{xi,T }, yιT = veci,j{yi,T }, zιT = veci,j{zi,T },
dιT = veci,j{di,T }, wιT = veci,j{wi,T }, vιT = veci,j{vi,T }.

The states and outputs over the entire time horizon for
each mode ι can be written as simple functions of the initial
state ~xι0, inputs utT , dιT , parameter pT and noises wιT , vιT :

xιT =M ι
x~x

ι
0+Γιxuu

t
T +Γιxdd

ι
T +Γιxww

ι
T +f̃ ιx, (14)

yιT =M ι
y~x
ι
0+Γιyuu

t
T +Γιydd

ι
T +Γιyww

ι
T +f̃ ιy, (15)

~xιT =Āι~xι0+Γιuu
t
T +Γιdd

ι
T +Γιww

ι
T + f̃ ι, (16)

zιT =C̄ι~xι0+D̄ι
uu

t
T +D̄ι

dd
ι
T +D̄ι

vv
ι
T +g̃ι. (17)

The matrices and vectors M ι
?, Γι?u, Γι?d, Γι?w and f̃ ι? for

? ∈ {x, y}, and Āι, Γιu, Γιd, Γιω , C̄ι, D̄ι
u, D̄ι

d, D̄ι
v , f̃ ι, g̃ι can

be found in the Appendix of [8].
Moreover, the uncertainties for each mode ι are concate-

nated as x̄ι =
[
~xι>0 dι>T wι>T vι>T

]>
. We then concatenate

state constraints in (6) and (7) and eliminate xT and yT in
them and expressing them in terms of x̄ι and uT . First, let
P̄ ιx = diagi,j diagT {Px,i}, P̄ ιy = diagi,j diagT {Py,i},
p̄ιx = veci,j vecT {px,i}, p̄ιy = veci,j vecT {py,i}.

Then, we can rewrite the polyhedral constraints as:
P̄ ι?x

ι
T ≤ p̄ι? ⇔ Hι

?x̄
ι ≤ hι?,t(utT ), ? ∈ {x, y}

where Hι
? = P̄ ι?

[
M ι
? Γι?d Γι?w 0

]
and hι?(u

t
T ) = p̄ι? −

P̄ ι?Γι?uu
t
T − P̄ ι? f̃ ι?. Similarly, let

Q̄u = diagT {Qu}, Q̄ι† = diagi,j diagT {Q†,i},
q̄u = vecT {qu}, q̄ι† = veci,j vecT {q†,i}, † ∈ {d,w, v}.

Then, the uncertainties and input constraints in (4)-(5) and
(8)-(9) over the entire horizon are written as Q̄uutT ≤ q̄u and
Q̄ι††

ι
T ≤ q̄ι†. As the available measurements {zm(k)}tk=0 are

located in subregions {Zs(k)}tk=0, zi,0:t satisfies
P̄z,s(0:t)zi,0:t ≤ p̄z,s(0:t),

where P̄z,s(0:t) = diagtk=0{Pz,s(k)} and p̄z,s(0:t) =
vectk=0{pz,s(k)}. Due to the fact that outputs zi,t+1:T−1 are
unrevealed/unmeasured at the time instant t, we also have

P̄z,t+1:T−1zi,t+1:T−1 ≤ p̄z,t+1:T−1, (18)
where P̄z,t+1:T−1 = diagT−t−1{Pz} and p̄z,t+1:T−1 =
vecT−t−1{pz}. Then, the constraint on zi,T is obtained as

P̄ tzzi,T ≤ p̄tz,

with P̄ tz =

[
P̄z,s(0:t) 0

0 P̄z,t+1:T−1

]
and p̄tz =

[
p̄z,s(0:t)

p̄z,t+1:T−1

]
. Then,

with P̄ t,ιz = diag2{P̄ tz}, p̄t,ιz = vec2{p̄tz} and zιi,T =
veci,j{zi,T }, we concatenate the above constraint on the
output measurement and express it in terms of x̄ι, leading to

P̄ t,ιz zιT ≤ p̄t,ιz ⇔ Ht,ι
z x̄ι ≤ ht,ιz (utT ), (19)

where Ht,ι
z = P̄ t,ιz

[
C̄ι> D̄ι>

d 0 D̄ι>
v

]>
and ht,ιz (utT ) =

p̄t,ιz − P̄ t,ιz D̄ι
uu

t
T − P̄ t,ιz g̃ι.

Moreover, we concatenate the initial state constraint in (3):
P̄ ι0 = diag2{P0}, p̄ι0 = vec2{p0}.

Hence, in terms of x̄ι, we have a polyhedral constraint of
the form Hι

x̄x̄
ι ≤ hιx̄ for each time t ∈ Z0

T−1, with Hι
x̄ =

diag{P̄0, Q̄
ι
d, Q̄

ι
w, Q̄

ι
v} and hιx̄ =

[
p̄ι>0 q̄ι>d q̄ι>w q̄ι>v

]>
.

C. Active Model Discrimination Approach

Next, having introdcued the partition tree and some useful
matrix definitions, we are ready to solve Problem 2 (and
hence, Problem 1). We begin by deriving the following
lemma that enables us to relax a rather limiting assumption
in [4], [8], [12] that the uncontrolled state constraints are not
affected by the separating input.

Lemma 1 (Semi-Infinite Constraint Reformulation). The
following semi-infinite constraint

Ax ≤ b + Cy ,∀x ∈ X , {x : Dx ≤ e + Fy ,Gx ≤ h}
with variables x and y is equivalent to

pa ≤ 0, ν1,a ≥ 0, ν2,a ≥ 0, (20a)
∀b : 0=

∑
i(ν1,a)(i)D(i, b)+

∑
j(ν2,a)(j)G(j, b)−A(a, b), (20b)

pa = A(a)xa − b(a) − C(a)y ,
Dxa ≤ e + Fy , Gxa ≤ h ,

(20c)

∀i : SOS-1 : {(ν1,a)(i),D(i)xa − e(i) − F(i)y},
∀j : SOS-1 : {(ν2,a)(j),G(j)xa − h(j)},

(20d)

for all a ∈ Z+
na , where na is the number of rows of A . We

denote as A(a), b(a) and C(a) the a-th rows of A , b and
C , respectively, while xa, ν1,a and ν2,a are additional slack
variables for each a.

Proof. To obtain the result in Lemma 1, we introduce a slack
variable pa for each row of A(a)x ≤ b(a) +C(a)y and convert
the semi-infinite constraint into p∗a ≤ 0, where p∗a is the
maximum pa satisfying the constraints in X , i.e.,

p∗a = arg min
pa,xa
−pa

s.t. Dxa ≤ e + Fy ,Gxa ≤ h ,
pa = A(a)xa − b(a) − C(a)y .

Then, applying KKT conditions and rewriting the com-
plementary slackness constraints as SOS-1 constraints, we
obtain (20a)-(20d).

By leveraging Lemma 1, we recast the optimization in
Problem 2 to an MILP with SOS-1 constraints, which can
readily be solved using off-the-shelf optimization software
tools, e.g., Gurobi and CPLEX [13], [14].
Theorem 1 (Partition-Based Output Feedback Discrimi-
nating Input Design as a Sequence of MILP). For each
time instant t ∈ Z0

T−1, given a separability index ε and
a trajectory on the partition tree corresponding to subre-
gions {Zs(k)}T−1

k=0 , the partition-based output feedback active



model discrimination problem (Problem 2) is equivalent to
a sequence of MILP problems (for t = 0, . . . , T − 2):

u∗,tT = arg min
utT ,δ

ι,x̄ι,µι1,µ
ι
2,ν

ι
1,a,ν

ι
2,a

J(utT ) (PPOFDID)

s.t. Q̄uu
t
T ≤ q̄u, (21a)

∀k ∈ Z0
t−1 : utT (k) = u∗,t−1

T (k), (21b)

∀ι ∈ Z+
I , ∀a ∈ Z+

nA :

pιa ≤ 0, νι1,a ≥ 0, νι2,a ≥ 0,

∀b ∈ Z+
mA : 0 =

∑nD
i=1(νι1,a)(i)Ψ

ι
t(i, b)

+
∑nG
j=1(νι2,a)(j)Ψ

ι
t(j + nD , b)− (Hι

x)(a, b),

pιa = (Hι
x)(a)x̄

ι
a − (hιx(utT ))(a),

Ψι
tx̄
ι ≤ ψιt(utT ),

∀i ∈ Z+
nD : SOS-1 : {(νι1,a)(i), (Ψ

ι
t)(i) x̄

ι
a − (ψιt)(i)},

∀j ∈ Z+
nG : SOS-1 : {(νι2,a)(j), (Ψ

ι
t)(j+nD ) x̄

ι
a − (ψιt)(j+nD )},

(21c)

∀ι ∈ Z+
I :

δι ≥ ε, µι1 ≥ 0, µι2 ≥ 0, 0 = 1− µι1>1,
∀κ ∈ Z+

η : 0 =
∑ξ
i=1(µι1)(i)Φ

ι
t(i, κ)

+
∑ρ
j=1(µι2)(j)Φ

ι
t(j + ξ, κ),

∀i ∈ Z+
ξ : (Φιt)(i)x̄

ι − δι − (φιt(u
t
T ))(i) ≤ 0,

∀j ∈ Z+
ρ : (Φιt)(ξ+j)x̄

ι − (φιt(u
t
T ))(ξ+j) ≤ 0,

∀i ∈ Z+
ξ : SOS-1 : {µι1,i, (Φιt)(i)x̄

ι − δι − (φιt(u
t
T ))(i)},

∀j ∈ Z+
ρ : SOS-1 : {µι2,j , (Φιt)(ξ+j)x̄

ι − (φιt(u
t
T ))(ξ+j)},

(21d)

where νι1,a, νι2,a, µι1, µι2 are slack variables, (•)(i) denotes
the i-th row of a matrix/vector, (•)(i, j) denotes (i, j)-th
entry of a matrix, u∗,t−1

T is the optimal input that has been
determined/computed from time t− 1, and all the remaining
matrices and constants will be defined in the proof below.

Proof. Since the universal quantifier distributes over con-
junction [15, pp. 45–46], we can separate the constraint (13b)
of Problem 2 into two independent constraints for all possible
values of uncertain variables at time instant t ∈ Z0

T−1, i.e.,
the controlled state constraint and the separability condition,
respectively. For the controlled state constraint (6) for each
time t ∈ Z0

T−1 can be equivalently written as:

∀k ∈ Z0
t−1 : utT (k) = u∗,t−1

T (k), (22)
∀x̄ι ∈

{
x̄ι
∣∣Ψι

tx̄
ι ≤ ψιt(utT )

}
: Hι

xx̄
ι ≤ hιx,t(utT ), (23)

where

Ψι
t=

Hι
x̄

Hι
y

Hι
z,t

 , ψιt(utT )=

 hιx̄
p̄ιy − P̄ ιy f̃ ι − P̄ ιyΓιyuu

t
T

p̄t,ιz − P̄ t,ιz g̃ι − P̄ t,ιz D̄ι
uu

t
T

 .
Thus, by leveraging Lemma 1, (23) can be converted to (21b)
and (21c) with the following corresponding matrices: A ,
Hι
x, x , x̄ι, y , utT , b = p̄ιx − P̄ ιxf̃ ι, C = −P̄ ιxΓιxu, D =[
Hι>
y Hι>

z,t

]>
, e ,

[
(p̄ιy − P̄ ιy f̃ ι)> (p̄t,ιz − P̄ t,ιz g̃ι)>

]>
,

F ,
[
−(P̄ ιyΓιyu)> −(P̄ t,ιz D̄ι

u)>
]>

, G = Hι
x̄ and h = hιx̄.

In addition, in (21c), nA , nD and nG are the number of rows
of A , D and G , mA is the number of columns of A .

Moreover, concatenating the separation condition with
time for each model pair ι ∈ Z+

I at time instant t ∈ Z0
T−1

and considering its double negation equivalence [8, Lemma

1], the separation condition in Problem 2 is recast as
δι∗(utT ) ≥ε, (24a)
δι∗(utT ) = min

δι,x̄ι
δι

s.t. Φιtx̄
ι −
[
1
0

]
δι ≤ φιt(utT ), (24b)

∀k ∈ Z0
t−1 : utT (k) = u∗,t−1

T (k), (24c)
where

Φιt=

 Λι

Hι
x̄

Hι
y

Hι
z,t

 , φιt(utT )=


−Ēιf̃ ι − (ĒιΓιu + F

ι
u)utT

hιx̄
p̄ιy − P̄ ιy f̃ ι − P̄ ιyΓιyuu

t
T

p̄t,ιz − P̄ t,ιz g̃ι − P̄ t,ιz D̄ι
uu

t
T

 ,
and matrices Λι, Ēι, f̃ ι, Γιu and F

ι

u can be found in the
Appendix of [8]. We also denote η as the number of columns
of Φιt, ξ as the number of rows of 1 (i.e., constraints that
depend on δι) in (24b) and ρ as the number of rows of 0
(i.e., constraints that are independent of δι) in (24b).

Then, applying KKT conditions to the above minimiza-
tion and rewriting the complementary slackness constraints
using SOS-1, we obtain the constraints (21d) in Problem
(PPOFDID). This completes the proof.

Remark 1. To identify the true model from a set of potential
models actively, two components, i.e., active model discrimi-
nation and model invalidation, are required (e.g., [8], [16]),
which are implemented offline and online, respectively. Since
the proposed active model discrimination approach can also
take output measurements into account when selecting the
optimal separating output feedback inputs at run time, we
can concurrently implement the output feedback active model
discrimination and model invalidation algorithms at run time
for enhancing model discrimination. Specifically, we can
precompute the output feedback active model discrimination
offline where the partition tree is augmented to include
branches that corresponding to both the power set of yet
invalidated models and the partitions of the output space.
Then, at each time instant t, we can first implement model
invalidation using all available measurements to narrow
down the model set, before selecting the optimal separating
input utT from the augmented partition tree based on the
reduced model set and the partition corresponding to the
current output measurement.

V. SIMULATION EXAMPLE

The proposed active model discrimination approach is
applied to the highway lane-changing scenario to identify
the intention of other road participants. As in [8], a two-car
system consisting of an ego car and an human-driven car is
considered, whose discrete-time equations of motion are:

xe(k + 1) = xe(k) + vx,e(k)δt,
vx,e(k + 1) = vx,e(k) + ux,e(k)δt+ wx,e(k)δt,
ye(k + 1) = ye(k) + vy,e(k)δt+ wy,e(k)δt,
xo(k + 1) = xo(k) + vx,o(k)δt,
vx,o(k + 1) = vx,o(k) + di(k)δt+ wx,o(k)δt,

where, respectively, xe and ye, and vx,e and vy,e are the
ego car’s longitudinal and lateral positions, and the ego
car’s longitudinal and lateral velocities, xo and vx,o are the
human-driven car’s longitudinal position and longitudinal
velocity, while ux,e and di are ego car and human-driven



car’s acceleration inputs, wx,e, wx,e and wx,e are process
noise signals and δt is the sampling time. In addition, the
system’s output is the longitudinal velocity of the human-
driven car in the form of z(k) = vx,o(k) + v(k), where v(k)
is the output noise. In addition, we assume that the initial
position of the ego car is 0, and the initial position of the
other car is constrained by their initial relative distance. The
initial velocities of the cars are also constrained to match
typical speed limits of the highway, and at the beginning,
both cars are close to the center of the lanes. In this case,
the initial conditions are:

vx,e(0) ∈ [28, 30] (ms ), ye(0) ∈ [1.1, 1.8] (m),
vx,o(0) ∈ [28, 32] (ms ), xo(0) ∈ [7, 12] (m).

In the simulation, we consider three driver intentions [8]:
Inattentive Driver (i = I), who fails to notice the ego car
and maintains his driving speed, thus proceeding with an
acceleration input in a small range dI(k) ∈ DI ≡ 10% · U .
Cautious Driver (i = C), who tends to yield the lane to the
ego car with the input equal to Kd,C(vx,e(k) − vx,o(k)) −
Lp,C(ȳ−ye(k))+Ld,Cvy,e(k)+dC(k), where Kd,C = −0.9,
Lp,C = 2.5 and Ld,C = 8.9 are PD controller parameters,
ȳ = 2 and the input uncertainty is dC(k) ∈ DC ≡ 5% · U .
Malicious Driver (i = M), who does not want to yield the
lane and attempts to cause a collision with input equal to
Kd,M (vx,e(k)−vx,o(k))−Lp,M (ȳ−ye(k))+Ld,Mvy,e(k)+
dM (k), if provoked, where Kd,M = 1.1, Lp,M = −2.3 and
−Ld,M = 8.7 are PD controller parameters, ȳ = 2 and the
input uncertainty satisfies dM (k) ∈ DM ≡ 5% · U .

In this example, the time horizon is T = 3 with the
sampling time δt = 0.3 (s). The controlled inputs are
ux,e(k) ∈ Ux ≡ [−7.85, 3.97] (ms2 ) and vy,e(k) ∈ Uy ≡
[−0.35, 0] (ms ) (where y is in the direction away from the
other lane), and process and output noises are bounded within
[−0.01, 0.01]. We also constrain the ego car’s longitudinal
velocity as xe(k) ∈ [27, 35] (ms ), while its lateral position
is constrained as ye(k) ∈ [0.5, 2] (m). The threshold in
the separability condition is chosen to ε = 0.3 (ms ). Note
that there is a trade-off between the separation threshold
and the magnitude of the computed separating input for
a prescribed time. A larger threshold in the separability
condition results in better discrimination capability (i.e.,
more obvious model separation) but a larger separating input
(i.e., more perturbations to the original system behavior).

Moreover, we assume that the measurement domain over
the entire time horizon is Z = [28, 32] (ms ). At each time
instant, we partition this domain into two subregions, i.e.,
Z1 = [28, 30] and Z2 = [30, 32]. As a result, the partition
tree for this example is the same as that shown in Fig. 1, con-
taining 4 different trajectories. It is observed from Fig. 1 that
the associated cost at each node (excluding the root node)
decreases monotonically along any particular trajectory. This
shows that incorporating output measurements into active
model discrimination can improve its performance. Finally,
the separating input sequences under the proposed approach
for all 4 trajectories in the partition tree are shown in Fig. 2.

VI. CONCLUSION

In this paper, we considered the output feedback input
design problem for discriminating among a finite set of
discrete-time affine models subject to uncontrolled inputs,

(a) Input ux,e (b) Input vy,e

Fig. 2: utT at the leaf node of different trajectories P1-P4.

noises and uncertain initial conditions over a fixed time hori-
zon. We take advantage of output measurements at run time
to refine the computed separating input with a monotonically
reduced cost as time goes on. Since obtaining the separating
input at each time instant as a function of yet unknown
outputs can be computationally expensive, we partitioned the
measurement domain and constructed a partition tree. Then,
for each node (excluding the root) in the partition tree, we
computed an input that is guaranteed to separate all models
from each other within the fixed time horizon. As a result,
we can move the optimization computation offline and only
determine which node the measurement belongs to at each
time instant. Finally, we applied the proposed approach to
infer intentions of vehicles in a lane changing scenario.
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