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Abstract— Momentum exchange devices like reaction wheel
(RW) and control moment gyro (CMG) are always used as
actuators in spacecraft attitude control systems. However, the
unexpected faults in these momentum exchange devices may
result in mission failures or even the spacecraft breakup. To
enhance the reliability and safety of the attitude control systems,
this paper addressed the CMG fault modeling and estimation
problems in attitude control systems. We model the CMG as
a combination of two EM-VSD (electrical motor (EM) and
variable speed drive (VSD)) systems. All potential faults in an
EM and a VSD are analyzed and mathematically modeled.
Based on the fault model of a EM-VSD system, the CMG
fault model consisting of faults in two EM-VSD systems are
developed. An observer based fault estimation method is then
proposed, in which the past gimbal angle and commanded
gimbal rate are utilized to estimate the total CMG fault effects.
It is proved that the gimbal and fault estimation errors converge
to small compact sets containing origin. To verify the proposed
fault estimation method, numerical simulations are carried out
based on a model of a rigid spacecraft.

I. INTRODUCTION

In practical space missions, redundant momentum ex-
change devices are equipped in spacecraft to enhance the
reliability, maneuverability and survivability [1], [2], [3].
For spacecraft attitude control systems, this redundancy
makes the spacecraft an over-actuated system and provides
a larger momentum envelope than three conventional control
effectors in attitude maneuver. However, if a fault occurs in
the momentum exchange devices, the output torques acting
on the spacecraft may be different from the commands from
the attitude controller. For instance, the TOPEX satellite
cannot perform attitude maneuvers due to the failure of pitch
reaction wheel, which leads to the mission failure in October
2005 [4]. Recently, the Mars Odyssey (launched in 2001)
came into the protective standby mode in 2014 due to the
failure of a reaction wheel. How to avoid the failure of
the space mission and the economic losses caused by the
actuator faults has become an important matter in the field
of spacecraft control.

Due to the advantages of simple structure and high torque
amplification capability, single gimbal control moment gyro
(SGCMG) is frequently used as actuators in agile spacecraft,
which requires fast attitude maneuver and high pointing
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precision. It is noted from the mechanical structure that the
SGCMG can be considered as an integration of a gimbal
control system and a wheel speed control system. Comparing
to RW that changes the magnitude of angular momentum
while its direction is fixed, SGCMG is a constant-speed
rotor mounted on a gimbal frame such that the direction
of angular momentum keeps changing but its magnitude is
a constant. Since either gimbal control loop or the wheel
speed control loop can be modeled as an electrical motor
(EM) with its variable speed drive (VSD) system, SGCMG
is regarded as a combination of two EM-VSD systems. All
potential faults can occur in the mechanical part of the EM,
sensors and actuators of VSD, and the electrical part of these
components.

To enhance the system reliability and prevent the control
performance deterioration after the occurrence of actuator
fault or failure in spacecraft missions, various fault tolerant
control strategies have been developed [5], [6], [7], [8],
[9], [10], [11], [12]. In [5], the mechanism of RW faults
is analyzed but the mathematical fault model is not given
explicitly. In [9], a mathematical model accounting for four
different kinds of RW faults is developed. Based on this
fault model, a finite-time fault-tolerant controller is designed
to compensate the RW fault effects for a rigid spacecraft
subject to saturation constraints. In [7], the skew angle of
a pyramid CMG configuration is tuned through a genetic
algorithm to handle CMG failures. In [11], the sliding mode
control approach is adapted to change the CMG gimbal rate
directly to void the singularity and deal with CMG faults.
However, the mechanism of CMG is not clearly addressed
and the general CMG fault model is not established in [11].

In this paper, the SGCMG is considered as a combination
of two EM-VSD systems, which can govern the gimbal angle
control loop and wheel speed control loop. Each EM-VSD
system governs one degree of control freedom and works
independently. Based on this structure and considering the
potential faults in EM-VSD system, a general fault model
for SGCMG is established with a clear understanding of
mechanical mechanism. Specifically, a fault occurring in an
EM-VSD system is modeled as a multiplicative fault or
an additive fault according to how it affects the SGCMG
output, and the resulting SGCMG fault model is in a
generally applicable form of cascade multiplication of two
EM-VSD systems. Then, we develop an adaptive observer
to estimate the total fault effects in gimbal control loop.
The total impact of SGCMG faults is estimated instead of
each fault itself, which reduces the complexity and time
in fault estimation, especially when several kinds of fault
occur concurrently. In addition, it is also convenient for



designing the reconfigurable controller via the estimated total
fault effects as they can be compensated in a similar way
to external disturbances. Finally, the effectiveness of the
proposed SGCMG fault estimation method is demonstrated
through numerical simulation.

The remaining parts of this paper are organized as follows.
Section II presents the mathematical model of an EM-VSD
system and a SGCMG. Section III presents the proposed fault
estimation approach. In Section IV, numerical simulation in
a rigid spacecraft using four SGCMGs as actuators is carried
to verify the proposed fault estimation method. Finally, this
paper ends with the conclusion in Section V.

II. SGCMG FAULT MODEL

A SGCMG consists of a constant-speed rotor mounted
on a gimbal frame, and this mechanical structure can be
essentially modeled as a cascade combination of two EM-
VSD systems, which describe the dynamics of the rotor
control loop and gimbal frame control loop, respectively. It
is obvious that each EM-VSD system controls one degree of
freedom and works independently. In this section, we first
establish the fault model for the EM-VSD system and then
apply it to the SGCMG to achieve the SGCMG fault model.

A. Fault Model of a EM-VSD System

The details about potential faults in an EM-VSD system
are analyzed in [13], [14], [15], [16]. For the EM, potential
faults are categorized into [15]:
• bearing faults;
• the stator or mature faults;
• the broken rotor bar and end ring faults of induction

machines and
• the eccentricity-related faults.

With regard to the VSD, the faults are classified into:
• mechanical and electrical faults;
• actuator faults (actuator in the VSD) and
• sensors faults.

Generally speaking, it is noted that mechanical faults (faulty
bearings, brush wear, shaft misalignment, eccentric rotor,
etc.) and electrical faults (broken rotor bars, windings short-
circuit, etc.) are due to mechanical wearing, harsh working
environment, aging and severe voltage stresses. These faults
belong to the multiplicative faults, which can be represented
by the control gain change. In addition, the motor fault in
VSD would cause the situation that the power device is
not able to provide sufficient voltages or currents to drive
the EM. As a result, the related sensor cannot characterize
the physical phenomenon properly in the event of faults.
These faults are considered as the additive faults [16], [17],
which have effects similar to measurement bias or external
disturbances.

The schematic diagram of the EM-VSD system consider-
ing potential faults is shown in Fig. 1, where the red lines
represent the essential physical connection of the system,
the black line represents the potential measurement of the
input or output of actuators, u(t) is the commanded control
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Fig. 1. Fault model of EM-VSD system

input from controller, uR(t) denotes the actual or real output
control action, yR(t) denotes the actual or real states, y(t)
denotes the state measurements, and fa(t), fc(t), fs(t), and
ai j(t) are EM-VSD actuator faults, component faults, sensor
faults, and parameter faults, respectively.

Based on our previous work in [18], the general fault frame
of an EM-VSD system is given by{

ω = ηω ωc +ωa,

δ̇ = ηδ δ̇c + δ̇a,
Speed control loop
Gimbal rate control loop (1)

where ω and ωc are rotating speed of the flywheel and its
command input, δ̇ and δ̇c are gimbal rate and its command
from CMG steering law, ηω and ηδ are effectiveness gains
of speed and control torque, ωa and δ̇a are offsets of angular
velocity and control torque.

B. SGCMG Fault Model

As shown in Fig. 2, a SGCMG contains a spinning rotor
mounted on a gimbal. In the nominal condition, the rotor is
required to hold a constant speed and the gimbal is manip-
ulated to change the direction of angular momentum. As a
result, a gyroscopic reaction torque that is orthogonal to both
the rotor spin direction and gimbal axis is generated. With
a small input torque to the gimbal, a larger control torque
is produced to act on the spacecraft. This is the so-called
torque amplification characteristic. Specifically, the torque
generated by a CMG is proportional to the plane spanned
by the angular momentum vector and gimbal angular rate
vector, which can be thereby computed as:

τ =−h0δ̇ct̂, (2)

where h0 denotes the constant angular momentum of the
spinning rotor since the rotor has a constant speed, and t̂
denotes a unit vector in the direction of output torque. The
negative sign “ - ” in (2) implies the output torque lies in
the opposite direction of t̂.

The potential faults in a SGCMG may be from rotor
speed control loop and/or the gimbal angle control loop.
For a SGCMG, we consider the rotor loop as the first
degree of freedom and the control loop of gimbal frame as
the second degree of freedom. Here, we assume that the
rotor control system and the gimbal control system work
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Fig. 2. Schematic of a SGCMG

independently. That is to say, the dynamics of rotor and
gimbal will not influence each other in its own dynamics.
For the rotor control system, which can be modeled as an
EM-VSD system, the angular momentum is the product of
its inertia and the rotor angular velocity, i.e. h0 = Jω . With
consideration of the possible fault in EM-VSD, the rotor
momentum is described as:

h f 0 = J (ηω ωc)+ha, (3)

where ha = Jωa is the momentum offset.
In light of (1), the fault model of gimbal loop can be

expressed as:
δ̇ f = ηδ δ̇c + δ̇a. (4)

Replacing h0 and δ̇c by h f 0 and δ̇ f in (2), the output torque
generated by SGCMG subject to faults is given by

τ f =−(Jηω ωc +ha)
(

ηδ δ̇c + δ̇a

)
t̂. (5)

To this end, we build the SGCMG fault model considering
potential faults in both rotor control loop and gimbal control
loop. Noting that the SGCMG saturation is not considered as
a fault since it’s a kind of constraint. It is clear that different
combination of coefficients ηω , ha, ηδ , and δ̇a may represent
different fault situation and SGCMG working conditions. In
the following, the nominal work condition is denoted as N,
which is regarded as a benchmark output. Then in each single
loop (either gimbal control loop or rotor control loop), its
working condition is defined as:

N : Nominal working condition;
Fa : Partially lose effect, without offset;
Fb : Completely fail, without offset;
Fc : Partially lose effect and have offset and
Fd : Totally fail and have offset.

In summary, the fault modes of SGCMG under different
situations are shown in Table I.

III. FAULT ESTIMATION FOR SGCMG

In the previous Section, we consider SGCMG as a cascade
combination of two EM-VSD systems and develop fault
models for gimbal control loop and rotor control loop,
respectively. In this Section, we propose a fault estimation

TABLE I
WORKING CONDITIONS AND FAULT MODELS OF SGCMG

Rotor Gimbal Model

N

N −h0δ̇ct̂
Fa −h0ηδ δ̇ct̂
Fb 0
Fc −h0

(
ηδ δ̇c + δ̇a

)
t̂

Fd −h0δ̇at̂

Fa

N −Jηω ωcδ̇ct̂
Fa −Jηω ωcηδ δ̇ct̂
Fb 0
Fc −Jηω ωc

(
ηδ δ̇c + δ̇a

)
t̂

Fd −Jηω ωcδ̇at̂

Fb
N,Fa,Fb 0Fc,Fd

Fc

N −(Jηω ωc +ha) δ̇ct̂
Fa −(Jηω ωc +ha)ηδ̇ct̂
Fb 0
Fc −(Jηω ωc +ha)

(
ηδ δ̇c + δ̇a

)
t̂

Fd −(Jηω ωc +ha) δ̇at̂

Fd

N −haδ̇ct̂
Fa −haηδ δ̇ct̂
Fb 0
Fc −ha

(
ηδ δ̇c + δ̇a

)
t̂

Fd −haδ̇at̂

scheme for SGCMG gimbal control loop to estimate potential
gimbal fault. In practical mission, multiple SGCMGs are
employed to generate the commanded torques from con-
troller. Here, we assume that N SGCMGs are equipped in
the spacecraft, and each of N SGCMGs may occur faults.
To obtain the fault information in each SGCMG, we develop
local fault estimator for each SGCMG. The overall attitude
control system with local fault estimate is demonstrated in
Fig. 3.

As for each SGCMG, the rotor rotates at a constant speed.
If a fault occurs in the rotor, the undesired rotor speed
can be recognized easily by rotational speed measurement.
Therefore, the rotor fault is not considered in this Section
and we only design estimator to gimbal fault. Recalling (4),
the gimbal fault in SGCMG is modeled as

δ̇ (t) = ηδ δ̇c(t)+ δ̇a, (6)

where ηδ is a constant denoting the control effectiveness
gain, δ̇a denotes the additive bias fault or offset which is
also a constant, δ̇c is the commanded gimbal rate from CMG
steering law, and δ̇ is the actual output rate.

To reduce the notation burden in the following fault
estimate design, let rc(t) = δ̇c(t), e = ηδ , and ra = δ̇a. As
a consequence, the gimbal fault model in (6) is rewritten as

δ̇ (t) = erc(t)+ ra. (7)

In practice, it is easy to measure the gimbal angle that will
be used as a measurement for gimbal fault estimation.
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A. Fault Estimation

For each SGCMG, the gimbal fault model in (7) is further
written as

δ̇ (t) = rc(t)+ f (t). (8)

where f (t) = (e−1)rc(t)+ra represents the total fault effect
lumping the loss of effectiveness fault and additive bias. Due
to the physical limitation of the SGCMG, the commanded
gimbal rate rc(t) and the additive bias fault ra are bounded.
In addition, since e is the actuator effectiveness which varies
between 0 and 1 in practice, it is obtained that the magnitude
of the total fault effects f (t) is bounded as | f (t)| ≤ fa, where
fa is a positive constant.

In the proposed fault estimation approach, we will estimate
this total fault effects f (t) in each SGCMG rather than each
individual fault itself. That is, we do not estimate e and ra
separately, and only estimate the total fault effect represented
by f (t). If we proceed to estimate individual actuator fault,
the fault estimation approach may be complicated and time-
consuming, especially when several kinds of fault occur
concurrently in the system. Besides a simple design structure
in fault estimation scheme, it is also convenient for designing
the reconfigurable controller via the estimated total fault
effects as they can be compensated in a similar way to
external disturbances.

Next, an adaptive observer for the fault estimation is
proposed as follows:

˙̂
δ (t) = rc(t)+ l1[δ (t)− δ̂ (t)]+ f̂ (t) (9)

f̂ (t) = k f̂ (t−T )+ l2[δ (t)− δ̂ (t)] (10)

where T is the updating interval, l1, l2, and k are positive
design parameters chosen by the designer. Define estimation
errors δ̃ (t) = δ (t)− δ̂ (t) and f̃ (t) = f (t)− f̂ (t). Then the

estimation error dynamics is given by
˙̃
δ (t) =−l1δ̃ (t)+ f̃ (t) (11)

f̃ (t) =−l2δ̃ (t)+ k f̃ (t−T )+g(t) (12)

where g(t) = f (t)− k f (t−T ). Since | f (t)| ≤ fa, it is clear
that |g(t)| ≤ (1+ k) fa. The above error dynamics yields

δ̃ (t) ˙̃
δ (t) =− l1δ̃

2(t)+ δ̃ (t) f̃ (t) (13)

k2 f̃ 2(t−T ) = f̃ 2(t)+ l2
2 δ̃

2(t)+g2(t)+2l2 f̃ (t)δ̃ (t)

−2g(t) f̃ (t)−2l2g(t)δ̃ (t). (14)

Theorem 1: Considering the gimbal fault model in (8) with
loss of effectiveness fault and additive bias fault. Applying
the state observer which is designed as Eq. (9) with iterative
fault estimation law in Eq. (10), the gimbal angle estimate
error and fault estimate error will ultimately converge to
small compact sets containing zero.

Proof : Consider the following Lyapunov function candi-
date:

V =
1
2

δ̃
2(t)+ k2

∫ t

t−T
f̃ 2(ν)dν (15)

Taking time derivative of V and considering Eqs. (13) and
(14), we have

V̇ =δ̃ (t) ˙̃
δ (t)+ k2 f̃ 2(t)− k2 f̃ 2(t−T ) (16)

=δ̃ (t)
(
−l1δ̃ (t)+ f̃ (t)

)
+ k2 f̃ 2(t)− f̃ 2(t)− l2

2 δ̃
2(t)

−g2(t)−2l2 f̃ (t)δ̃ (t)+2g(t) f̃ (t)+2l2g(t)δ̃ (t)

=− (l1 + l2
2)δ̃

2(t)− (2l2−1)δ̃ (t) f̃ (t)− (1− k2) f̃ 2(t)

−2l2 f̃ (t)δ̃ (t)+2g(t) f̃ (t)+2l2g(t)δ̃ (t)−g2(t) (17)

Considering the following facts by completion of squares:

−(2l2−1)δ̃ (t) f̃ (t)≤ 2l2−1
2

δ̃
2(t)+

2l2−1
2

f̃ 2(t) (18)

2g(t) f̃ (t)≤ (1+ k) fa +(1+ k) fa f̃ 2(t) (19)

2l2g(t)δ̃ (t)≤ (1+ k) fal2 +(1+ k)l2 faδ̃
2(t), (20)



we have

V̇ ≤−ρ1δ̃
2(t)−ρ2 f̃ 2(t)+(1+ k)(1+ l2) fa, (21)

where ρ1 = l1 + l2
2 +

1
2 − l2− (1+ k)l2 fa and ρ2 =

3
2 − k2−

l2− (1+ k) fa.
If l1, l2, and k are selected to satisfy ρ1 > 0 and ρ2 > 0,

it is obtained that V̇ < 0 when

|δ̃ (t)|>

√
(1+ k)(1+ l2) fa

ρ1
, (22)

or | f̃ (t)|>

√
(1+ k)(1+ l2) fa

ρ2
. (23)

This implies that δ̃ (t) and f̃ (t) are ultimately bounded and
converge to compact sets S

δ̃
and S f̃ , which are respectively

defined as

S
δ̃
=

{
δ̃ (t)

∣∣∣∣∣ |δ̃ (t)| ≤
√

(1+ k)(1+ l2) fa

ρ1

}
, (24)

S f̃ =

{
f̃ (t)

∣∣∣∣∣ | f̃ (t)| ≤
√

(1+ k)(1+ l2) fa

ρ2

}
. (25)

According to Theorem 1, we can use the developed fault
estimation approach to detect and estimate SGCMG gimbal
faults in attitude control.

IV. NUMERICAL SIMULATION

To verify the effectiveness of the proposed fault identifi-
cation method, numerical simulations under different types
of gimbal faults are given.

TABLE II
SIMULATION PARAMETERS

Parameter value
Mass (kg) 79
Size (mm) 575×572×384
Moment of inertia (kg·m2) JJJ1 = 3.34, JJJ2 = 5.29, JJJ3 = 3.21
Slew capacity (deg/s) |ω1|max = 8.8, |ω2|max = 5.5,

|ω3|max = 9.1
Initial attitude QQQ(0) = [0 0 0 1]T

Initial rate (deg/s) ωωω(0) = [0 0 0]T

TABLE III
SGCMG PARAMETERS

Parameter value
Skew angle (deg) 54.74
Maximum momentum (Nms) hmax = 1
Maximum output torque (Nm) τmax = 1
Maximum gimbal rate (deg/s) δ̇max = 20

A. Simulation Specifications

Table II contains the satellite parameters used for the simu-
lations. Four SGCMGs in a regular pyramid configuration are
used in simulation. The specification of SGCMG is shown
in Table III.
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The initial condition for satellite is chosen to be QQQ(0) =
[0,0,0,1]T and ωωω(0) = [0,0,0]T rad/s. The spacecraft is
required to perform a single-axis attitude maneuver with 120
deg rotation in roll axis. For the attitude control, the cascade-
proportional derivative (PD) attitude controller [19] is em-
ployed to accomplish three-axis attitude maneuvers. The
parameters in the cascade-PD attitude controller are selected
as k = 17.22 and c= 7.55. Focusing on four SGCMGs, initial
gimbal angles are set to δδδ (0) = [0 0 0 0]T deg, which
are far away from singular states. We use the singularity
escape/avoidance steering law [20] to change the gimbal rate,
so that the commanded gimbal rate can be achieved. The
parameters in singularity escape/avoidance steering law are
selected as:

λ0 = 0.01, µ = 10, φ1 = 0, φ2 =
π

2
, φ3 = π,

εi = 0.01sin(0.5πt +φi), i = 1,2,3.

In the simulation, we assume that the SGCMG 1 experi-
ences 80% loss of its gimbal rate command in 15 seconds
and SGCMG 3 encounters 0.1 deg/s bias gimbal rate in 25
seconds. The reason for choosing the two time instances is
that the satellite is reorienting and it is easier for us to obverse
the fault influences to the attitude maneuver. As for the fault



magnitude, the effectiveness gain under the SGCMG fault
is e1 = 0.2, which means that the CMG can only supply 20
percents of its normal output. In this case, a severe loss of
effectiveness fault occurs in the SGCMG. If the proposed
fault-tolerant attitude control system can handle these severe
situations, it of course can deal with the less-severe or minor
SGCMG faults.
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B. Simulation Results

The simulation results under actuator faults are shown in
Figs. 4-7. The responses of CMG gimbal angle and gimbal
rate under SGCMG fault are illustrated in Figs. 4-5, from
which it is clear that the fault affects the responses of gimbal
angle and rate. Moreover, it is observed from Figs. 6-7
that the total fault effect of each SGCMG can be estimated
accurately using the propose fault estimation method. The
estimate process takes around 5 seconds to converge to the
estimate errors.

V. CONCLUSIONS

In this paper, we develop the mathematical model for
SGCMG fault and propose a fault estimation approach to
estimate the total fault effects in each SGCMG. Firstly, we
consider the SGCMG as a combination of two independent
EM-VSD systems, which describe the rotor control loop

and gimbal control loop, respectively. For the EM-VSD
system, we analyze the potential faults and model them as
multiplicative fault and additive fault. Then, we consider
two EM-VSD systems together and obtain the SGCMG
fault model. To have a simple fault estimation for each
SGCMG, the total fault effects are estimated in place of
each individual fault. The proposed fault estimation approach
is able to exponentially converge the fault estimation error
with satisfactory accuracy. Finally, the effectiveness of the
proposed SGCMG fault estimation approach is demonstrated
by numerical simulations.
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