Angular Rate Constrained Attitude Reorientation of Rigid body
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Abstract— This paper presents a solution for rest-to-rest control torque constraints are taken into account. Althoug
attitude reorientation for a rigid body under angular velocity  this approach has been widely adopted in practical attitude
constraints and external disturbances. Assuming that extaal control systems, a rigorous stability proof of the closed-

disturbances are unknown but bounded, the sliding mode | ¢ t g In 116 fi fficient |
technique is used in attitude controller to reject disturbances. 0OP Systém was not given. In [16], a time-efficient angular

Then, a potential function in terms of sliding vector is proposed ~ Steering law was presented to accommodate a variety of
with a largest potential placing at the maximal angular rate  system limitations including angular rate constraintsereh

Based on the potential function, an adaptive sliding mode a braking curve is designed to determine the angular rate
controller is developed to stabilize the closed-loop attitde and acceleration limits. In [17], a robust nonlinear feedkba
control system. Finally, the efficiency of the proposed attude | . . ' h | all tioth
control scheme is demonstrated by numerical simulations. control strategy Incor_poratln_g wit con.t_ro "?‘ ocatio eme_
was proposed to achieve attitude stabilization under desig
. INTRODUCTION angular velocity constraints and actuator saturation,revhe

Rigid-body attitude control is one of the most Wide|ylogarithmic barrier potential function in terms of angular
studied research field in control literature with rich teiehn Velocity is used in Lyapunov function to analyze system
cally results dealing with multiple application-specifisre ~ Stability despite the angular velocity constraints. In][lh
straints. For rigid spacecraft implementations, due to th@ititude stabilization algorithm accounting for angulatoc-
saturation limitation of low-rate gyro or mission specifioa ity constraints and unwinding phenomenon was designed to
requirement, angular velocity constraint needs to be tak&fisure a fast and accurate response for a rigid spacecraft.
into account for attitude control. An practical example is In this paper, based on potential function defined in
X-Ray Timing Explorer (XTE) spacecraft that is required togd@ngular velocity domain, an adaptive attitude controlker i
maneuver within the saturation limit of rate gyros [1]. lewi Presented for solving rigid-body reorientation problenthwi
of these practical considerations, this paper investigtite consideration of angular rate limits and external distur-
reorientation problem for a rigid body subjecting to angulaPances. The attitude of a rigid body is parameterized by
velocity constraints. unit quaternion, which can represent attitude globally. A

A satellite’s motion is governed by kinematic and dynami@otential function in terms of sliding vector is proposed so
equations, and the mathematical models are highly nonline®at angular velocity constraint is ensured by limiting the
and coupled. Extensive nonlinear control algorithms hav@agnitude of the sliding vector. Consequently, assumiag th
been proposed for solving the spacecraft reorientatiob—prothe external disturbances are bounded, an adaptive sliding
lem, such as proportional-derivative feedback contral[[Z]} mode controller based on the proposed potential functions
sliding mode control [4], [5], [6], backstepping control][7 is proposed to achieve uniform ultimate boundedness of the
[8], adaptive control [9], [10], and inverse optimal contro closed-loop system.

[11], [12]. However, it should be noted that angular velpcit The remainder of this paper is organized as follows. In
constraint is not taken into account in above mentionegection Il, unit-quaternion is introduced for attitude nep
literatures. To ensure that angular velocity is always iwith ~ Sentation, and rigid-body dynamics and modelling of angula
predefined bound determined by saturation limit of rate gyrdate limits are described. In Section I, a logarithmical
or performance requirements, several methods has been ppgtential function, are designed to describe angular Vgloc
posed. In [1], a cascade-saturation attitude control lagis limits. Then, an adaptive attitude control law using slglin
developed for the near-minimum-time eigenaxis reoriémat Mode control technique is developed to guarantee that the

problem of the XTE spacecraft when angular velocity anglosed-loop system is uniformly ultimately bounded stable
The simulation results are given in Section IV, followed by
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follows: angle velocity iswy; = 0, which yieldsw, = w. There-
fore, the attitude error kinematics for a rest-to-resttiade

i0q; + gjoq: + S(q:)q; . . . .
QiwQq,;= |19 q70(1_ T (,q )a; , (1) reorientation maneuver in (9) can be rewritten as
40950 — 4; 4;
.1 1 f
and has the quaternia@; = [0 00 1]7 as identity element. Q= 5Q@v(w) =3 [S(qe)_;rquoIs] w.  (10)

The matrix S(xz) € R3>*3 is a skew-symmetric matrix

satisfying S(x)y = x x y for any vectorse,y € R®, and B. Spacecraft Dynamics
X d_enotes vector cross product. The set of unit quaternion 1,4 dynamics for the attitude motion of a rigid body can
Q. is a subset of quaternio@ such that be expressed by the following equation [9]:

Q.={Q=[q¢" 9" eR* xR |q'q+¢; =1}, (2) Ji=—-Sw)Jw+T+d (11)

— Aain(®
where thg \{ef:tor pary = nsin(3), and. the scalar pa}rt where J = diag{J,, Jz, J;} € R**® denotes the positive
go = cos(3) ; n andg refer to the Euler axis and the rotation yefinite inertia matrix of a rigid bodyr € R* denotes the

angle about the Euler axis. The unit-quaternion conjugatg,ntrol torque about the body axe#,e R* denotes the
or inverse is defined a@* = [—q” qo]”. The quaternion oyternal disturbances.

satisfies the following important properties [13]: To design the attitude controller, a sliding vector=

a®(,6':|:’y):a®ﬁ:|:a®7 () [81782,83]T6R3 isgiven by
(a@b)"=F"Ra" (4) s=w+kq., (12)
(o) b= a® (0B) = o(a @ B) (5)

where k is a positive constant. Consequently, the attitude
(a@p)ey=ax(B®7Y) (6)  dynamics in terms of the sliding vector can be written as

a’(Bey)=7"(F"2a)=8"(ary"), (@)

Js=f(w,Qc) +7+d, (13)
whereg is a constantg, 3, and~ are quaternions belonging .
to the setQ. \;there the nonlinear termf(w,Q.) = —S(w)Jw +
b) (S(qe) + QeOIS) w.
A. Kinematics equation Assumption 1: The external disturbanegis bounded such

The spacecraft kinematics in terms of unit-quaternion catrrllat ]| < drmax, v_vheredmax 's a positive constant ant |
be given by denotes the Euclidean norm.

1 [S(q) +qu 13] " C. Angular Velocity Constraints

Q=3Qevw) =3 (X! ®

Due to the limited measurement range of the rate gyros
or specific mission requirements, the constraints on angula
velocity might be required. Suppose that the angular viloci
information is available, the set of angular velocity coaistt

is represented as

whereQ = [¢1 2 g3 q0]* = [¢T @] € Q. denotes the
unit-quaternion describing the attitude orientation &f biody
frame B with respect to inertial fram& and satisfies the
constraintg’q + ¢2 = 1, w € R3 is the inertial angular
velocity vector of the spacecraft with respect to an inértia W={we R3 | |wi| < Wi, max (14)
frameZ and expressed in the body fra8e and the function _ . o

v R3 —s R4 is defined as the mapping(w) = [wT 0]7. where%max (1 = 1,2,3)_ is the I|m|tat|0_n of allowable

Let Q, € Q, denote the desired attitude. In this paper(,)peratlonal angular velocities for each axis.

the rest-to-rest attitude reorientation problem of ro@ta ;| - \pAPT|VE ATTITUDE REORIENTATION
rigid body from its current attitude® to a desired atti- CONTROLLER DESIGN

tude Qg is considered. The unit-quaternion errqg. =
[Ge1 Ge2 3 qeo]T = [qF qo]t € Q. is defined as A. Potential Function for Angular Velocity Constraints

Q. = Q;®Q = [gq! qe0]”, which describes the discrep- |n addition, to satisfy the angular velocity constraints, a

ancy between the actual unit-quaterni@hand the desired |ogarithmic potential functiorV;(s): S, — R, is proposed
unit-quaternion@Q . The kinematics represented by unit-gs

quaternion error is described as [14] ) )
1 V. ( ) 1 1 Sl,max + 1 82,max
. r(8)=z|log| ———= ogl| ———=
Qe = §Qe b2 V(we)7 (9) 2 . S%,max - S% . Sg,max - Sg
2

wherew, = w — R(Q.) w4, R(Q.) is the unit-quaternion +log %
error Q. related rotation matrix [14] defined aB(Q.) = 3,max — 53
(a3 — q7qc)I5 + 2q.q” — 2¢.0S(q.), andw, denotes the 138 2
desired angular velocity. In this paper, since only rest-to =5210g % , (15)
rest attitude reorientation problem is considered, thérelgs i=1 imax i



where the sliding vector permissible zo8eg is specified as

Sr = {S S R3 | |S7,| < Si,max} (16)

B. ADAPTIVE CONTROLLER DESIGN

The adaptive attitude reorientation controller is designe

: , . ... as
ands; max is a pre-defined maximal constant value satisfying

Simax = Wi,max — k > 0 for s; (i =1,2,3) . Meanwhile, it
is assumed thag(0) € S,.

j Y ls
e=s]

T=—f(w,Qc) —k1Ys - (22)

The above logarithmic potential function guarantees that
the angular velocity always stays in constrained zone debfin&vith

in (14).

Lemma 1. The potential function in (15) has the following
properties:

1) Vx(0)=0

2) V.(s) >0, for all s € §,\{0}

3) If Simax = Wimax — k > 0 for all s € S,, then
|Wi| < Wi max

4) V2V,.(s) > 0 is positive definite for alls € S,..

Proof: From the definition of the logarithmic potential

function V,.(s), it is clear thatV;.(0) = 0. Moreover, for all
s € §;\{0}, the inequalities
2

7,max

S

3 — > 1 a7
hold, which subsequently leads to
52
1 - | > 0. 18
o8 Slz,max - S? ( )

Hence,V,.(s) > 0, for all s € S,\{0}.

The third part ofLemma 1 guarantees that the angular
velocity always stays in constrained zone defined in (141
when the maximal value for sliding vector is chosen as

Simax = Wimax — k > 0. On the one hand, since € S,
ensures|s;| < $;max, it is found thatw; max — k > |si].

d=p(I7"s]) — pd). (23)

where the operator Ved[denotes the vector part of][ T =

diag{Jl (8%,max - 8%)7 JQ(S%,max - S%)’ J3(S§,max - S%)}’

the variables:, p, andu are positive constants.
Consider the following Lyapunov candidate:

Ve =2kki[ql g + (1 — q0)%] + Vi (s)

1 =
—(d — dax)*. 24
+ 5, (= donx) (24)
The time derivative ofV; is
. 1 = B
Ve =2kk1qw + sTY 1 T5 + —(d — dumax)d
P
ZQkkleqe + STTil [f(w, Qe) + 7+ d]
1 = A

Then, substituting the controller (22) and adaptive lawg) (2
51 above equation, it yields

Vi =2kk1wTqe — kysTs — jHT*lsH +sTr—1d
+(d = dmax) (I s]| = pud)

On the other hand, in view of sliding vector in (12) and N

the unit-quaternion property thdi.;| < 1, it is clear that

|si| > |w;| — k. Therefore, in view of these two aspects, > dax
it can be obtained from the potential function (15) that )

|Wi| S Wi max-

The last part ofLemma 1 can be shown by taking the

second order partial derivative df.(s) with respect tos.
Since the potential functiolr,.(s) is a linear combination of
three logarithmic functions, it is sufficient to analyze amfe
the terms in more details, for example,

Vii(s;) = l1og (%) . (19)
2 57 max — Si
The gradient ofi/,;(s;) is calculated as
VVii(si) = Slgmaiil_slg (20)
Consequently, the Hessiah?V;.;(s;) is given as
2 2
VVi(s) = (21)

which implies thatV2V,.(s;) > 0. Therefore, it is clear that
V2V, (s;) >0if s€S,. [ ]

< - k1k2qu(Ie - klew - /de(j_ dmaw)

7
< — k2l g2 = ki wll? —p(d = 22+ B,
< = kik? gl — k] + £ (26)

From inequality (26), it can be shown that the closed-loop
systems is uniformly ultimately bounded stable [15], aral th
signalsqg. andw are all bounded for alt > 0. Furthermore,
according to (26), it is clear that; < 0 if

dm ax H

2 k1

dm(mﬁ 12
e Jas or >

llgell > (27)

mazx

As a result, the decrease bf drives ||q.|| and ||w,|| into
Ige|l < ge=, /£ and|wl| < “’"TT\/% respectively.

In summary, we have the following theorem.

Theorem 1: The attitude controller (22) with adaptive laws
(23), applied to rigid-body attitude kinematics and dynesni
expressed by (8) and (11), guarantees that all closed-loop
signals are bounded and attitude error and angular velocity
converge to a compact set containing zero despite the angula
rate limits and external disturbances.
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Fig. 1. Time history of attitude.
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Fig. 2. Time history of angular velocity.

IV. SIMULATION RESULTS

To demonstrate the effectiveness and performance of tRE
proposed controller, numerical simulation is carried o
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Fig. 4. Sliding vector

V. CONCLUSIONS

This paper addresses the problem of constrained atti-
tude controller design for a rigid body in the presence
angular rate limits and external disturbances. To ensure

Jhat the specified maximum angular rate is not exceeded,

to a rigid spacecraft in this section. The inertia matrix@ logarithmic potential function is developed in terms of

of spacecraft isJ = diag([350,180,290]) kg - m?. The
spacecraft is assumed to have the initial attitu@ed) =
[0.33 0.66 — 0.62 — 0.2726]T and initial angular velocity
w(0) = [0 0 0]T deg/s. The desired attitude Q; =
[0.2 —0.55 —0.42 — 0.5027]7. The angular rate limit

sliding vector. Consequently, an adaptive attitude cdexo

is synthesized to achieve uniformly ultimately stabilitf o
the overall closed-loop attitude control system. Numérica
simulation examples are provided to show the efficiency of
the proposed method.
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