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Abstract— This paper presents a solution for rest-to-rest
attitude reorientation for a rigid body under angular velocity
constraints and external disturbances. Assuming that external
disturbances are unknown but bounded, the sliding mode
technique is used in attitude controller to reject disturbances.
Then, a potential function in terms of sliding vector is proposed
with a largest potential placing at the maximal angular rate.
Based on the potential function, an adaptive sliding mode
controller is developed to stabilize the closed-loop attitude
control system. Finally, the efficiency of the proposed attitude
control scheme is demonstrated by numerical simulations.

I. INTRODUCTION

Rigid-body attitude control is one of the most widely
studied research field in control literature with rich techni-
cally results dealing with multiple application-specific con-
straints. For rigid spacecraft implementations, due to the
saturation limitation of low-rate gyro or mission specification
requirement, angular velocity constraint needs to be taken
into account for attitude control. An practical example is
X-Ray Timing Explorer (XTE) spacecraft that is required to
maneuver within the saturation limit of rate gyros [1]. In view
of these practical considerations, this paper investigates the
reorientation problem for a rigid body subjecting to angular
velocity constraints.

A satellite’s motion is governed by kinematic and dynamic
equations, and the mathematical models are highly nonlinear
and coupled. Extensive nonlinear control algorithms have
been proposed for solving the spacecraft reorientation prob-
lem, such as proportional-derivative feedback control [2], [3],
sliding mode control [4], [5], [6], backstepping control [7],
[8], adaptive control [9], [10], and inverse optimal control
[11], [12]. However, it should be noted that angular velocity
constraint is not taken into account in above mentioned
literatures. To ensure that angular velocity is always within a
predefined bound determined by saturation limit of rate gyros
or performance requirements, several methods has been pro-
posed. In [1], a cascade-saturation attitude control logicwas
developed for the near-minimum-time eigenaxis reorientation
problem of the XTE spacecraft when angular velocity and
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control torque constraints are taken into account. Although
this approach has been widely adopted in practical attitude
control systems, a rigorous stability proof of the closed-
loop system was not given. In [16], a time-efficient angular
steering law was presented to accommodate a variety of
system limitations including angular rate constraints, where
a braking curve is designed to determine the angular rate
and acceleration limits. In [17], a robust nonlinear feedback
control strategy incorporating with control allocation scheme
was proposed to achieve attitude stabilization under designed
angular velocity constraints and actuator saturation, where
logarithmic barrier potential function in terms of angular
velocity is used in Lyapunov function to analyze system
stability despite the angular velocity constraints. In [18], an
attitude stabilization algorithm accounting for angular veloc-
ity constraints and unwinding phenomenon was designed to
ensure a fast and accurate response for a rigid spacecraft.

In this paper, based on potential function defined in
angular velocity domain, an adaptive attitude controller is
presented for solving rigid-body reorientation problem with
consideration of angular rate limits and external distur-
bances. The attitude of a rigid body is parameterized by
unit quaternion, which can represent attitude globally. A
potential function in terms of sliding vector is proposed so
that angular velocity constraint is ensured by limiting the
magnitude of the sliding vector. Consequently, assuming that
the external disturbances are bounded, an adaptive sliding
mode controller based on the proposed potential functions
is proposed to achieve uniform ultimate boundedness of the
closed-loop system.

The remainder of this paper is organized as follows. In
Section II, unit-quaternion is introduced for attitude repre-
sentation, and rigid-body dynamics and modelling of angular
rate limits are described. In Section III, a logarithmical
potential function, are designed to describe angular velocity
limits. Then, an adaptive attitude control law using sliding
mode control technique is developed to guarantee that the
closed-loop system is uniformly ultimately bounded stable.
The simulation results are given in Section IV, followed by
conclusions in Section V.

II. MATHEMATICAL MODELS

In this paper, the unit-quaternion representation is used
to describe the orientation of a rigid body. A quaternion is
defined asQ = [q1 q2 q3 q0]

T = [qT q0]
T ∈ Q, where

the vector partq ∈ R3, the scalar partq0 ∈ R, and Q
denotes the set of quaternion. The notation “⊗” denotes the
quaternion multiplication operator of two quaternionQi =
[qT

i qi0]
T ∈ Q andQj = [qT

j qj0]
T ∈ Q, and is defined as



follows:

Qi ⊗Qj =

[

qi0qj + qj0qi + S(qi)qj
qi0qj0 − qT

i qj

]

, (1)

and has the quaternionQI = [0 0 0 1]T as identity element.
The matrix S(x) ∈ R3×3 is a skew-symmetric matrix
satisfyingS(x)y = x × y for any vectorsx,y ∈ R3, and
× denotes vector cross product. The set of unit quaternion
Qu is a subset of quaternionQ such that

Qu = {Q = [qT q0]
T ∈ R3 ×R | qT q + q20 = 1}, (2)

where the vector partq = n̂ sin(φ
2
), and the scalar part

q0 = cos(φ
2
) ; n̂ andφ refer to the Euler axis and the rotation

angle about the Euler axis. The unit-quaternion conjugate
or inverse is defined asQ∗ = [−qT q0]

T . The quaternion
satisfies the following important properties [13]:

α⊗ (β ± γ) = α⊗ β ±α⊗ γ (3)

(α⊗ b)∗ = β∗ ⊗α∗ (4)

(%α)⊗ b = α⊗ (%β) = %(α⊗ β) (5)

(α⊗ β)⊗ γ = α⊗ (β ⊗ γ) (6)

αT (β ⊗ γ) = γT (β∗ ⊗α) = βT (α⊗ γ∗), (7)

where% is a constant,α, β, andγ are quaternions belonging
to the setQ.

A. Kinematics equation

The spacecraft kinematics in terms of unit-quaternion can
be given by

Q̇ =
1

2
Q⊗ ν(ω) =

1

2

[

S(q) + q0I3
−qT

]

ω, (8)

whereQ = [q1 q2 q3 q0]
T = [qT q0]

T ∈ Qu denotes the
unit-quaternion describing the attitude orientation of the body
frame B with respect to inertial frameI and satisfies the
constraintqTq + q20 = 1, ω ∈ R3 is the inertial angular
velocity vector of the spacecraft with respect to an inertial
frameI and expressed in the body frameB, and the function
ν: R3 → R4 is defined as the mappingν(ω) = [ωT 0]T .

Let Qd ∈ Qu denote the desired attitude. In this paper,
the rest-to-rest attitude reorientation problem of rotating a
rigid body from its current attitudeQ to a desired atti-
tude Qd is considered. The unit-quaternion errorQe =
[qe1 qe2 qe3 qe0]

T = [qT
e qe0]

T ∈ Qu is defined as
Qe = Q∗

d ⊗ Q = [qT
e qe0]

T , which describes the discrep-
ancy between the actual unit-quaternionQ and the desired
unit-quaternionQd. The kinematics represented by unit-
quaternion error is described as [14]

Q̇e =
1

2
Qe ⊗ ν(ωe), (9)

whereωe = ω −R(Qe)
Tωd, R(Qe) is the unit-quaternion

error Qe related rotation matrix [14] defined asR(Qe) =
(q2e0 − qT

e qe)I3 + 2qeq
T
e − 2qe0S(qe), andωd denotes the

desired angular velocity. In this paper, since only rest-to-
rest attitude reorientation problem is considered, the desired

angle velocity isωd = 0, which yieldsωe = ω. There-
fore, the attitude error kinematics for a rest-to-rest attitude
reorientation maneuver in (9) can be rewritten as

Q̇e =
1

2
Qe ⊗ ν(ω) =

1

2

[

S(qe) + qe0I3
−qT

e

]

ω. (10)

B. Spacecraft Dynamics

The dynamics for the attitude motion of a rigid body can
be expressed by the following equation [9]:

Jω̇ = −S(ω)Jω + τ + d (11)

whereJ = diag{J1, J2, J3} ∈ R3×3 denotes the positive
definite inertia matrix of a rigid body,τ ∈ R3 denotes the
control torque about the body axes,d ∈ R3 denotes the
external disturbances.

To design the attitude controller, a sliding vectors =
[s1, s2, s3]

T ∈ R3 is given by

s = ω + kqe, (12)

where k is a positive constant. Consequently, the attitude
dynamics in terms of the sliding vector can be written as

Jṡ = f(ω,Qe) + τ + d, (13)

where the nonlinear termf(ω,Qe) = −S(ω)Jω +
k
2
(S(qe) + qe0I3)ω.
Assumption 1: The external disturbanced is bounded such

that‖d‖ ≤ dmax, wheredmax is a positive constant and‖ · ‖
denotes the Euclidean norm.

C. Angular Velocity Constraints

Due to the limited measurement range of the rate gyros
or specific mission requirements, the constraints on angular
velocity might be required. Suppose that the angular velocity
information is available, the set of angular velocity constraint
is represented as

W =
{

ω ∈ R3 | |ωi| ≤ ωi,max

}

(14)

where ωi,max (i = 1, 2, 3) is the limitation of allowable
operational angular velocities for each axis.

III. ADAPTIVE ATTITUDE REORIENTATION
CONTROLLER DESIGN

A. Potential Function for Angular Velocity Constraints

In addition, to satisfy the angular velocity constraints, a
logarithmic potential functionVr(s): Sr → R, is proposed
as

Vr(s) =
1

2

[

log

(

s21,max

s2
1,max

− s2
1

)

+ log

(

s22,max

s2
2,max

− s2
2

)

+ log

(

s23,max

s2
3,max

− s2
3

)]

=
1

2

3
∑

i=1

log

(

s2i,max

s2i,max
− s2i

)

, (15)



where the sliding vector permissible zoneSr is specified as

Sr =
{

s ∈ R3 | |si| ≤ si,max

}

(16)

andsi,max is a pre-defined maximal constant value satisfying
si,max = ωi,max − k > 0 for si (i = 1, 2, 3) . Meanwhile, it
is assumed thats(0) ∈ Sr.

The above logarithmic potential function guarantees that
the angular velocity always stays in constrained zone defined
in (14).

Lemma 1: The potential function in (15) has the following
properties:

1) Vr(0) = 0
2) Vr(s) > 0, for all s ∈ Sr\{0}
3) If si,max = ωi,max − k > 0 for all s ∈ Sr, then

|ωi| < ωi,max

4) ∇2Vr(s) > 0 is positive definite for alls ∈ Sr.

Proof: From the definition of the logarithmic potential
functionVr(s), it is clear thatVr(0) = 0. Moreover, for all
s ∈ Sr\{0}, the inequalities

s2i,max

s2i,max
− s2i

> 1 (17)

hold, which subsequently leads to

log

(

s2i,max

s2i,max
− s2i

)

> 0. (18)

Hence,Vr(s) > 0, for all s ∈ Sr\{0}.
The third part ofLemma 1 guarantees that the angular

velocity always stays in constrained zone defined in (14)
when the maximal value for sliding vector is chosen as
si,max = ωi,max − k > 0. On the one hand, sinces ∈ Sr

ensures|si| ≤ si,max, it is found thatωi,max − k ≥ |si|.
On the other hand, in view of sliding vector in (12) and
the unit-quaternion property that|qei| ≤ 1, it is clear that
|si| ≥ |ωi| − k. Therefore, in view of these two aspects,
it can be obtained from the potential function (15) that
|ωi| ≤ ωi,max.

The last part ofLemma 1 can be shown by taking the
second order partial derivative ofVr(s) with respect tos.
Since the potential functionVr(s) is a linear combination of
three logarithmic functions, it is sufficient to analyze oneof
the terms in more details, for example,

Vri(si) =
1

2
log

(

s2i,max

s2i,max
− s2i

)

. (19)

The gradient ofVri(si) is calculated as

∇Vri(si) =
si

s2i,max
− s2i

. (20)

Consequently, the Hessian∇2Vri(si) is given as

∇2Vri(si) =
s2i,max

+ s2i

(s2i,max
− s2i )

2
, (21)

which implies that∇2Vr(si) > 0. Therefore, it is clear that
∇2Vr(si) > 0 if s ∈ Sr.

B. ADAPTIVE CONTROLLER DESIGN

The adaptive attitude reorientation controller is designed
as

τ = −f(ω,Qe)− k1Υs− ˆ̄d
Υ

−1s

‖Υ−1s‖
(22)

with

˙̄̂
d = ρ

(

‖Υ−1s‖ − µ ˆ̄d
)

, (23)

where the operator Vec[·] denotes the vector part of [·], Υ =
diag

{

J1(s
2

1,max
− s2

1
), J2(s

2

2,max
− s2

2
), J3(s

2

3,max
− s2

3
)
}

,
the variablesk1, ρ, andµ are positive constants.

Consider the following Lyapunov candidate:

V` =2kk1[q
T
e qe + (1− q0)

2] + Vr(s)

+
1

2ρ
( ˆ̄d− dmax)

2. (24)

The time derivative ofV` is

V̇` =2kk1q
T
e ω + sTΥ−1J ṡ+

1

ρ
( ˆ̄d− dmax)

˙̄̂
d

=2kk1ω
Tqe + sTΥ−1 [f(ω,Qe) + τ + d]

+
1

ρ
( ˆ̄d− dmax)

˙̄̂
d. (25)

Then, substituting the controller (22) and adaptive laws (23)
in above equation, it yields

V̇` =2kk1ω
Tqe − k1s

T s− ˆ̄d‖Υ−1s‖ + sTΥ−1d

+ ( ˆ̄d− dmax)
(

‖Υ−1s‖ − µ ˆ̄d
)

≤− k1k
2qT

e qe − k1ω
Tω − µ ˆ̄d( ˆ̄d− dmax)

≤− k1k
2‖qe‖

2 − k1‖ω‖2 − µ( ˆ̄d−
d̂max

2
)2 +

µ

4
d2max

≤− k1k
2‖qe‖

2 − k1‖ω‖2 +
µ

4
d2max (26)

From inequality (26), it can be shown that the closed-loop
systems is uniformly ultimately bounded stable [15], and the
signalsqe andω are all bounded for allt ≥ 0. Furthermore,
according to (26), it is clear thaṫV` < 0 if

‖qe‖ >
dmax

2k

√

µ

k1
, or ‖ω‖ >

dmax

2

√

µ

k1
(27)

As a result, the decrease ofV̇` drives ‖qe‖ and ‖ωa‖ into
‖qe‖ ≤ dmax

2k

√

µ
k1

and‖ω‖ ≤ dmax

2

√

µ
k1

, respectively.

In summary, we have the following theorem.
Theorem 1: The attitude controller (22) with adaptive laws

(23), applied to rigid-body attitude kinematics and dynamics
expressed by (8) and (11), guarantees that all closed-loop
signals are bounded and attitude error and angular velocity
converge to a compact set containing zero despite the angular
rate limits and external disturbances.
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Fig. 2. Time history of angular velocity.

IV. SIMULATION RESULTS

To demonstrate the effectiveness and performance of the
proposed controller, numerical simulation is carried out
to a rigid spacecraft in this section. The inertia matrix
of spacecraft isJ = diag([350, 180, 290]) kg · m2. The
spacecraft is assumed to have the initial attitudeQ(0) =
[0.33 0.66 − 0.62 − 0.2726]T and initial angular velocity
ω(0) = [0 0 0]T deg/s. The desired attitude isQd =
[0.2 − 0.55 − 0.42 − 0.5027]T . The angular rate limit
for each axis is set to be 6 deg/s. The control gains in (22)
are chosen ask = 0.05, k1 = 0.364J , ρ = 0.01, µ = 0.01,
and ˆ̄d(0) = 0.001.

The simulation results are shown in Figures 1 to 4.
Figures 1 and 2 depict the attitude and angular velocity
responses of spacecraft controller by the proposed method.
It is observed that attitude and angular velocity converge to
zero eventually. Moreover, the angular velocity is always less
than its allowable maximum. The commanded control torque
from attitude controller is shown in Figure 3. The response
of sliding vector is shown Figure 4, from which it is clear
that the magnitude of sliding vector is also limited.
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Fig. 3. Time history of commanded control torque
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V. CONCLUSIONS

This paper addresses the problem of constrained atti-
tude controller design for a rigid body in the presence
of angular rate limits and external disturbances. To ensure
that the specified maximum angular rate is not exceeded,
a logarithmic potential function is developed in terms of
sliding vector. Consequently, an adaptive attitude control law
is synthesized to achieve uniformly ultimately stability of
the overall closed-loop attitude control system. Numerical
simulation examples are provided to show the efficiency of
the proposed method.
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