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Abstract— This paper presents a fault-tolerant control al-
location scheme for overactuated spacecraft attitude tracking
systems subject to actuator faults. Taking the effect of fault
detection and diagnosis (FDD) uncertainties into account, a
performance/robustness trade-off control allocation (PRTCA)
strategy is proposed to redistribute the virtual control signals
to the remaining actuators without reconfiguring the controller.
The proposed PRTCA scheme achieves robustness with respect
to the imprecise in fault estimation, and is less conservative
than the robust control allocation. To illustrate the performance
of the proposed PRTCA strategy, numerical simulations are
carried out for a rigid spacecraft in the presence of reaction
wheel faults.

I. INTRODUCTION

In complex systems like spacecraft, aircraft, and chemical
plants, it is increasingly important to ensure their reliability.
To enhance the system reliability and safety, the control sys-
tem has to be capable of tolerating potential faults automat-
ically while maintaining desirable system performance and
stability properties. This has motivated a significant amount
of research on fault-tolerant control (FTC) strategies [1]–
[3]. For spacecraft attitude control systems, actuators play
an important role in generating control efforts commanded
from the controller to achieve specific mission objectives.
However, when a fault occurs in the actuator, the influence
of the controller on the spacecraft might be interrupted or
modified. As a result, if the controller is designed without any
fault tolerance capability, an abrupt occurrence of an actuator
fault could significantly degrade mission performance or
even lead to totally loss of the spacecraft. Therefore, to
enhance the spacecraft reliability and safety, actuator fault
tolerance capability need to be addressed in attitude control
design.

In order to handle actuator faults, many methods have
been proposed to design a fault-tolerant attitude controller for
spacecraft in the literature. Depending on how redundancies
are utilized, current methods can be classified into two cat-
egories: passive and active strategies [5]. In a passive fault-
tolerant attitude control system, all potential actuator faults
are considered together with the normal system operating
conditions at the design stage, and a single fixed fault-tolerant
attitude controller on the basis of robust control theory is
synthesized so that the attitude control system is able to
achieve its given objectives throughout the healthy situation
and the faulty situation. In [6], an indirect robust adaptive
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FTC strategy was proposed to handle actuator failures for
attitude tracking of a rigid spacecraft. In [7], adaptive sliding
mode fault-tolerant attitude tracking control scheme was
developed for flexible spacecraft with partial loss of actuator
effectiveness faults, where a neural network was employed
to account for system uncertainties and an on-line updating
law was used to estimate the upper bound of actuator fault.
With the use of fast terminal sliding mode technique, not only
fault-tolerant capability but also finite-time convergence were
achieved by using an adaptive robust fault-tolerant controller
for spacecraft attitude control system in the presence of an
uncertain inertia matrix, external disturbances, and two types
of actuator faults [8].

On the other hand, the active fault-tolerant attitude control
approach reacts to the actuator faults by reconfiguring the
controller based on a fault detection and diagnosis (FDD)
scheme which provides real-time information about faults, so
that the desired attitude maneuver is maintained in spite of
actuator faults. Because the attitude kinematics and dynamics
of a spacecraft are nonlinear and strongly coupled, only
very few research papers consider the active fault-tolerant
controller design for spacecraft attitude control system. In
[9], actuator failure detection, identification and adaptive
reconfigurable controller for spacecraft were proposed, where
fast and accurate detection and diagnosis of actuator failure,
and convergence of tracking errors to zero can be achieved
despite the constraint of control input saturation. In [10],
an iterative learning observer was designed to estimate time-
varying actuator faults. Based on the FDD scheme developed
in [10], an FTC law was reconfigured in [11] to accomplish
attitude stabilization maneuver under partial loss of actuator
effectiveness faults and external disturbances.

Modern spacecraft often uses redundant actuators to in-
crease the reliability, maneuverability and survivability. This
makes the spacecraft attitude control system an over-actuated
system [12], [13], which has more control effects than
three conventional control effectors. Due to this redundancy,
control allocation (CA) is utilized to distribute the desired
total control demand over the individual actuators, espe-
cially in the case of actuator faults and failures [14], [15].
The benefit of using CA as a means for FTC is that it
automatically redistributes control signals to the remaining
actuators without reconfiguring the controller [16]. In this
paper, we present an effective control allocation scheme
for FTC of spacecraft attitude tracking when the actuator
fault information estimated by FDD is not precise. By in-
troducing a performance/robustness trade-off factor, a novel
performance/robustness trade-off control allocation (PRTCA)



method is proposed to distribute the total desired control
command under actuator faults without reconfiguring the
controller, and meanwhile to achieve good trade-off between
the regular performance given by conventional regularized
control allocation (RegCA) with perfect FDD and the robust-
ness given by robust control allocation (RobCA) with imper-
fect FDD. When different levels of imperfection in FDD are
considered, the PRTCA with different level of robustness is
carried out, which not only reduces the conservativeness of
the RobCA but also ensures the desired regular performance
of the RegCA.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. Spacecraft Attitude Dynamics

The kinematics and dynamics for the attitude motion of a
rigid spacecraft can be expressed by the following equations
[17]: 

Jω̇ = −ω×Jω +Du+ d

q̇ = 1
2 (q× + q0I3)ω

q̇0 = − 1
2q

Tω

(1)

where J = JT ∈ R3×3 denotes the positive definite
inertia matrix of the spacecraft, ω ∈ R3 is the inertial
angular velocity vector of the spacecraft with respect to
an inertial frame I and expressed in the body frame B,
Q = [q1, q2, q3, q0]T = [qT , q0]T ∈ R3 × R denotes the unit
quaternion describing the attitude orientation of the body
frame B with respect to inertial frame I and satisfies the
constraint qTq + q2

0 = 1, I3 ∈ R3×3 denotes a 3-by-3
identity matrix, u ∈ Rn (n > 3) and d ∈ R3 denote the
control torques produced by the n actuators and the external
disturbances, respectively, and D ∈ R3×n is the actuator
distribution matrix. The notation x× ∈ R3×3 for a vector
x = [x1, x2, x3]T is used to represent the skew-symmetric
matrix

x× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2)

In the case of fault-free, the actual output torques u of n
actuators are equal to the desired values u commanded by the
controller, i.e., u = uc. When actuator faults are considered,
the mathematical fault model of n actuators is described as
follows:

u = Euc + ū, (3)

where uc = [uc1, uc2, . . . , ucn]T ∈ Rn denotes the com-
mand control torque, E = diag{e1, e2, . . . , en} ∈ Rn×n
denotes the effectiveness factor matrix of spacecraft actuators
with 0 < ei ≤ 1 (i = 1, 2, . . . , n). Note that the case
ei = 1 indicates that the ith actuator works normally,
and 0 < ei < 1 implies that the ith actuator partially
loses its effectiveness, but still not totally fail. The vector
ū = [ū1, ū2, . . . , ūn]T ∈ Rn represents the bounded time-
varying additive actuator fault. Hence, the nonlinear attitude

Fig. 1. Structure of the overall spacecraft attitude-tracking scheme.

dynamics model incorporating actuator faults defined in (3)
can be rewritten as the following form:

Jω̇ = −ω×Jω +D (Euc + ū) + d. (4)

B. Attitude Error Dynamics

To address the attitude tracking issue, the desired attitude
and angular velocity of the spacecraft in the body frame
B with respect to inertial frame I are denoted by unit
quaternion Qd = [qTd , qd0]T and ωd, respectively. The
attitude tracking error Qe = [qTe , qe0]T is defined as the
relative orientation between the attitude Q and the target
attitude Qd, which is computed as

Qe = Q−1
d ⊗Q, (5)

where Q−1
d is the inverse or conjugate of the desired

quaternion and is determined by Q−1
d = [−qTd , qd0]T , and

⊗ denotes the quaternion multiplication operator of two unit
quaternion Qi = [qTi , qi0]T and Qj = [qTj , qj0]T , which is
defined as follows:

Qi ⊗Qj =

[
qi0qj + qj0qi + q×i qj

qi0qj0 − qTi qj

]
. (6)

The angular velocity error ωe ∈ R3 is given by ωe = ω −
Cωd, where C is the rotation matrix, which is defined as

C = (q2
e0 − qTe qe)T I3 + 2qeq

T
e − 2qe0q

×
e . (7)

Consequently, based on the attitude dynamics in (4) with
actuator faults, the attitude tracking error system can be
described as

Jω̇ = −(ωe +Cωd)
×J(ωe +Cωd)

+J(ω×e Cωd −Cω̇d) +D (Euc + ū) + d

q̇e = 1
2 (q×e + qe0I3)ωe

q̇e0 = − 1
2q

T
e ωe

. (8)

C. Problem Statement

For the over-actuated systems, it is possible to divide
the controller design into two steps [13], [18]. In the first
step, a high level controller is designed as virtual controller
to specify the total desired control efforts to the system.
Then, a control allocation algorithm is developed to map
the virtual control efforts into individual actuators such that
the total actual control signals generated by all actuators
amount to the commanded virtual input. Based on such a
design philosophy, the overall structure of the proposed fault-
tolerant attitude tracking scheme is shown in Fig. 1.



For the high level controller design of attitude tracking
system in the first step, define the virtual control torque τ ∈
R3 as

τ = Du = D(Euc + ū). (9)

Then, the attitude tracking error dynamics with actuator
faults in (8) can be rewritten as the following virtual equiv-
alent system

Jω̇ = −(ωe +Cωd)
×J(ωe +Cωd)

+J(ω×e Cωd −Cω̇d) + τ + d

q̇e = 1
2 (q×e + qe0I3)ωe

q̇e0 = − 1
2q

T
e ωe

. (10)

Since this paper focuses on control allocation design, we
assume that there exists the virtual attitude control torques
τ in (10) such that the desired attitude can be obtained and
simultaneously external disturbances are suppressed.

In the second step, the estimated fault information will be
used in the control allocation design. Here, we also assume
that the actuator fault information, Ê = diag{ê1, ê2, . . . , ên}
and ˆ̄u = [ˆ̄u1, ˆ̄u2, . . . , ˆ̄un], could be detected and estimated
by an FDD scheme. If the fault information can be identified
precisely by the FDD scheme, based on (9), the command
control efforts uc can be computed by solving the following
regularized control allocation (RegCA) problem [19]

uRegCA = arg min
uc

{
‖Êuc + ˆ̄u‖

2

Q

+ h‖DÊuc +D ˆ̄u− τ‖
2
}
, (11)

where Q is a positive definite weighting matrix and h > 0
is a weighting factor.

Because multiple simultaneous faults are considered, de-
centralized FDD approach [20], hybrid bond graph technique
[21], [22], etc, can be used for FDD. However, the estimated
fault information Ê(t) and ˆ̄u may not be precise. Similar to
[16], the level of imperfection of fault estimation is intro-
duced, and the relations between the actual fault information
and their estimated values are assumed to satisfy

E = (In −∆E)Ê, ū = (In −∆ū)ˆ̄u, (12)

where ∆E = diag{δe1, δe2, . . . , δen} and ∆ū =
diag{δū1, δū2, . . . , δūn}, which represent the level of imper-
fection in the estimations of actuator effectiveness and ad-
ditive fault, respectively. Thus, during the control allocation,
the command control efforts uc need to be found such that

τ = D[(In −∆E)Êuc + (In −∆ū)ˆ̄u]. (13)

In light of (13), a robust control allocation (RobCA) is
proposed to distribute the virtual control signals to each
actuator when the fault information obtained by FDD is not
precise, which is expressed as

uRobCA = arg min
uc

max
‖∆E‖≤ρ1,
‖∆ū‖≤ρ2

{
‖Êuc + ˆ̄u‖

2

Q

+ h‖D(In −∆E)Êuc +D(In −∆ū)ˆ̄u− τ‖
2
}
, (14)

where the level of imperfection in fault estimations of the
actuator effectiveness Ê and the additive bias fault ∆ū

are supposed to satisfy ‖∆E‖ ≤ ρ1 and ‖∆ū‖ ≤ ρ2,
respectively. That is, both Ê and ∆ū are upper bounded by
positive scalars. For the RobCA in (14), the primary objective
is to find the optimal uc by minimizing the the worse-case
residual. This achieves some robustness given by the worst
residual to control allocation with respect to the imprecision
in the fault estimations of the FDD scheme. Since there
is no guarantee that τ is attainable or that the solution of
uc is unique, the secondary objective of the RobCA, which
minimizes the power consumption, is also introduced in (14).

III. CONTROL ALLOCATION DESIGN

When the imperfection of fault estimation is large, the
RobCA method can achieve better performance than that
of the RegCA method because of its strong robustness to
estimation uncertainties. However, under small imperfec-
tion of fault estimation, the RegCA performs better, and
the RobCA method may result in over-conservativeness
comparing to the RegCA method as well as a slower
transient response. Based on above considerations, a new
control allocation scheme is proposed to achieve trade-
off between the regular performance given by the RegCA
method and the robustness given by the RobCA method.
By introducing a performance/robustness trade-off factor, the
performance/robustness trade-off control allocation (PRTCA)
scheme is designed as follows:

uPRTCA = (1− α) · uRegCA + α · uRobCA, (15)

where α ∈ (0, 1) is a positive scalar representing the
aforementioned performance/robustness trade-off factor. If
the FDD scheme is almost precise (small imperfection of
fault estimation), the imperfection factor α should be set to
a small value near zero, and the proposed PRTCA achieves
a similar regular performance of the RegCA scheme and
does not suffer from conservativeness. Otherwise, if the
imperfection of fault estimation is large, α should be set to
a value near one such that the robustness could be obtained.

Substituting the RegCA from (11) and the RobCA from
(14) into the PRTCA defined in (15), the proposed PRTCA
scheme is further stated as

uPRTCA = arg min
uc

{
‖Êuc + ˆ̄u‖

2

Q

+ (1− α)h‖DÊuc +D ˆ̄u− τ‖
2

+ αh max
‖∆E‖≤ρ1,
‖∆ū‖≤ρ2

‖D(In −∆E)Êuc

+D(In −∆ū)ˆ̄u− τ‖2
}
. (16)

To reduce the notational burden, denoting A = DÊ, b =
τ −D ˆ̄u, ∆A = −D∆EÊ, and ∆b = D∆ū ˆ̄u. Because
‖∆E‖ ≤ ρ1, ‖∆ū‖ ≤ ρ2, we can get that ‖∆A‖ ≤ ρA,
‖∆b‖ ≤ ρb, where ρA = ρ1‖D‖‖Ê‖, ρb = ρ2‖D‖‖ ˆ̄u‖. As



a consequence, the proposed PRTCA becomes

uPRTCA = arg min
uc

{
‖Êuc + ˆ̄u‖2Q + (1− α)h‖Auc − b‖2

+ αh max
‖∆A‖≤ρA,
‖∆b‖≤ρb

‖(A+ ∆A)uc − (b+ ∆b)‖2
}
. (17)

It is verified that this problem is equivalent to a problem
of the form [23]

uPRTCA = arg min
uc

{
‖Êuc + ˆ̄u‖

2

Q + (1− α)h‖Auc − b‖2

+ αh max
‖z‖≤φ(uc)

||Auc − b+ z||2
}
, (18)

where φ(uc) is a function defined as φ(uc) = ρA||uc||+ρb.
In order to get the solution of the above PRTCA, the inner

maximization problem is solved first, then followed by the
outer minimization problem [24]. For the inner maximization
problem, the maximum

C(uc) , max
||z||≤φ(uc)

αh||Auc − b+ z||2 (19)

is a convex function in uc. In addition, it is noted that the
inequality constraint is convex in z, so that the maximum
over z is achieved at the boundary, i.e. ||z|| = φ(uc).
Introducing a Lagrange multiplier λ, the constrained max-
imization problem in (19) is transformed into the following
unconstrained problem

max
z,λ

[
αh||Auc − b+ z||2 − λ(||z||2 − φ2(uc))

]
. (20)

Since the original problem has an inequality constraint,
the Lagrange multiplier must be nonnegative, i.e., λ ≥ 0.
Differentiating (20) with respect to z and λ, the following
expressions can be obtained

(λ∗ − αh)z∗ = αh(Auc − b), ||z∗|| = φ(uc), (21)

where z∗ and λ∗ denote the optimal solution of the maxi-
mization problem in (20).

Moreover, computing the Hessian of the cost in (20) with
respect to z, and let it be negative semi-definite when λ =
λ∗, it can be found that the optimal solution of λ∗ should
satisfy λ∗ ≥ αh. Thus, in view of (21), the maximum cost
in (20) is given by

C(uc) =
αhλ∗

λ∗ − αh
||Auc − b||2 + λ∗φ2(uc). (22)

Substituting (22) into the original problem, the PRTCA
problem is equivalent to the following minimization problem:

uPRTCA = arg min
uc

{
||Êuc + ˆ̄u||

2

Q

+ (1− α)h||Auc − b||2 + C(uc)

}
= arg min

uc

{
||Êuc + ˆ̄u||

2

Q +

(
h+

α2h2

λ∗ − αh

)
× ||Auc − b||2 + λ∗φ2(uc)

}
. (23)

Next, we need to solve the outer minimization problem as
shown in (23). In order to reduce the computation burden,
we will reduce the problem to a one-dimensional search
problem. For this purpose, the following function with two
independent variables uc and λ is introduced,

R(uc, λ) =
αhλ

λ− αh
||Auc − b||2 + λφ2(uc), (24)

where λ belongs to the interval [αh,+∞). Then, it is found
that the cost of the inner maximization in (19) is equal to the
constrained minimization problem over the scalar Lagrange
multiplier λ [24],

C(uc) = arg min
λ≥αh

R(uc, λ). (25)

As a result, the original problem turns out to be equivalent
to

uPRTCA = arg min
uc

{
||Êuc + ˆ̄u||

2

Q

+ (1− α)h||Auc − b||2 + min
λ≥αh

R(uc, λ)

}
= arg min

λ≥αh
min
uc

J(uc, λ) (26)

where J(uc, λ) = ||Êuc + ˆ̄u||
2

Q + W (λ)||(Auc − b)||2 +

λφ2(uc), and W (λ) = h+ α2h2

λ−αh .
Note that, because J(uc, λ) is a quadratic function, it is

possible to derive a closed-form expression for the solution
of the innermost minimization in (26) with respect to uc
for fixed value of the Lagrange multiplier λ. Since φ(uc) =
ρA||uc||+ ρb, taking the derivative of J(uc, λ) with respect
to uc, it follows that[

M(λ) + λρA

(
ρA +

ρb
||uc||

)
IN

]
uc(λ) = N(λ) (27)

where M(λ) = ÊTQÊ + W (λ)ATA, and N(λ) =
W (λ)AT b − ÊTQ ˆ̄u. Then, for any nonzero uc, we can
get

uc(λ) =

[
M(λ) + λρA

(
ρA +

ρb
||uc||

)
In

]−1

N(λ) (28)

Because uc appears on both sides of the equality, uc can
not be obtained directly. With a view to tackle the above
challenge, two cases are considered.

Case I: If ρb = 0, the term ||uc|| will disappear on the
right-hand side of the expression in (28). In this case, the
expression for uc(λ) is given by

uc(λ) =
[
M(λ) + λρ2

AI
]−1

D(λ). (29)

Case II: If ρb 6= 0, uc is included on both sides of (28).
To solve uc , the scalar β = ||uc|| is introduced. As a result,
the equation (28) is convert to the following equation with
a scalar variable β:

β2 −NT (λ)

[
M(λ) + λρA

(
ρA +

ρb
β

)
In

]−2

N(λ) = 0.

(30)
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Fig. 2. Attitude tracking error (deg).
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It can be shown that a unique solution β∗(λ) > 0 exists for
this equation if λρAρb ≤ ||N(λ)||. Otherwise, β∗(λ) = 0.

Now, let J(λ) denote the minimum value of J(uc, λ) over
uc, i.e.,

J(λ) = min
uc

J(uc, λ) = J(u∗c(λ), λ) (31)

=||Êu∗c(λ) + ˆ̄u||
2

Q +W (λ)||Au∗c(λ)− b||2

+ λφ2(u∗c(λ)) (32)

Finally, the PRTCA problem can be solved by determining
the λ∗ from the following scalar-valued optimization prob-
lem

λ∗ = arg min
λ≥αh

J(λ). (33)

Because the function J(λ) is unimodal, the minimization
problem (33) is always well-posed such that an unique
minimum on its domain is attainable.

IV. SIMULATIONS

To study the effectiveness and performance of the pro-
posed PRTCA-based FTC strategies, numerical simulations
have been carried out using the rigid spacecraft system given
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Fig. 4. Commanded torques for attitude tracking (Nm).

in (1) under actuator faults modeled in (3). The spacecraft
is assumed to have the inertia matrix of

J =

 20 0 0.9
0 17 0

0.9 0 15

 kg ·m2.

The external disturbances are assumed as

d = 10−3 ×

 3 cos(0.1t) + 4 sin(0.03t)− 1
−1.5 sin(0.02t)− 3 cos(0.05t) + 1.5

2 sin(0.1t)− 1.5 cos(0.04t) + 1

Nm.
In order to achieve three axes control of a spacecraft, at least
three actuators are required to force the attitude to follow a
commanded attitude trajectory. In fact, four reaction wheels
are considered as actuators in the simulation, which indicates
the existence of actuator redundancy in the attitude control
system. The distribution matrix of four reaction wheels is as
follows:

D =
1√
3

 −1 −1 1 1
1 −1 −1 1
1 1 1 1

 .
During the attitude tracking maneuver, both loss of ef-

fectiveness faults and additive increased bias faults are con-
sidered. The scenarios of partial loss of actuator faults are
described as 

e1(t) = 0.5 + 0.08 sin(0.05t)
e2(t) = 0.6 + 0.1 sin(0.02t)
e3(t) = 0.5 + 0.1 sin(0.08t)
e4 = 1,

and the increased bias faults are
ū1(t) = 0
ū2(t) = 0
ū3(t) = −0.03− 0.004 sin(0.02t)
ū4(t) = −0.04 + 0.005 sin(0.02t).

Here we suppose that the maximum imperfection in FDD is
20%, and the estimated fault information by FDD is

ê1 = 0.5
ê1 = 0.6
ê1 = 0.5
ê1 = 1

,


ˆ̄u1 = 0
ˆ̄u2 = 0
ˆ̄u3 = −0.03
ˆ̄u4 = −0.04



To implement the PRTCA-based FTC scheme, a robust
adaptive controller from [6] is used as high-level virtual
controller to produce the total control torques as well as
reject external disturbances. The initial orientation of the
spacecraft is Q(0) = [0.25, 0.2, − 0.15, 0.9354]T with
a zero initial body angular velocity. The desired reference
angular velocity is given as

ωd(t) = 0.001×
[
cos(

πt

50
), sin(

πt

30
), cos(

πt

20
)

]T
rad/s.

For PRTCA, the weighting matrix Q and weighting scalar h
in (15) have been chosen as Q = I4 and h = 1×104, respec-
tively. Since there is 20% imperfection in fault estimation,
robustness of control allocation should be reinforced. In view
of above consideration, the performance/robustness trade-off
factor α is chosen as α = 0.8.

The simulation results are shown in Figs. 2-4. Figs. 2-
3 depict the responses of the attitude tracking error and
angular velocity error under the proposed PRTCA-based FTC
strategy, respectively. It can be observed that high tracking
precision and good tracking process are obtained even in the
presence of external disturbances and actuator faults. The
command control torque generated by the PRTCA is shown
in Fig. 4. It is clear that the proposed PRTCA automatically
redistributes the virtual control torques to four reaction
wheels, while maintaining the robustness to imprecise FDD
estimation.

V. CONCLUSIONS

In this paper, CA-based FTC strategy has been proposed
for spacecraft attitude tracking system. By compromising
the regular performance provided by the RegCA scheme
and the robustness provided by the RobCA scheme, the
PRTCA scheme is introduced when there exist imprecision in
FDD scheme. The PRTCA problem is formulated as a min-
max optimization problem, and it could be solved in a way
similar to robust least-squares method. The feasibility and
effectiveness of the proposed PRTCA-based FTC scheme is
tested in simulation, which shows that actuator faults could
be handled without reconfiguring the controller. As one of the
future works, actuator saturation and rate constraint should
be taken into account during the PRTCA design.
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