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Abstract— This paper introduces control barrier functions
for discrete-time systems, which can be shown to be necessary
and sufficient for controlled invariance of a given set. In
particular, we propose nonlinear discrete-time control barrier
functions for control affine systems with an additional structure
that lead to controlled invariance conditions that are affine
in the control input, resulting in a tractable formulation that
enables us to handle the safety optimal control problem for a
broader range of applications with more complicated safety
conditions than existing approaches. Moreover, we develop
alternative mixed-integer formulations for basic and secondary
Boolean compositions of multiple control barrier functions and
further provide mixed-integer constraints for piecewise control
barrier functions. Finally, we apply these proposed tools to
driving safety problems of lane keeping and obstacle avoidance,
which are shown to be effective in simulation.

I. INTRODUCTION

Motivated by safety-critical applications such as adaptive
cruise control systems [1], multi-agent systems [2] and
footstep placement of bipedal robots [3], several control
approaches have been developed to guarantee safety, in
addition to addressing the stabilization problem. In particular,
approaches based on set invariance using control barrier
functions have lately garnered a lot of research attention.
Literature review. A variety of Lyapunov-like approaches
have been developed to construct barrier certificates and
(controlled) invariant sets for ensuring system safety, both for
autonomous systems, e.g., in [4]-[6] and for control systems,
e.g., [1]-[3], [7]-[10]. Moreover, these Control Barrier Func-
tions (CBFs) can be combined with control Lyapunov func-
tions, yielding Control Lyapunov Barrier Functions (CLBFs),
which have been shown in recent years to be a promising
approach for jointly guaranteeing safety and stability.

Although CBFs and CLBFs have been extensively studied
in the control and verification literature for a broad range
of continuous-time systems for applications such as model
predictive control, obstacle/collision avoidance, eventuality
properties or safety establishment and multiobjective control
[11, [71, [11]-[17], there are only relatively few studies that
address the design of CBF-based approaches for discrete-
time dynamical systems (including sampled data and inher-
ently discrete-time/digital systems). The work in [18] extends
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the continuous-time CBF-based developed tools for safety-
critical applications to discrete-time systems, and established
that the extension is not straightforward because the resulting
optimization problem is not necessarily convex and hence
tractability remains an unsolved issue, except for some
special cases such as linear/linearized settings.

On the other hand, the authors in [19] developed a
barrier function based model predictive control for a class of
nonlinear discrete-time dynamics, which hinges extensively
on the stabilizability of the linearized system, while [20]
applied discrete-time barrier functions to ensure safety of a
given set for multi-agent partially observable Markov deci-
sion processes and further proposed conditions for checking
Boolean compositions of barrier functions to represent more
complicated safety sets. However, the assumption of finite
and countable actions (i.e., control inputs) as well as the
Markov assumption are essential for obtaining a tractable
solution in [20]; thus, this approach does not directly apply
to the general discrete-time systems that we consider.
Contribution. In this paper, we present a necessary and suf-
ficient formulation of control barrier functions for discrete-
time systems (in contrast to sufficient formulations in [18],
[20]), and show that it is the least restrictive in terms of
the set of allowable safe inputs, which in turn guarantees
optimality when combined with an optimal controller. Fur-
ther, we propose a more general class of nonlinear control
barrier functions for control affine systems with an additional
structure that lead to invariance conditions that are affine in
the control input and hence, resulting in tractable optimiza-
tion problems. This enables us to handle the safety optimal
control problem for a broader range of applications than the
case with linear systems and linear CBFs considered in [18].

Moreover, we derive mixed-integer formulations for basic
Boolean compositions of multiple CBFs, as an alternative to
similar work in [17], [20]-[22], and further provide mixed-
integer encodings of secondary Boolean compositions (i.e.,
implies, exclusive or and equivalence), as well as if-then-else
statements. These compositions, when combined with the
tractable nonlinear CBFs, enable us to guarantee safety for
more complicated non-convex or piecewise safe sets and for
more general switched systems with non-smooth dynamics
using tractable mixed-integer linear/quadratic programs.

Then, equipped with these discrete-time CBF tools, we
consider the discrete-time lane keeping problem for au-
tonomous driving that was previously only achieved using
a continuous-time formulation [1]. Further, we extend this
to the obstacle avoidance problem where a vehicle can avoid
an obstacle by choosing to either go around its left or right.



II. PRELIMINARIES AND PROBLEM FORMULATION
A. Notations and Definitions

R™ N and Z} denote the sets of n-dimensional real
numbers, natural numbers and positive integers up to n,
respectively. 0,,x, represents the zero matrix in R™*"™,

Definition 1 (SOS-1 Constraint [23]). A special ordered set
of degree 1 (SOS-1) constraint' is a set of scalar variables for
which at most one variable in the set may take a value other
than zero, denoted as SOS-1: {v1,...,vn}. For instance, if
v; 7 0, then this constraint imposes that v; = 0 for all j # 1.

Definition 2 (Partition). A partition of a set/domain P is a
collection of |J | disjoint subsets P; such that | J;c ; Pj = P.

B. Problem Statement

Consider the following class of discrete-time control affine
systems with an additional structure:

|:$1,k+1]:[fl(xk):|_~_[0”1xm:| ur 2 f () +3(n)up, (1)

T2, k+1 fo(z) 9(zx)
where at time k£ € N, 2, € R™ and u, € U C R™ are
the state and control input vectors, respectively. We assume
that the state vector xj can be partitioned into two parts
as T = [.’Eirk x;k]—r where the dynamics of z; € R™
(0 < ny < n)is autonomously governed by the known vector
field f1(.) : R™ — R™, i.e., it is not affected by the control
input signal uy, while the dynamics of zo € R™ (0 < ng <
n, n1 + ne = n) is governed by the known vector field
f2()) : R® — R™ and is affinely affected by the control
input uy, through the function g : R™ — R™2*™,

Note that the additional structure in (1) is fairly common
for systems with higher-order discrete-time nonlinear ARX
models and dynamics, including forward Euler discretized
mechanical systems with inertia. This structure will also help
us to derive nonlinear control barrier functions that lead to
tractable constraints that are affine in the control input. The
special case with n; = 0 corresponds to standard control
affine systems and the results in this paper still apply with
all functions of x; interpreted as constant vectors.

Next, we formally define some of the main concepts that
will be used to formulate and state our problems of interest.
In particular, we consider a (safe) set S defined as a super
level-set of a function h(-):

S& {xeR":h(x) >0}, (2)

where h : R®™ — R is any well-defined scalar-valued
function, including discontinuous and non-smooth functions,
and S = {x € R" : h(x) = 0} defines the boundary of
the set S. Using this definition, we present the notion of
controlled invariance of a set S and introduce a relatively
simple formulation for the associated discrete-time control
barrier function (DT-CBF), which may also be composed or
combined to form more meaningful and expressive (but also
more complex) control barrier functions.

LOff-the-shelf solvers such as Gurobi [23] can readily handle these con-
straints, and can significantly reduce the search space for integer variables.

Definition 3. A set S is (forward) controlled invariant with
respect to the system dynamics (1), if for every initial state
xo € S, there exists a control input uy, € R™ such that the
state trajectory always remains in S, i.e., xy € S, Vk € Z.

Definition 4 (Discrete-Time Control Barrier Function). For
the discrete-time system (1), the function h : R™ — R is
a discrete-time control barrier function (DT-CBF) for the
(safe) set S as defined in (2), if

Ju € U such that Yx € S, h(f(z) + g(z)u) > 0.

Equivalently, the function h : R™ — R is a DT-CBF for the
(safe) set S as defined in (2), if

sup h(f(z) + g(x)u) >0, VreS. 3)
uelU

Moreover, for any x € S, we define the corresponding (safe)
input set: Ks(z) = {u € U : h(f(z) + g(z)u) > 0}.

Now we are ready to specifically state the two problems
that this paper seeks to address:

Problem 1 (Synthesis of Tractable Nonlinear Control Barrier
Functions). For the discrete-time system in (1), synthesize
a tractable discrete-time control barrier function (DT-CBF)
such that a given (safe) set is forward controlled invariant,
where the invariance condition, as defined in (3), is affine in
the control input (hence, leads to tractable constraints).

Problem 2 (Compositions of Control Barrier Functions).
Given multiple tractable discrete-time control barrier func-
tions DT-CBFss, find mixed-integer encodings of their (ba-
sic and secondary) Boolean compositions, as well as of
piecewise control barrier functions, where the invariance
condition remains affine in the control input.

III. MAIN RESULTS

This section addresses Problems 1 and 2 and in the
process, develops tools that enable optimal safety control for
autonomous driving in Section IV.

A. Tractable Discrete-Time Control Barrier Functions

This subsection considers the problem of synthesizing
tractable discrete-time control barrier functions (DT-CBF)
in Problem 1. First, we show that the existence of the DT-
CBF, introduced in Definition 4, guarantees the controlled
invariance of the (safe) set (2). Then, we propose a class of
nonlinear DT-CBFs for systems with the structure in (1) that
leads to tractable constraints in optimal control problems.

1) Discrete-Time Control Barrier Functions: Using the
proposed DT-CBF in Definition 4 for a (safe) set S in (2),
we now show in the following theorem that its existence
is both sufficient and necessary for the (forward) controlled
invariance of the set S.

Theorem 1. Consider the discrete-time system in (1) and the
(safe) set S in (2). Then, S is (forward) controlled invariant
if and only if there exists a DT-CBF for S (cf. Definition 4).

Proof. With z;, = x and uy, = u for any z € S and u €
Ks(z) at any time step k, the inequality in (3) is satisfied by



definition, which means that from (1), we have the following:

sup,,, e "(f(wx) + g(wr)ur) = sup,, ey M(wrg1) > 0. (4)
In other words, xzx € S implies that z5,1; € S with
up, € Kgs(xy). Further, with the base case of zp € S (by
assumption), we have an inductive proof of sufficiency of
the DT-CBF for controlled invariance of S. The necessity
can be shown by contraposition. Suppose (3) does not hold.
Then, all u € U for some z, lead to h(z11) < 0, which
means that S is not controlled invariant. O

Note that our DT-CBF definition is also applicable for
discrete-time control affine systems in (1) without the addi-
tional structure, i.e., when ny; = 0, and is slightly different
from the ones proposed in [18], [20], which have additional
terms involving h(xy) when compared with (4); thus, our
definition is arguably more straightforward since it directly
imposes the controlled invariance condition without any
modifications. More importantly, we can show that the (safe)
input set Ks(x) in Definition 4, which is also applicable to
control affine systems (with ny = 0), is a (non-strict) superset
of the corresponding input sets based on the definitions in
[18], [20], as shown in the following proposition.

Proposition 1. The (safe) input set Kg(x) for any x €
S corresponding to the DT-CBF in Definition 4 satisfies
Ks(zx) O K4(x) and Ks(z) 2 K4(x), where the input
sets Ko(x) and K¥(x), defined as K5(z) = {u € U :
h(f(z) + §la)u) + (v — Dh(z) > 0} and Ki(z) = {u €
U:h(f(z)+ g(x)u)+alh(x))—h(x) > 0}, correspond to
the definitions of DT-CBF in [18, Proposition 4] and [20,
Definition 2], respectively, with 0 < v < 1 and a class K
function (i.e., continuous, strictly increasing and «(0) = 0)
« that satisfies a(h(x)) < h(z).

Proof. The result follows directly from the observation that
u € Kg(x) = h(f(z) + g(z)u) = (1 - y)h(z) > 0,
u € Kg(x) = h(f(x) + g(x)u) = h(z) — a(h(z)) = 0,

for all z € S, with the above choices of v and «, as well as
h(z) > 0; hence, u € Kgs (cf. Definition 4). O

This means that the DT-CBF definitions in [18], [20] are
sufficient for controlled invariance but only necessary with
the choice of v = 1 and a(h(x)) = h(x). Note that [18] did
not provide a necessity proof, while the proof for necessity
that is referenced in [20, Theorem 1] is only applicable for
x € 0S8, ie., when a(h(z)) = h(x) = 0. Further, the
(safe) input set is the least restrictive when using the DT-
CBF in Definition 4 and when incorporated into an optimal
safety controller, does not lead to sub-optimality. To our
understanding, the extra terms in [18], [20] are a legacy from
their continuous-time predecessors, e.g., [1, Definition 5],
where a relaxation of the invariance condition is introduced
to extend the condition for only the boundary of the set S
to the entire domain, including its interior. However, this
is not needed for the discrete-time counterpart, because the
controlled invariance condition in (3) is already a necessary
and sufficient condition for the entire set S.

2) Tractable DT-CBF for Control Affine Systems with
Additional Structure: An important consideration when de-
riving a control barrier function is the tractability of the re-
sulting controlled invariance condition in (3). As observed in
[18], unlike the continuous-time counterpart, the controlled
invariance condition when incorporated as a constraint in an
optimal control problem will in general lead to nonlinear
constraints and hence, the authors in [18] focused only on
linear systems with linear DT-CBFs. Indeed, this special case
is the only one where the controlled invariance condition in
(3) is affine in the control input for control affine systems in
(1) with n; = 0.

However, when additional structure is present, i.e., when
n1 > 0 for systems with higher-order dynamics, this special
case of control affine systems in (1) can also lead to
controlled invariance conditions in (3) that are control affine
with a careful choice of partially affine DT-CBFs, as follows.

Definition 5 (Partially Affine DT-CBF). For a discrete-time
control affine system with additional structure in (1), the
function h : R™ — R satisfying

ha(w) = ' (21)z2 + (1) (5)

is a discrete-time partially affine control barrier function
(partially affine DT-CBF), which is only affine in xs, for
the (safe) set S as defined in (2), if

Ju € U such that Vx € S,
ha(f(@)+3(x)u)=p"(fi(2))(f2(z)+g(x)u)+n(f1(x)) >0,

or, equivalently,

SUPyeu hA(f(CC) + g(‘f)u) (6)
= sup,ep 0 (f1(2))(f2(2) +g(2)u) +n(f1(2)) 20,Vz € S,
where @ R™ — R"™ and n : R™ — R are any

nonlinear functions. Moreover, for any x € S, we define
the corresponding (safe) affine input set

K5 (@) ={ueU:pu"(f1(x))(fo(x) +g(a)u)+n(fi(x)) > 0}.

Remark 1. The controlled invariance condition in (6) is
affine in the control input, as desired. Thus, when included
as a tractable constraint in an optimal control problem with
a quadratic cost, the result is a quadratic program (QP),
similar to the continuous-time safety control approach in [1].

B. Compositions of Multiple and Piecewise DT-CBFs

Next, we provide tools for encoding Boolean compositions
of multiple DT-CBFs as well as piecewise/non-smooth CBFs
as mixed-integer constraints using SOS-1 constraints (cf.
Definition 1) as an alternative to the work in [17], [20]-[22].

First, we consider three basic Boolean operations for com-
position of multiple control barrier functions {hi(x)}iEZ; ,
i.e., - (negation), A (conjunction) and V (disjunction), where
h; : R - R, Vi € Zj\', are scalar-valued functions. The
negation operator is trivial and can be shown by checking if
—h;(z) satisfies the invariance property. Formally, we have

=(hi(x) > 0) = hy(z) <O0. @)



As for the disjunction operator V, we can represent them as
VY i) > 0= {Vi € 74+ hi(x) > s;,S08-1 : {s;,b;},

bie {01 bi=1}, ®
with s; being a slack variable, which ensures that there exists
at least one j € Z}; such that h;(z) > 0. Moreover, for the
conjunction operator A, we have

AN hi(z) > 0= {W € 74 : hi(z) > 0}, )

which enforces that h;(z) > 0 for all j € Z},.

By leveraging the above three basic Boolean operations,
we can further compose the following three secondary
Boolean operations found in Boolean algebra:

hl(l‘> — hj(a:) £ ﬁhz(l‘) V hj(.’l?), (10)
hi(z) ® hj(z) 2 (hi(z) V hy(2)) A =(hi(2) A (), (1D
hi(z) = hj(z) = ~(hi(x) © hy (), (12)

which represent the implication, exclusive or and equivalence
operations of a pair of control barrier functions h;(z) and
hj(x), respectively, where we suppressed the > 0 terms in
the above for the sake of brevity and clarity.

Finally, we consider the composition of piecewise control
barrier functions that enable us to represent more com-
plicated non-convex safe sets, e.g., for the lane keeping
problem in Section IV. Specifically, given a partition of the
domain | ieg P; (cf. Definition 2), where each subregion is
represented by the inequality p;(z) < 0, the partition/mode-
dependent control barrier function can be expressed by an
if-else statement in the form of ‘h;(xy) > 0 if pj(z) < O
that can be written using the implication operator as

pj(z) <0 —= hj(z) & —(pi(x) <0)V h;i(z). (13)

Then, with the negation and disjunction operators defined in
(7) and (8), we can encode (13) as mixed-integer constraints.

Similar to the discussion above on the tractability of the
controlled invariance condition when added as a constraint
in an optimal control problem, we will define a piecewise
DT-CBF for partially control affine systems in (1) that leads
to mixed-integer linear constraints, as follows:

Definition 6 (Piecewise Partially Affine DT-CBF). Consider
a discrete-time control affine system with additional structure
in (1). Suppose there exists a partition (cf. Definition 2) of the
(safe) set S in (2) with nonlinear mappings r; : R™ — R™?
and \; :R™ =R, j=1,...,|T| as follows:

s=J{2 El} € R™ | pj(x) & (x1) zo + Aj(z1) < 0},
jes ?

where J = {1,...,|TJ|}, |T| is the number of partitions and

pi(z) <0 & pi(x) > 0,Yj # i € J. Then, the piecewise

function hp : R™ — R satisfying

pa (1) T + m (1), if pr(x) <0,

w7 (x1) T ze + 7 (x1), ifpgi(z) <0,

is called a piecewise partially affine DT-CBF for the set S,

if 3u € U such that Vx € S, hp(f(x) + §(x)u) >0,
sup hp(f(z) + g(z)u) >0, Vo € S,
uelU

~.

.e.,

and equivalently, for all j € 7,
sup pi(fr(@) T (f2(2) + g(z)u) +;(f1(2)) = 0,
if £5(f1(2) T (f2(2) + g(x)u) +A; (fr(z)) <0,

where pi; : R™ — R™ and n; : R™ — R can be any
nonlinear mappings. Moreover, we define the corresponding
(safe) piecewise affine input set

KE(z)={u € U: p;(f1(2)) (fo(x)+g(@)u)+n;(f1(x))>0
if 5;5(f1(2) (f2(2)+g(@)u)+X;(f1(2) <0, Vj e T}
(16)

Remark 2. It can be observed that the controlled invariance
condition in (15) is piecewise control affine. Hence, when
incorporated as a constraint in an optimal control formula-
tion with a linear/quadratic cost, the result is a mixed-integer
linear/quadratic program (MILP/MIQP). Similar results can
also be derived in a straightforward manner when the system
dynamics are switched among a set of control affine dynamics
with additional structure, and thus, a detailed description is
omitted for the sake of brevity.

(15)

Moreover, since Theorem 1 and Proposition 1 hold for
(safe) sets S with well-defined functions, including piece-
wise functions (cf. (2)), the same results also apply to the
piecewise partially affine DT-CBF defined in Definition 6.

IV. APPLICATION TO DRIVING SAFETY PROBLEMS

A. Lane Keeping

The goal of the Lane Keeping (LK) problem is to keep a
vehicle in the middle of a desired lane that may be curved by
controlling the vehicle’s lateral displacement. The simulation
example conveyed in this work was largely inspired by
the LK example in [1], where the authors developed a
continuous-time CBF-based approach to solve this problem.
By contrast, we consider the development of a discrete-time
CBF approach and show that the resulting optimal control
problem is now a mixed-integer quadratic program (MIQP)
or, equivalently, two parallel quadratic programs (QPs), as
opposed to a single QP for continuous-time systems in [1].
Nonetheless, this discrete-time implementation is useful for
implementation in digital microprocessors/controllers.

Similar to [1], we consider the vehicle model in [24] (with
forward Euler time-discretization with sampling time ¢;):

Ty = (I 4+ Aty)z), + Btoug + Etgray.  (17)
where
0 1 Vo 0 0 0
Cr+Cp bCr—alC C
0 —=f 0 £Vo s
_ MV, MV, | = 10
A = O 0 1 5 B = 0 3 E = 71 .
bCr—aCy a?Cy+b2C, oSt 0
0 1:Vo B . Vo I,

The states )= [yr Ve Vi rk]T are the lateral displace-
ment of the car from the center of the lane (y;), the car’s
lateral velocity (vy), the yaw angle of the car with respect
to the lane center (¢5) and the yaw rate of the car (ry).



The input uy is the angle of the front tires at the current
time k. Road curvature is a known disturbance to the system
and the road curves at a rate of rq ) = RL‘;, where V) is
the longitudinal velocity of the vehicle and Ry is the radius
of curvature of the road at time step k. The parameters
M,I,,a,b,Cy; and C, are the vehicle mass, moment of
inertia about the center of mass, the distance from the center
of mass to the front and rear tires and tire parameters,
respectively. Further, we define ¢y £ % and ¢, £ &=
First, we put the system (17) into the control affine
with additional structure form in (1) with a reduced state

xp 2 [1‘1,k .IQ’k}T = [yk V;JT, where 1, and r; are

known/measured parameters, g(zx) = tscp, fi(ze) =
[1 ts] rr + tsVoyr and fg(xk) = {1 —ts%} Tr +
tsbw;%rk. Next, we consider two LK constraints:

1) Acceleration Constraint: The first constraint is to
prevent unbounded lateral acceleration aj, of the car:

1
1, > Umax, 5
|| (U1 —w)| <@ VEeN,  (18)

where v, = (yk+1 —yg) is the instantaneous lateral
velocity. From (17) we have & (vi1 —vp) = fo + cruy,
where Fy £ Cp %30 + O, Vk;frk +MVyrqy and fo £ 5o
So, the constraint (18) can then be written as
1 71] up < & [(MamerFo) (Mamaz—Fp)]". (AC)
2) Lane Centermg Constraint: This second constraint
keeps the car from drifting too far away from the middle

of the lane. This can be done by restricting the maximum
lateral displacement:

lYk| < Ymaz, Yk € N.

19)

As described in [1], a typical United States lane is 12 feet
wide while a car is about 6 feet wide, so the maximum lateral
displacement the car can safely experience is 3 feet to either
side, SO Ymae = 3 feet = 0.9 meters.

The next proposition proposes a piecewise partially affine
DT-CBF that can enforce the controlled invariance of the
lane centering constraint as a safe set, i.e., Spx = {z €
R2: (19) holds}, subject to the acceleration input constraint,
ie., U={u € R:(18) holds}.

Lemma 1. The function hr i : R? = R

hLK(x)=\/ 2maz (Ymaz —sg0(0)y) + 4a?m 2yl (20)

T . .
where © £ [y V] , v = v+ Vot is the instantaneous lateral
velocity and v' £ |v| + Lameats, and equivalently,

hik(x)= _
\/2amaw ymaw+xl)+4 max s) lf $2+Vb’lﬂ<0
(21
with x1 = y and o = v, is a valid piecewise partially

affine DT-CBF” in the form of (14) for the (safe) set Spx =
{z € R? : (19) holds}. Moreover, the corresponding (safe)

2Note that in the limit when the sampling time ¢ tends to zero, h% x (@)
(from (20)) becomes the continuous-time CBF in [1, Eq. (53)].

\/2am1n" ymar*xl)“i’ia?naxt%a #71‘27‘/01/)S05

piecewise affine input set Ks,, (x) in the form of (16) (cf.
Definition 6) for any xj = [yk Vk]T
set of inputs uy € U that satisfy

if 2z +tscpup > 0,
if 2 +tscpup <0,

€ S is given by the

ny — 2k — tsepup > 0,

M, + 2k +tscrup > 0, @2)

where n,f £ amaxts

\/2ama:v (ymaz + yk+1) + 4a72nart§
ZE = V(ﬂ/)k+1 + (1 4+ tsa)vg + tsfry, a = ——(cf +¢r),
B = - (be, —acy) = Vo, Yrr = Yp + ts(r — Ta k) and
Y41 = Y +ts(ve — Vouog), which can be implemented with
SOS-1 constraints (cf. Definition 1), as follows:

e — 2k — tscpup + 51 >0, 21, + tscpug + 51> 0,
M, + 2k +tscpug + S2 > 0, —z —tscpup +s2 > 0,
SOS-1: {s1,82}, s1,82 >0, (LC-CBF)

which are mixed-integer linear constraints in uy,.

Proof. First, we construct the safe set S by showing that
hri(x) > 0 is equivalent to (19). For any (initial) dis-
placement y and instantaneous velocity v, with the maximum
allowable acceleration/deceleration given a = — sgn(v)amaz
(cf. (18)) it takes time T = a"!:ltg to reach vy = 0. Corre-
spondingly, the furthest lateral displacement with maximum
acceleration/deceleration to come to a full stop is given by
yr =y + 2@ v|v\ + vt Taking the travel direction into
consideration usmg sgn( ), we can then impose the lane cen-
tering constraint in (19) as: sgn(v)yr = sgn(v)y+ 2a vi+
2|U‘t < Ymazx < +‘U‘amawt < 2amaw(ymaw Sgn( ) )

Completing the square yields (|v]+ 3 amasts)? — 2a2,,,t2 <
20maz (Ymaz — sgn(v)y), and con51der1ng its square root

leads to our choice of hpk(z) in (20). Intuitively, this
hrx(x) > 0 ensures that for any state z, there is enough time
in the future to come to a complete stop before reaching the
lane boundary. Since the system states are continuous, this
includes the case that the lateral displacement at the next time
step starting at y with velocity v does not violate the lane
centering constraint; thus, the controlled invariance condition
in (3) holds and A g is a DT-CBF for Sy, x. Moreover, this
DT-CBF in (20) can be easily shown to be equivalent to the
piecewise partially affine DT-CBF in (21) by considering the
two cases for sgn(v) = sgn(v + Vov)).

Next, we show that Ks,, can be expressed as mixed-
integer linear constraints using the composition tools for
piecewise functions (as discussed in Remark 2). Now,
for z, = [yk l/k} T (Z/k+1 - yk) With

A

Y41 = Yk + ts(vp + wak) and the definition nk £

1
\/2ama:c<ymaw $yk+1) + 4 mamt2 — §amaa:tm the con-
trolled invariance condition Ay, k (zk41) > 0 can be written
as a piecewise condition:
o L 2 > 0 f vy > 0,
m — S+ y’““ >0, if vp1 <0,

and v =

(23)

where yri2 = Y1+t Zk + t26fuk:, 2p = Vtﬂ/JkH +(1+
ts)vVg + tsfre, @ = —g-(cf+¢), B = (bcr acy) —

Vo and Y11 = Y + ts (]rk Td.k)- Then usmg (13), the
piecewise condition in (23) is equivalent to (LC-CBF). [
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Fig. 1: The vehicle must go around the obstacle to the left or
to the right. This is represented by two new lanes to follow.
The vehicle in this situation chooses to follow the right lane.

Next, we adopt the optimal control framework with
a quadratic cost and a legacy controller in [1] to select
the optimal input from the (safe) input set Ks, ., as follows:

Mixed-Integer Quadratic Program for LK: The DT-
CBF is combined with a linear feedback controller u; =
—K(zr, — x5y ), where K is a (legacy) controller gain and
zppr = [0 rdﬂT, as well as the acceleration and lane
centering constraints, (18) and (19), respectively, resulting
in the following mixed-integer quadratic program MIQP):

u; = argmin %u;Huk + FTuy, 24)

up=[ug,9]

s.t. (AC), (LC-CBF) hold and up=—K (zx—xffx)+9,

T

where ¢ is a relaxation variable such that the linear feedback
controller forms a soft constraint that is only achieved if the
required (safety) constraints are not violated, H € R2*2
is positive definite, and F' € R2. Note that if a mixed-
integer program is undesired, the controller in (24) can be
equivalently achieved with two parallel quadratic programs
with (LC-CBF) replaced by each of the conditions in (23),
where the smaller feasible solution of the two chosen as uj;.

B. Obstacle Avoidance

Next, we consider the Obstacle Avoidance (OA) problem
as an extension to the LK problem, where in the event that
there is an obstacle in the road lane, the vehicle avoiding the
obstacle to the left or right (cf. Figure 1) can be modeled by
an LK problem in which the lane splits into two lanes going
around the obstacle on either side, one with a curve rate
of r4, 1 and another with a curve rate of rg4, ;. Obviously,
the vehicle cannot remain in both lanes as they split around
the obstacle and we encode the choice between the left and
right lanes using a conjunction (‘OR’ or V) of two barrier
functions for each lane, i.e., with (hrx,; > 0)V (hpx» > 0).

Mixed-Integer Quadratic Program for OA: When incor-
porated into an optimal control framework as in (24), we
obtain another mixed-integer quadratic program by virtue of
the composition tools we developed in Section III-B:

uy = argmin %ukTHuk + FTuy
up=[ug,0] "

st.  ((AC) A (LC-CBF,)) V ((AC,) A (LC-CBF,.)),
up = =Kz, —xpp5) +6, 25)

Lateral Displacement Lateral Acceleration

i (9)

Fig. 2: Comparison between the proposed DT-CBF approach
(blue solid lines) and the CT-CBF in [1] (red dashed lines).

where (AC;) and (LC-CBF;) are (AC) and (LC-CBF) based
on rq, i, respectively, while (AC,.) and (LC-CBF,.) are based
on 74, . Similarly, the controller (25) can be equivalently
designed using four parallel quadratic programs, where the
smallest feasible solution is chosen as uj;.

C. Simulation Results

We consider the following parameter values in the simu-
lations of both the LK and OA problems: V) = 8.33 m/s,
Cy = 133000 N/rad, C, = 98800 N/rad, M = 1650 kg,
a=111m,b=1.59 m, I, = 2315.3 m?kg, g = 9.81m/s?,
Gmazr = 0.3¢g and ts = 0.01 s. The feedback gain K
was determined to place the poles at {0.95,0.8,0.85,0.9}
using MATLAB’s place command. All simulations were
implemented in MATLAB 2020a with Gurobi v9.1.1 [23]
on a 2.6GHz Intel Core i7-10750H CPU with 16GB RAM.

1) LK Problem: First, we demonstrate and compare the
effectiveness of our DT-CBF approach for the LK problem
with the continuous-time approach in [1] (CT-CBF). As
shown in Figure 2, with the initial state set to xg =
[0.5 00 O] , the lateral displacement and acceleration for
both DT-CBF and CT-CBF stay within the desired bounds
of £0.9 m and +0.3g, respectively, but their behaviors are
rather different. The lateral acceleration with the DT-CBF is
more “aggressive,” but the lateral displacement remains much
closer to zero, meaning the vehicle stays closer to the center
of the lane, as desired. On the other hand, the vehicle drifts
up to approximately 0.4 meters from the center of the lane
once the road starts to curve at ¢ = 10 seconds with the CT-
CBF. Further, since the control input is roughly proportional
to the lateral acceleration, it appears that smaller inputs are
needed in the long run when using the DT-CBF.

In terms of the computation times of the optimization
problems corresponding to the CT-CBF in [1] (with a single
QP), the DT-CBF (i.e., (24) with an MIQP) and the DT-CBF
based on solving two parallel QPs (with (LC-CBF) replaced
by each of the piecewise conditions in (23)), the average
elapsed times were 0.0320, 0.0360 and 0.0522 seconds,
respectively. As expected, solving a single QP when using
CT-CBF is the fastest but its performance is dependent on
the choice of its class K function «, while the performance
of DT-CBF is independent of the choice of a but at the cost
of slightly more computation.

2) OA Problem: An example scenario for the obstacle
avoidance problem is while driving down a road and noticing
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Fig. 3: The lateral displacement (left) of the car is bounded by 0.9 meters from the chosen lane. The lateral acceleration
(middle) is bounded by 0.3g. The barrier function (right) that was chosen in the conjunction (‘OR’) condition stays positive
throughout the simulation (blue solid line), while the other does not (red dashed line).

an obstacle up ahead where the vehicle either needs to go
around the obstacle to the left, or to the right. As opposed to
a vehicle following a curved road and staying within a safe
distance of the road center, the road is simulated to curve
in two opposite directions 14, ; and rq, » = —74, , and the
vehicle can choose whether to avoid the obstacle by driving
around it to the left or right (assuming no other obstacles).

To simulate this OA problem, we implemented the mixed-
integer quadratic program in (25) with the initial condition
set to xg = [—0.8 00 O]T, and the results are shown in
Figure 3, where the lateral displacement and lateral acceler-
ation remained within the desired constraints, as expected.
Moreover, for the chosen lane (to the right in this case), the
control barrier function A for that lane (cf. Figure 3, right,
blue solid line) remained positive, but not for the other barrier
function (red dashed line). Moreover, from running several
simulations, it appears that the vehicle decides the lane based
on the lateral direction it is already accelerating in.

V. CONCLUSION

A novel formulation for control barrier functions for ensur-
ing the safety of discrete-time systems was presented and was
shown to be necessary and sufficient for controlled invariance
and less restrictive than existing formulations. In addition,
we proposed nonlinear DT-CBFs for partially control affine
systems, whose controlled invariance conditions are affine in
the control input, which means that they can be included as
tractable affine constraints in safety optimal control problems
for a broader range of applications and safety conditions than
the state-of-the-art. Furthermore, we derived mixed-integer
formulations for Boolean compositions of multiple CBFs as
well as for piecewise CBFs. Finally, these new sets of DT-
CBF tools were applied and tested in simulations for lane
keeping and obstacle avoidance in driving safety.
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