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Abstract—In this paper, a neural network based terminal
iterative learning Control (NNTILC) method is proposed for
a class of discrete time linear run-to-run systems to track
run-varying reference point. An iterative training radial basis
function (RBF) neural network is developed to estimate the effect
of initial condition on terminal output and to learn the changes
in initial condition iteratively at the same time. By involving these
information in the control scheme, the proposed NNTILC can
drive the system to track run-varying reference point fast and
precisely beyond the initial disturbance and reference change.
Stability and convergence of this NNTILC method is proved and
computer simulation result is provided to confirm its effectiveness
further.

I. INTRODUCTION

Iterative learning control (ILC), initially proposed by Ari-
moto [1], is a control scheme that updates and refines the con-
trol sequence by errors in the last trial for repetitive operation
systems. It has been successfully used into repetitive process
in industry [2], [3], [4]. The development and methodology of
ILC can be found in [5], [6], [7].

However, the ILC approach works based on the mea-
surement signal in the entire trajectory which may not be
accessible in some real industry cases. In order to overcome
this problem, Chen et al. [8] developed a terminal iterative
learning control (TILC) method. TILC adjusts the set point
of repetitive systems based only on the terminal errors in
the previous trials instead of the tracking error in the whole
trajectory. By doing so, the idea of ILC is successfully applied
into systems focus solely on terminal output. Investigations
[9], [10] have shown that TILC can achieve convergence in
iteration domain.

In previous works, most ILC and TILC approaches consider
only the cases for tracking run-invariant fixed reference. Then
ILC and TILC can update the controller based on errors run
by run to track the fixed reference or trajectory. However, this
makes the control scheme quite depend on the reference, that
is, once the reference changes, the controller has to learn again
with another learning process.

Moreover, TILC approach requires to set the initial condi-
tion to exactly the same value in every run[11], [12], which
also limits the application of TILC in industry. Previous works
in ILC solve the problem through the following methods.

1) ILC with initial state learning scheme[13], in which the
controller learns the initial condition firstly in every runto
make the initial condition the same in every run; 2) Multirate
ILC schemes [14], in which the input update rate is different
from the sampling rate of feedback system or the input update
rates of ILC are different at low and high frequency bands;
3) Cutoff frequency phase-in profile[15], in which the cutoff
frequency of the filter for tracking error is time-varying and
follows a predefined profile. However, the above scheme is
complicated for realization and the performance is not quite
good.

In this paper, a neural network based terminal iterative learn-
ing control (NNTILC) method is proposed to solve the prob-
lems of initial condition disturbance and tracking run-varying
reference point. Neural network has been proved to be efficient
in function approximation and parameter estimation[16]. So in
this paper the effect of initial condition on the terminal output
is estimated by a neural network, and at the same time the
pattern change of initial condition is also learned iteratively.
Then by conducting the control law involving the effect of
initial condition as well as the reference information, the
system can track the run-varying reference fast and precisely
beyond the initial disturbance and reference change. Consider-
ing that initial condition may not be accessible for parameter
estimation in the same run, a RBF neural network is introduced
to estimate the effect using the signal in the last trail taking
the advantage of repetitive operation systems and repetitive
disturbance. Convergence analysis of the proposed method
is derived mathematically, and simulation results confirm the
effectiveness of the proposed NNTILC method further.

The remainder of this paper is organized as follows. In
section II, the structure of the problem is introduced and atthe
same time a new NNTILC controller is designed. In section
III, convergence analysis of the proposed NNTILC method
is derived. Section IV presents computer simulation results
to illustrate the effectiveness of NNTILC method and also
compares its performance with conventional TILC method.
Section V draws some final conclusions.
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II. PROBLEM FORMULATION AND CONTROLLER DESIGN

Consider a class of discrete time dynamical linear systems
as follows:

xk(t+ 1) = Axk(t) +Buk(t)

yk(t+ 1) = Cxk(t+ 1) (1)

where t = 0, 1, 2, ..., T is the sampling index andk is the
iteration index. MatricesA, B andC are time invariant with
appropriate dimensions;xk(t) ∈ Rp is the state vector,yk(t) ∈
Rn is the output vector, anduk(t) ∈ Rm is the control vector
at thet− th sampling time in thek− th run. The system runs
on time interval[0, T ]. In run-to-run control, the control input
is required to be a constant at all sampling times in the same
run, i.e.,uk(t) = uk for all t = 0, 1, 2, ..., T .

The proposed controller in this paper aims to track a single
terminal pointrk at T in the k − th run. The system is both
controllable and observable.

From (1), the relationship between the system terminal
outputyk(T ) and initial statexk(0) can be developed as

yk(T ) = Fk + B∗uk (2)

whereB∗ =
T−1
∑

m=0

CAT−1−mB andFk = CATxk(0) is the

effect ofxk(0) on the terminal output. It should be noted that
B∗ is full rank, because the system is both controllable and
observable. What is more, the initial condition in this paper
is run-varying with repetitive bounded noise;Fk is unknown
becausexk(0) is not accessible in thek − th run.

The tracking error of the system is defined as

ek = rk − yk (3)

whererk = f(k) is the terminal single reference point at time
instant T , which is run-dependent withk. f(·) can be any
function of k.

Substitute (2) into (3), the tracking error dynamic of the
system becomes

ek = rk − Fk −B∗uk (4)

In this proposed NNTILC, a RBF neural network is intro-
duced to estimateFk by usingxk−1(0).

It is assumed that there exist an ideal function ofxk−1(0)
and neural network which make

Fk = CATxk(0) = F (xk−1(0)) = WT
Dφ(xk−1(0)) (5)

whereF (·) denotes the ideal function,WT
D ∈ Rn×L is an

unknown optimal NN weights matrix,L denotes the number
of neurons in the hidden layer,φ(·) denotes a known vector of
basis activation function andφ(xk−1(0)) ∈ RL is the output
of the neural network’s hidden layer.

Remark 1: ILC and TILC are usually used into repetitive
operation systems. The resetting pattern and disturbance of
initial state is also repetitive. So it is reasonable to assume
that this repetitiveness can help to estimatexk(0) by xk−1(0).

The basis activation function is chosen as

φi(x) = exp

(

−
‖x− µi‖

2

2σ2
i

)

(6)

whereµi ∈ Rp andσi are the centre and width of thei− th

hidden neuron, receptively,i = 1, 2, ..., L. In this paper, only
the weight matrix is updated iteratively. The centre and width
of the hidden neurons can be initialized by several history data
or chosen randomly around the reference trajectory.

The approximation ofF (xk−1(0)) in the k − th run is

F̂ (xk−1(0)) = ŴT
k φ(xk−1(0)) (7)

whereŴT
k is the estimation of NN weight matrix in thek−th

run.
SinceB∗ is full rank, the control law then can be con-

structed as

uk = B∗−1[rk − ŴT
k φ(xk−1(0))] (8)

Substitute (8) into the system dynamic (2),

yk = Fk + rk − ŴT
k φ(xk−1(0)) (9)

From (9), it is obvious that as long as our neural network
can approximateFk precisely, the output of the system will
track exactly the reference.

In order to train the neural network, another neural network
updating law is introduced as

ŴT
k+1 = ŴT

k − αekφ
T (xk−1(0)) (10)

whereα is a learning gain, which affects the convergence of
the proposed method.

III. C ONVERGENCEANALYSIS

Theorem 1: For MIMO discrete-time linear system (1), if
theα in the (10) satisfy0 < α < 2

L
, whereL is the number of

neurons in hidden layer of the neural network, then the control
law (8), along with the neural network updating law (10), can
guarantee that

1) the weight matrixWT
k of the RBF neural network is

convergent in the sense of Lyapunov function(W̃T
k+1

W̃k+1 −

W̃T
k W̃k) ≤ 0.
2) the terminal tracking errorek converges to zero asymp-

totically ask approaches infinity.
Proof: From (5), it is obvious that there exist an ideal

weight matrixWT
D , which makes

Fk = WT
Dφ(xk−1(0)) (11)

Substitute the control law (8) and (11) into the error
dynamic (4), yields

ek = rk −WT
Dφ(xk−1(0))− rk + ŴT

k φ(xk−1(0))

= W̃T
k φ(xk−1(0)) (12)

whereW̃T
k = ŴT

k −WD is the weight estimation error of the
neural network.
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SubtractWT
D from both side of the NN updating law (10),

it is easy to get

W̃T
k+1 = W̃T

k − αekφ
T (xk−1(0)) (13)

From (6), it can be derived thatφ(·) satisfies

0 ≤ φi(·) ≤ 1, i = 1, 2, ..., L (14)

whereφi(·) is the i− th entry ofφ(·).
Since there areL neurons in the hidden layer, i.e.,φ(·) ∈

RL×1, together with (14), it is obvious that

0 ≤ φT (xk−1(0))φ(xk−1(0)) ≤ L (15)

for any k.
Define energy function as

J = trace(W̃T
k+1W̃k+1) (16)

then
∆J = trace(W̃T

k+1W̃k+1 − W̃T
k W̃k) (17)

From (13), the Lyapunov function can be constructed as in
(17) which is shown at the end of this page.

Simplify (17), together with (12), the the Lyapunov function
becomes

∆J = trace
[

−2αeTk ek + α2ekφ
T (xk−1(0))φ(xk−1(0))e

T
k

]

≤ trace
[

−2αeTk ek + α2LeTk ek
]

= α (αL− 2) · trace
(

eTk ek
)

= α (αL− 2) eTk ek
(18)

By choosing

0 < α <
2

L
(19)

Together with (18), it can be derived that

∆J ≤ α (αL− 2) eTk ek < 0 (20)

By using (18) repetitively, (18) can be rewritten into

trace(W̃T
k+1

W̃k+1)

≤ tarce(W̃T
0 W̃0)−

k
∑

i=0

α (αL − 2) eTi ei
(21)

SinceW̃T
k+1

W̃k+1 is non-negative and bounded, from (21),
together with (19)

lim
k→∞

α (αL − 2) eTk ek = 0 (22)

(15) implies thatα (αL− 2) is bounded and non-zero, so
from (22)

lim
k→∞

eTk ek = 0 (23)

IV. SIMULATION

In order to illustrate the effectiveness of the proposed
NNTILC scheme thoroughly, simulations on SISO system and
MIMO system are done separately in this section.

What is more, the performance of the proposed NNTILC
method and the conventional TILC method, whose control
updating law is constructed as equation (24), are compared.

uk+1 = uk + l · ek (24)

whereuk+1 anduk are control input in the(k + 1)− th and
k− th run respectively,ek is the terminal tracking error in the
k − th run, andl is the learning gain.

In this section, both of the parametersα andl are chosen by
trail and error. In NNTILC,α affects the convergence accord-
ing to theorem 1. In order to guarantee a more flexible choice
of α, the number of hidden neurons should be as small as
possible. Usually, a largerα comes with a faster convergence
rate. Butα should not be too large since overshoot may be
introduced as a result.

Besides, the activation function as shown in (6) is adopted
in this simulation. The neural network is initialized randomly
with 3 hidden neurons and the centres being chosen around
the reference trajectory.

A. Simulation on SISO System

Firstly consider the following discrete time SISO system

xk(t+ 1) =





0.5 0.035 0.025
0.255 0.6 −0.99
0.75 0.03 0.025



 xk(t)

+
(

0.2 0.2 0.0
)T

uk(t) (25)

yk(t) =
(

1.0 0.0 1.0
)

xk(t) (26)

where the system operates on time interval[0, 5]s for every
run.

Case 1: Tracking Run-invariant Terminal Reference Point

In this simulation, the NNTILC approach and the con-
ventional TILC method are used for tracking run-invariant
terminal reference pointydk = rk = 10 at T = 5 for everyk,
with α = 0.6 andl = 1.0. Here, a random noise is added to the
initial conditionx0 as shown in Fig. 1. The output curve in the
30th run of NNTILC and tracking error in iteration domain
and are shown in Fig. 2. The simulation result shows that in
iteration domain NNTILC performs a faster convergence rate
than conventional TILC, and the tracking error converge to
zero homogeneously. It is also shown that NNTILC approach
can suppress the effect of changes and disturbance in initial
condition effectively.

∆J = trace(W̃T
k+1

W̃k+1 − W̃T
k W̃k)

= trace
[

W̃T
k W̃k − αW̃T

k φ(xk−1(0))e
T
k − αekφ

T (xk−1(0))W̃k + α2ekφ
T (xk−1(0))φ(xk−1(0))e

T
k − W̃T

k W̃k

] (17)
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Fig. 1. Initial condition in different run
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Fig. 2. Performance for Tracking run-invariant terminal reference

Case 2: Tracking Run-varying Terminal Reference Point

In this simulation, the NNTILC approach and conventional
TILC method are used for tracking run-varying reference
points as shown in Fig. 3. Random noise as shown in Fig.
1 is also adopted here. The controller works withα = 0.65
and l = 1.5. Fig. 3 illustrates the terminal output curve and
tracking error in iteration domain. The figure shows the supe-
rior performance of NNTILC in tracking run-varying reference
point. As we can see, the tracking error of NNTILC converge
to zero very fast within 5 runs and can track it quite precisely
afterwards, however, the tracking error of conventional TILC
performs period property without converging. On the other
hand, the convergence rate of NNTILC in this case is also
better than conventional TILC.
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Fig. 3. Performance for Tracking run-varying reference

B. Simulation on MIMO system

Next, consider a MIMO system, which can be represented
by

xk(t+ 1) =





0.5 0.035 0.025
0.255 0.6 −0.99
0.75 0.03 0.025



 xk(t)

+

(

0.2 0.03 0.025
0.2 0.2 0

)T

uk(t) (27)

yk(t) =

(

1.0 0 1.0
0 0 1.0

)T

xk(t) (28)

the system also operates on time interval[0, 5]s for every run.
In this simulation, the NNTILC method and the conven-

tional TILC method are used into the above MIMO system
for tracking run-varying reference points as shown in Fig.
5. Random noise as shown in Fig.4 is added to the initial
condition. The tracking error of both NNTILC method and
conventional TILC method are given in Fig. 6. The controllers
work with α = 0.6 and l = 0.8. The simulation results
show that our proposed NNTILC method can be successfully
used into MIMO systems. As shown in Fig. 6, for each
output, the NNTILC converge quite fast. Whereas the error
of conventional TILC method is much larger than NNTILC
method.

V. CONCLUSION

For discrete time linear systems with run-varying initial
state and reference point, a new neural network based terminal
iterative learning control (NNTILC) method is proposed. This
method uses a RBF neural network to estimate the effect of
initial state on the terminal output and learn the change in
initial state iteratively. By involving this information into the
control scheme, NNTILC can converge very fast and track
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run-varying reference point precisely beyond initial noise and
reference change. The convergence of the method is derived,
and the simulation results confirm the effectiveness of the
proposed NNTILC method further.
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