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Abstract. In this paper, the rest-to-rest reorientation problem of the
uncertain spacecraft in the presence of multiple attitude constrained
zones and angular velocity limitations is studied. In order to deal with
attitude constrained zones and angular velocity limitations concurrently,
two types logarithmic potential functions are proposed, where the ineffec-
tive attitude constraints are excluded in the design of attitude potential
function by introducing a warning angle. In addition, we also designed
a projection operator-based adaptive law to estimate the upper bounds
of the environmental disturbances and the inertia uncertain parameters,
so that the estimation process conforms to the physical meaning of the
parameters. Combining the two potential functions and the parameters
adaptation law, an adaptive controller is constructed to asymptotically
stabilize the attitude reorientation error while satisfying the attitude
constraints and the angular velocity limitations. Simulation example of
an uncertain rigid spacecraft with rest-to-rest attitude maneuver subject
to constraints on attitude and angular velocity is carried out, and the
obtained results verify the effectiveness of the proposed adaptive attitude
controller.

Keywords: inertia uncertainty, attitude constraint, angular velocity con-
straint

1 Introduction

The spacecraft attitude control is to reorientate the spacecraft to a desired
orientation. Continuous efforts have been made to improve the performance and
autonomy of the spacecraft attitude control, such as inverse optimal control
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[1], adaptive control [2], fuzzy adaptive control [3], backstepping control [4],
integral-type sliding mode control [5], nonlinear model predictive control [6] and
others. To improve the safety and maneuverability, large angle reorientation
under attitude and angular velocity constraints as well as inertia uncertainties
has been extensively studied recently.

The scientific spacecraft is often equipped with light-sensitive payloads, such
as telescope and interferometer, which are required to change its pointing di-
rection while keeping away from exposing to bright celestials. There are two
main methods for solving this constrained attitude control problem, i.e., path
planning-based method and potential function-based method. Since path planning-
based strategies [7] have complex structure and expensive computation, it is not
conducive to spaceborne calculation. In contrast, the potential function-based
method incorporate the negative gradient of artificial potential into the controller
design, resulting in an analytic attitude controller that is suitable for real-time
on-board computation. In [8], a Gaussian function-based potential function was
used for spacecraft attitude controller design. In [9], Lee constructed a con-
vex logarithmic-type potential function, with which an attitude controller that
guarantees asymptotic error convergence and satisfies attitude constraints result
from attitude forbidden and mandatory regions. In [10], a quadratic potential
function was proposed to parametrize attitude-constrained zones. In [11], taking
the pointing direction deviation of sensitive equipment into account, a robust
logarithmic potential function was utilized to design a virtual attitude controller
while avoiding attitude-constrained zones.

Another practical constraint in spacecraft attitude controller design is the
pre-defined bound of angular velocity determined by performance requirement or
saturation limit of rate gyros. To satisfy the angular velocity constraint, Wie de-
veloped a cascade quaternion feedback controller for large angle slew problem by
using saturation functions [12], whereas the stability analysis was not provided.
In [13], a nonlinear attitude controller combined with a control allocation scheme
was proposed to achieve attitude stabilization despite actuator saturation lim-
itation and angular velocity constraints. In [14], a bounded adaptive controller
was designed to achieve attitude stabilization of spacecraft subject to angu-
lar rate constraint, where the neural network approximation and command filter
accounting for actuator saturation compensation and the assigned angular veloc-
ity respectively are utilized. In [15], the fault-tolerant attitude tracking problem
was studied when there are actuator failures and angular velocity constraints in
controller design. In [16], Shen presented an adaptive controller to solve the con-
strained rigid body reorientation problem, where multiple attitude-constrained
zones and angular rate limits are taken into account. However, the aforemen-
tioned methods do not consider the spacecraft inertia uncertainty, which may
deteriorates the control performance.

In this paper, we proposed an adaptive attitude controller to achieve asymp-
totic redirection for inertia uncertain spacecraft in the presence of attitude-
constrained zones and angular velocity constraints. First, two logarithmic po-
tential functions are constructed to describe potential fields of attitude con-
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straints and angular velocity limitations, respectively. Then, an adaptive atti-
tude controller considering inertia uncertainty is designed to stabilize the space-
craft asymptotically. Finally, the effectiveness of the proposed adaptive attitude
controller is verifed by using numerical simulation of a rest-to-rest attitude ma-
neuver. The main contributions of this paper are summarized as follows:

(1) In contrast to the existing potential function-based attitude controllers [8–
10, 16], the proposed adaptive controller can not only satisfy the attitude
and angular velocity constraints, but also deal with the inertia uncertainty
and external disturbances of spacecraft, thus improving the performance of
the controller.

(2) The warning angle is introduced into the attitude potential function design,
which can speed up the convergence rate of the error.

(3) The proposed adaptive controller uses a smooth projection operator to de-
sign the adaptation law for inertia uncertainty and external disturbances,
making the estimated parameters closer to their physical values.

2 Preliminaries

2.1 Spacecraft Dynamic Model

The attitude of spacecraft is described by unit quaternion given by

Qu = {Q =
[
qT , q0

]T ∈ R3 × R | qTq + q20 = 1}, (1)

where q ∈ R3 and q0 ∈ R represent the vector part and scalar part, respectively.
Let Qd ∈ Qu denote the desired attitude. The unit-quaternion error Qe =

[qe1, qe2, qe3, qe0]
T

=
[
qTe , qe0

]T ∈ Qu can be obtained as Qe = Q∗d � Q =[
qTe , qe0

]T
, where � is the quaternion multiplication operator, and quaternion

conjugate or inverse is defined as Q∗ =
[
−qT , q0

]T
. Moreover, we denote ωd as

the desired angular velocity in the desired reference frame N . Note that this
paper focuses on the rest-to-rest reorientation control, and hence ωd = 0.

Then, the kinematics and dynamics of the spacecraft with inertial uncertainty
can be described as [17]:

Q̇e =
1

2

[
S (qe) + qe0I3

−qTe

]
ω (2)

Jω̇ = −S(ω)Jω + u+ d, (3)

where ω ∈ R3 is the angular velocity of the spacecraft in the body frame B with
respect to an inertial frame I, the matrix S(x) ∈ R3×3 denotes a skew-symmetric
matrix, u ∈ R3 is the resultant control torque acting on the spacecraft, the
environmental disturbance is denoted as d ∈ R3.

Assumption 1 The external disturbance d is assumed to be upper bounded by
‖d‖ ≤ dmax with dmax being a positive scalar, and ‖∗‖ is the Euclidean norm.
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The uncertain inertia matrix J ∈ R3×3 of the spacecraft is decomposed as

J = J0 + J1, (4)

where J0 and J1 denote the nominal/known part and unknown part of the inertia
J , respectively. Here, we also assume that J1 is bounded, i.e, ‖J1‖ ≤ J1,max.
Then, the dynamics in (3) can be further written as

J0ω̇ = −S(ω)J0ω + u+ d− J1ω̇ − S(ω)J1ω. (5)

Motived by [17], the following lemma is developed:

Lemma 1. The nonlinear term d− J1ω̇ − S(ω)J1ω in (5) satisfies

‖d− J1ω̇ − S(ω)J1ω‖ ≤ Dh(qe,ω), (6)

where the scalar D
∆
= max(‖d‖ + D0‖J1‖, (D0 + r4)‖J1‖) being an unknown

positive constant satisfies ‖D‖ ≤ Dmax, and h(qe,ω) = 1 + ‖qe‖+ ‖ω‖+ ‖ω‖2.

Proof. According to the kinematics (2) and dynamics (3), ω̇ can be expressed
as a function of qe, ω and u, i.e, ω̇ = f(qe,ω,u). Since u can be expressed as
u = g(qe,ω), we have

ω̇ = f(qe,ω, g(qe,ω)).

Assuming that the function f is linear with respect to qe, ω, ωTω, then taking
Euclidean norm on both sides of the above equation yields

‖ω̇‖ ≤ r0‖ω‖+ r1‖ω‖2 + r2‖qe‖+ r3

≤ D0(1 + ‖qe‖+ ‖ω‖+ ‖ω‖2),

where r0, r1, r2 and r3 are unknown positive constant, D0 = max(r0, r1, r2, r3).
Consequently, the following inequality holds:

‖d− J1ω̇ − S(ω)J1ω‖ ≤ ‖d‖+ ‖J1‖‖ω̇‖+ r4‖J1‖‖ω‖2

≤ ‖d‖+D0‖J1‖(1 + ‖qe‖+ ‖ω‖+ ‖ω‖2) + r4‖J1‖‖ω‖2

≤ ‖d‖+D0‖J1‖+D0‖J1‖‖qe‖+D0‖J1‖‖ω‖+ (D0 + r4)‖J1‖‖ω‖2

≤ Dh(qe,ω),

where D
∆
= max(‖d‖+D0‖J1‖, (D0 + r4)‖J1‖).

Since the unknown positive constant r4, ‖d‖ and ‖J1‖ are bounded, the
unknown positive constant D can be assumed to satisfy ‖D‖ ≤ Dmax with Dmax

being an unknown positive constant.

2.2 Attitude Constrained Zones

Definition 1 (Attitude-Constrained Zone [9]). The attitude-constrained
zone is defined as the set of attitudes that spaceborne sensitive instrument (e.g.,
infrared telescopes or optical instruments) directly exposes to certain celestial ob-
jects (e.g., the sun). Multiple constrained zones can be specified with respect to a
single spaceborne equipment boresight vector.



Adaptive attitude control of uncertain spacecraft 5

Bright 

Object

j

i

j

i

z

i
y

jx

Fig. 1: Demonstration of attitude constrained zone.

Supposing that the pointing direction of sensitive instrument is expressed
as yi in the body frame B, the corresponding pointing direction is the inertial
frame I is derived by

y′i = Q� yi �Q∗ = yi − 2(qTq)yi + 2(qTyi)q + 2q0(yi × q). (7)

As depicted in Fig. 1, xj is the normalized vector pointing toward a certain
bright object in the inertial frame I. In order to avoid direct exposure to the
bright object, the angle between the y′i and xj (i.e., βji ) is required to be strictly

greater than θji . That is, the constraint βji > θjiwith 0 < θji < π should be
maintained, which can be formulated as

xj · y′i < cos(θji ). (8)

Substituting (7) into (8) leads to

2qTyiq
Txj − qTqxTj yi + q20x

T
j yi + 2q0q

T (xj × yi) < cos(θji ). (9)

Then, the constraint (9) can be further written as [9]

QTM j
iQ < 0, (10)

where the matrix M j
i associated with the j-th celestial object and the i-th

sensitive equipment (i = 1, . . . , n and j = 1, . . . ,m) is defined as

M j
i =

[
Aj
i b

j
i

bjTi dji

]
, bji = xj × yi, dji = xTj yi − cos(θji ),

Aj
i =xjy

T
i + yix

T
j −

(
xTj yi + cos(θji )

)
I3.

(11)

As a consequence, the set of attitudes QF j
i
⊆ Qu that are outside of the j-th

attitude constrained zone for the i-th sensitive instrument can be described as

QF j
i

=
{
Q ∈ Qu | QTM j

i (θji )Q < 0
}
. (12)

Generally, we need to take into consideration the attitude-constrained zones
that are related to all n spaceborne sensitive instruments and their associated
m bright objects.
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In addition, the concept of warning angle is introduced to specify the neces-
sary attitude-constrained zones that are to be considered in the potential func-
tion design.

maxu

max
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Fig. 2: Demonstration of warning angle.

As shown in Fig. 2, the warning angle inspired by [11] can be obtained as

(θw)ji =
1

2

Jmax

umax
ω2
max + θji , (13)

where Jmax is the inertia of the major principal axis, umax is the maximum torque
acted to decelerate the spacecraft, ωmax is the maximum angular velocity.

Remark 1. The defined warning angle helps to exclude the ineffective attitude
constraints in the potential function design. To be more specific, if the angle
between the pointing direction vector y′i and the normalized vector xj pointing

toward a certain bright object is greater than the warning angle, i.e., βji > (θw)ji ,
the influence of the j-th attitude constrained zone to the i-th spaceborne sensitive
equipment can be ignored in the construction of the potential field.

2.3 Angular Velocity Constraints

In practical spacecraft missions, angular velocity constraints may be required
as a result of the limited measurement range of the rate gyroscopes or scientific
mission requirements. The set of allowable angular velocity is expressed as

W =
{
ω ∈ R3

∣∣|ωi| ≤ ωi,max

}
, (14)

where ωi,max(i = 1, 2, 3) is the limitation of allowable angular velocity for each
axis.

3 Problem Statement

The schematic diagram of the overall attitude control system is depicted in
Fig. 3, where two problems are to be solved in this paper:
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Problem 1. [Potential function] In view of the warning angle, design potential
functions for the attitude constraints and angular velocity constraints.

Problem 2. [Adaptive Control] Leveraging the proposed potential functions, de-
sign an adaptive attitude controller with the projection operator in the adaptive
law to achieve asymptotic attitude control despite the presence of the attitude
and angular velocity constraints.

 Controller:

Adaptive  control 

Spacecraft model 

with inertia 

uncertainty  

External disturbance
Attitude and angular 

velocity constraints

,d dq  ,e eq 

,q 

u

Fig. 3: The overall schematic diagram of the spacecraft attitude control system.

4 Potential Function Design

We solve the Problem 1 in this section, where two logarithmic potential
functions are proposed for attitude constraints and angular velocity limitations,
respectively.

4.1 Potential Function for Attitude-Constrained Zones

For the attitude constrained zones, a logarithmic potential function V1(Q) :
Qp → Qu is proposed as

V1(Q) = ‖Qd −Q‖2
[

m∑
j=1

n∑
i=1

−αkij log

(
− Q

TM j
i (θji )Q

2

)]
(15)

where α is a positive weighting constant, and the parameter kij relating to the
warning angle is defined as

kij =

{
0, if βji > θji
1, if βji ≤ θ

j
i

(16)

Remark 2. Compared with the existing potential function proposed in [11], the
proposed one in (15) considers the effects of the warning angle. When the i-th
spaceborne sensitive equipment points away from the corresponding j-th con-
strained zone, according to Remark 1, the j-th constrained zone can be ignore,
i.e., kij = 0. As a result, the unnecessary constrained zones are not taken into
account in the potential function design.
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Lemma 2 (Proposition 6 in [9]).
The potential function V1(Q) meets the following three conditions:

– V1 (Qd) = 0;
– V (Q) > 0, for all Q ∈ Qp\ {Qd};
– ∇2V (Q) > 0 is positive definite for all Q ∈ Qp.

4.2 Potential Function for Angular Velocity Constraint

In addition, to incorporate the angular velocity constraints defined in (14) in
attitude controller design, a logarithmic potential function V2 is designed as

V2(ω) =
1

2

3∑
i=1

log

(
ω2
i,max

ω2
i,max − ω2

i

)
. (17)

The above potential function satisfies the following lemma:

Lemma 3. The potential function V2(ω) has the following three properties:

– V2 (0) = 0;
– V2(ω) > 0, for all ω ∈W \ {0};
– ∇2V2(ω) > 0 is positive for all ω ∈W .

Proof. Based on the defined logarithmic potential function V2(ω), it is trivial to
verify that V2(0) = 0. In addition, the following inequality

ω2
i,max

ω2
i,max − ω2

i

> 1 (18)

holds for all ω ∈W \ {0}, which subsequently yields

log

(
ω2
i,max

ω2
i,max − ω2

i

)
> 0, (19)

hence, V2(ω) > 0, for all ω ∈W \ {0}.
As the third property of Lemma 3, due to the fact that the three terms in the

potential function V2(ω) are independent, it is sufficient to only have a detailed
analysis to one of the three terms. Taking ω1 as an example, we have

V2(ω1) = log

(
ω2
1,max

ω2
1,max − ω2

1

)
. (20)

The gradient of V2(ω1) can be calculated as

∇V2(ω1) =
ω1

ω2
1,max − ω2

1

. (21)

Consequently, the Hessian ∇2V2(ω1) can be given as

∇2V2(ω1) =
ω2
1,max + ω2

1

(ω2
1,max − ω2

1)2
> 0. (22)

Therefore, it is clear that ∇2V2(ω) > 0 if ω ∈W .
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5 Adaptive Controller Design

In this section, the Problem 2 is solved by leveraging the proposed potential
functions, leading to an adaptive attitude controller that realize the spacecraft
attitude redirection in the presence of inertia uncertainty. The adaptive controller
is designed as

u =S(ω)J0ω − k1qTe qeΦ
tanh(ω)

‖ω‖
− k2Φω − 2k3Φqe

+ k4ΦVec[(∇V ∗1 �Q)]− D̂maxh(ω, qe) tanh(Φ−1ω)

(23)

where Φ = λJ−10 with λ = diag{(ω2
1,max − ω2

1), (ω2
2,max − ω2

2), (ω2
3,max − ω2

3)},
and k1, k2 and k3 are positive constants, D̂max is the estimate of the unknown
scalar Dmax in Lemma 1.

To construct the adaptive law for D̂max, we assume that the unknown scalar
Dmax for D is also bounded. Define two convex sets as

ΩDmax
,
{
Dmax ∈ R | D2

max < ε
}
,

ΩD̂max
,
{
D̂max ∈ R | D̂2

max < ε+ δ
}
,

(24)

where ε > 0 and δ > 0 are two known constants. The updating scheme for D̂max

is given by
˙̂
Dmax = Proj(D̂max, Ψ), Ψ , h(ω, qe)‖Φ−1ω‖, (25)

where the projection operator is constructed as

Proj(D̂max, Ψ) ,

{
rΨ, if D̂2

max < ε

r(Ψ − (D̂2
max−ε)ΨD̂max

δD̂2
max

D̂max), if D̂2
max ≥ ε

(26)

where r is a positive constant. The above parameter updating law is locally
Lipschitz continuous and guarantees that the estimate D̂max is always within
the convex set defined in (24), i.e., D̂max ∈ ΩD̂max

if D̂max(0) ∈ ΩD̂max
.

The stability of the closed-loop attitude control system is summarized as
follows:

Theorem 1. Consider the attitude kinematics and dynamics of an inertia un-
certain spacecraft, as modeled in (2) and (5). The potential function-based atti-
tude controller in (23) combined with an adaptive law in (25) solves the Problem
2, so that limt→∞ qe(t) = 0 and limt→∞ ω(t) = 0 and that attitude and angular
velocity constraints are satisfied.

Proof. Choose the following Lyapunov candidate:

V = 2k3(qe
Tqe + (1− qe0)2) + 2k4V1 + V2 + VD, (27)
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where VD = 1
2r D̃

2
max, and D̃max = D̂max − Dmax is the estimation error of the

Dmax. Taking time derivative of V leads to

V̇ = 2k3qe
Tω + 2k4∇V T1 [

1

2
Q⊗ v (ω)] + ωTΦ−1J0ω̇ +

1

r
D̃max

˙̃Dmax. (28)

Then, in light of k3∇V T1 [Q⊗ v (ω)] = −k3ωTVec[∇V ∗1 ⊗ Q], substituting the
adaptive controller defined in (23) and adaptive law designed in (25) into the
foregoing equation yields

V̇ =2k3qe
Tω − k4ωTVec[∇V ∗1 ⊗Q] +

1

r
D̃max

˙̃Dmax

+ ωTΦ−1
(
− k1qTe qeΦ

tanh(ω)

‖ω‖
− k2Φω + k4ΦVec[(∇V ∗1 ⊗Q)]

− 2k3Φqe − D̂maxh(ω) tanh(Φ−1ω) + d− J1ω̇ − S(ω)J1ω
)
,

(29)

By substituting (6) further research can be obtained

V̇ ≤− k1‖qe‖2 − k2‖ω‖2 − D̃maxh(ω, qe)
∥∥Φ−1ω∥∥+

1

r
D̃max

˙̃Dmax

≤− k1‖qe‖2 − k2‖ω‖2 +
1

r
D̃max(

˙̂
Dmax − rh(ω, qe)

∥∥Φ−1ω∥∥)

≤− k1‖qe‖2 − k2‖ω‖2 +
1

r
D̃max(

˙̂
Dmax − rΨ)

(30)

which is negative semi-definite if

1
r D̃max

(
˙̂
Dmax − rΨ

)
≤ 0. (31)

According to the adaptive updating law of D̂max in (25), 1
r D̃max

(
˙̂
Dmax − rΨ

)
≤=

0 if ‖D̂max‖2 < ε. Furthermore, if ‖D̂max‖2 ≥ ε and ΨD̂max > 0, then we have

1

r
D̃max(

˙̂
Dmax − rΨ) =

1

r
D̃max(r(Ψ − (D̂2

max − ε)ΨD̂max

δD̂2
max

D̂max)− rΨ)

= −(
(D̂2

max − ε)ΨD̂max

δD̂2
max

D̃maxD̂max) ≤ 0

(32)

Since D̃maxD̂max = D̂2
max −DmaxD̂max ≥ 0 when D̂2

max ≥ ε. Therefore, we have
the result that (31) is satisfied by using the proposed adaptive law. Therefore,
we have that V̇ satisfies

V̇ ≤− k1‖qe‖2 − k2‖ω‖2 ≤ 0. (33)

Consequently, by invoking Barbalat’s Lemma [19], it is clear that limt→∞ qe(t) =
0 and limt→∞ ω(t) = 0.
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Remark 3. Note that in (23), the term of the positive scalars k1 and k3 are
related to the attitude convergence rate, when their values are increased, the at-
titude convergence speed will be accelerated, but excessive angular velocity cause
the sensitive equipment to enter the attitude constrained zones. The scalars k2
and k4 are analogous to the damping terms. When the angular velocity increases,
the degree of damping increase, making the state trajectory smoother. In ad-
dition, k4 represents the influence of the attitude-constrained zones. When k4
becomes larger, it is easier to avoid the attitude-constrained zones.

6 Simulation Results

The nominal part inertia of spacecraft is

J0 =

20 0 0
0 15 0
0 0 20

 kg ·m2,

and unknown part is set to J1 = 0.1J0. The environmental disturbance is as-
sumed to be

d = 10−2

 −1 + 3 sin(0.1t+ π/2) + 4 sin(0.03t)
1.5− 1.5 sin(0.02t)− 3 sin(0.05t+ π/2)

1 + 2 sin(0.1t)− 1.5 sin(0.04t+ π/2)

N ·m

The reaction wheels are installed on the x, y, z axes of the spacecraft body
coordinate frame B and are limited by |τi| ≤ 0.25 N·m for i ∈ {1, 2, 3}. As
a result, the output torque needs to satisfy ‖u‖ ≤ 0.433 N·m. Moreover, the
maximal angular velocity about each axis is set to be 6 deg/s, i.e., ‖ω‖ ≤ 10.4
deg/s.

In the simulation, the spacecraft is equipped a sensitive instrument, whose
boresight vector is along the spacecraft body axis y. Four attitude constrained
zones, which do not overlap with each other, are considered and their details
can be found in Table 1. Here, the Initial attitude is assumed to be Q(0) =
[−0.352, 0.12, 0, 0.9284]T and initial angular velocity is set to be ω(0) = [0, 0, 0]T

deg/s, The desired attitude is Qd = [0.7024, 0.6790, 0, 0.2133]T , which is chosen
to be outside of four attitude forbidden zones. According to (13), the correspond-
ing warning angles of 4 constrained zones can be obtained as (θw)11 = 73.6 deg,
(θw)21 = 63.6 deg, (θw)31 = 68.6 deg and (θw)41 = 73.6 deg.

Table 1: Parameters of attitude constraints

Constrained zones Center vector (inertial frame) Angle, deg

Zone 1 (CZ1) [0;-1;0] 30
Zone 2 (CZ3) [0.68;0.67;0.28] 20
Zone 3 (CZ3) [0.38;0;0.925] 25
Zone 4 (CZ4) [-0.813;0.548;-0.192] 30
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6.1 Overall Simulation Result

In this subsection, the overall attitude control result under the proposed
controller is given. The controller parameters is given in Table 2.

(a) Motion trajectory of sensitive
equipment in 3-D
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(b) Attitude error vecter qe
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(c) Angular velocity vecter ω
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(d) Actuator output torque u

Fig. 4: Time response of the simulation results under the angular velocity limit
of 6 deg/s.

The Fig. 4 shows the overall simulation results with angular velocity limits 6
deg/s. The 3-D trajectories of the sensitive spaceborne equipment pointing direc-
tion are depicted in Fig. 4a, it is observed that the proposed adaptive controller
(23) based on potential functions (15) and (17) avoid all attitude-constrained
zones under the condition of angular velocity limitation. It not only protects the
sensitive equipment, but also realizes the attitude redirection maneuver.

According to Figs. 4b and 4c, the steady-state attitude error and the angular
velocity errors are less than 1.2 × 10−3 and 6 × 10−3 deg/s, respectively. Both
the attitude and angular velocity convergence errors show that the proposed
attitude controller (23) can effectively handle the inertia parameter uncertainty
and external disturbance despite angular velocity limits. Since the controller
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output is limited directly in the simulation system, the bang-bang control will
appear in the controller output, as shown in Fig. 4d.

As for the estimation of external disturbance and inertial uncertainty, the
introduction of projection operator (26) can improve the estimation speed and
meet the physical meaning of estimation parameters, as shown in Fig. 5. It is
clear that a bigger r only speeds up the estimation without changing the upper
bound of the estimated value when other parameters do not change.

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 5: The time response of the estimate of the unknown parameter D.

6.2 Comparison Results

In this subsection, we compare the proposed adaptive controller (23) with
existing attitude controllers. For comparison, the controller (58) in [9] and the
PD controller in [20] are also implemented. The control gains of three controllers
are given in Table 2.

Table 2: Control gains

Control schemes Control gains

The proposed controller (23)
k1 = 0.02, k2 = 120, k3 = 4, k4 = 5,
α = 0.18, r = 0.2, ε = 1.5, δ = 10−3

Controller (58) in [9] α = 160, k1 = 5.4

PD controller in [20] kp = 20, kd = 100

The 2-D projection of the pointing direction of sensitive instrument under
three controllers are depicted in Fig. 6a. It is observed that trajectories using
the PD controller violate attitude constraints, whereas the proposed adaptive
controller and the controller (58) in [9] can satisfy attitude constraints.
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(a) Motion trajectory of sensitive equip-
ment in 2-D under three controllers
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(b) Angular velocity vecter ω using the
proposed controller
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(c) Angular velocity vecter ω using the
controller (58) in [9]
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(d) Angular velocity vecter ω using the
PD controller in [20]
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(e) Attitude error ‖qe‖ under three con-
trollers
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(f) Energy consumption under three con-
trollers

Fig. 6: Simulation results under three controllers.
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The angular velocity comparison of the three controllers is presented in Figs.
6b-6d, it is clear that the proposed controller satisfies the angular velocity limit
of 6 deg/s, and both other controllers violate the limit value. The attitude error
comparison of the three controllers is presented in Fig. 6e. Since the warning
angle is considered in the potential function of the proposed controller, its con-
vergence rate is equivalent to that of PD controller at the beginning of simu-
lation, resulting in improved convergence rate when compared with that of the
controller (58) in [9] Moreover, the proposed controller (23) considers the inertia
uncertainty and external disturbance, so the robustness of the controller and
control accuracy of attitude error and angular velocity are higher than that of
other two controllers.

In addition, using
∫ T
0
‖u‖dt (T is the simulation time) to evaluate the overall

energy consumption, it is clear from Fig. 6f that the proposed controller and the
controller (58) in [9] spend more energy than the PD controller, which is due to
the fact that it has to ensure the spaceborne equipment pointing direction meet
the attitude constraints. Then, since the controller (58) in [9] does not consider
the angular velocity limit, it takes more energy to accelerate and decelerate with
a larger angular velocity than the proposed controller.

7 Conclusions

This paper presents a potential function-based adaptive attitude controller
to accomplish the attitude redirection for inertia uncertainty spacecraft in the
presence of attitude constrained zones and angular velocity limitations. By intro-
ducing the concept of warning angle, two kinds of logarithmic potential functions
are utilized to deal with the attitude constraint and angular velocity constraint
simultaneously. Leveraging the proposed potential functions, we further designed
a projection operator-based adaptive law to guarantee that the estimation pro-
cess conforms to the physical meaning of the estimated parameters. The sim-
ulation results demonstrates that the proposed adaptive controller can achieve
rest-to-rest attitude redirection despite the presence of inertia uncertainty, exter-
nal disturbances, angular velocity limitation and multiple attitude-constrained
zones.

References

1. Wencheng Luo, Yun-Chung Chu and Keck-Voon Ling: Inverse optimal adaptive
control for attitude tracking of spacecraft. IEEE Transactions on Automatic Con-
trol 50(11), 1639–1654 (2005).
doi:10.1109/TAC.2005.858694.

2. Gennaro, S.D.: Output stabilization of flexible spacecraft with active vibration
suppression. IEEE Transactions on Aerospace and Electronic Systems 39(3), 747–
759 (2003).
doi:10.1109/TAES.2003.1238733.



16 Zeyu Kang et al.

3. Wang, H., Liu, P.X., Zhao, X. and Liu, X.: Adaptive fuzzy finite-time control of
nonlinear systems with actuator faults. IEEE transactions on cybernetics 50(5),
1786-1797 (2020).
doi:10.1109/TCYB.2019.2902868.

4. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Spacecraft coordination control
in 6DOF: Integrator backstepping vs passivity-based control. Automatica 44(11),
2896–2901 (2008).
doi:10.1016/j.automatica.2008.04.019.

5. Shen, Q., Wang, D., Zhu, S., Poh, E.K.: Integral-type sliding mode fault-tolerant
control for attitude stabilization of spacecraft. IEEE Transactions on Control
Systems Technology 23(3), 1131–1138 (2015).
doi:10.1109/TCST.2014.2354260.

6. Dong, L., Yan, J., Yuan, X., He, H. and Sun, C.: Functional nonlinear model
predictive control based on adaptive dynamic programming. IEEE Transactions
on Control Systems Technology 49(12), 4206-4218 (2019).
doi:10.1109/TCYB.2018.2859801.

7. Angelis, E.L.D., Giulietti, F., Avanzini, G.: Single-axis pointing of underactuated
spacecraft in the presence of path constraints. Journal of Guidance, Control, and
Dynamics 38(1), 143–147 (2015).
doi:10.2514/1.G000121.

8. Mclnnes, C.R.: Large angle slew maneuvers with autonomous sun vector avoidance.
Journal of Guidance, Control, and Dynamics 17(4), 875–877 (1994).
doi:10.2514/3.21283.

9. Lee, U., Mesbahi, M.: Feedback control for spacecraft reorientation under attitude
constraints via convex potentials. IEEE Transactions on Aerospace and Electronic
Systems 50(4), 2578–2592 (2014).
doi:10.1109/TAES.2014.120240.

10. Shen, Q., Yue, C., Goh, C.H.: Velocity-free attitude reorientation of a flexible
spacecraft with attitude constraints. Journal of Guidance, Control, and Dynamics
40(5), 1293–1299 (2017).
doi:10.2514/1.G002129.

11. Kang, Z., Shen, Q., Wu, S.: Constrained attitude control of over-actuated space-
craft subject to instrument pointing direction deviation. IEEE Control Systems
Letters 5(6), 1958–1963 (2021).
doi:10.1109/LCSYS.2020.3044984.

12. Wie, B., Lu, J.: Feedback control logic for spacecraft eigenaxis rotations under slew
rate and control constraints. Journal of Guidance, Control, and Dynamics 18(6),
1372–1379 (1995).
doi:10.2514/3.21555.

13. Hu, Q., Li, B. and Zhang, Y.: Robust attitude control design for spacecraft under
assigned velocity and control constraints. ISA transactions 52(4), 480–493 (2013).
doi:10.1016/j.isatra.2013.03.003.

14. Li, M., Hou, M. and Yin, C.: Adaptive attitude stabilization control design for
spacecraft under physical limitations. Journal of guidance, control, and dynamics
39(9), 2179-2183 (2016).
doi:10.2514/1.G000348.

15. Shen, Q., Yue, C., Goh, C.H., Wu, B. and Wang, D.: Rigid-body attitude track-
ing control under actuator faults and angular velocity constraints. IEEE/ASME
Transactions on Mechatronics 23(3), 1338-1349 (2018).
doi:10.1109/TMECH.2018.2812871.



Adaptive attitude control of uncertain spacecraft 17

16. Shen, Q., Yue, C., Goh, C.H., Wu, B., Wang, D.: Rigid-body attitude stabilization
with attitude and angular rate constraints. Automatica 90, 157–163 (2018).
doi:10.1016/j.automatica.2017.12.029.

17. Shen, Q., Wang, D., Zhu, S., Poh, K.: Finite-time fault-tolerant attitude stabiliza-
tion for spacecraft with actuator saturation. IEEE Transactions on Aerospace and
Electronic Systems 51(3), 2390–2405 (2015).
doi:10.1109/TAES.2015.130725.

18. Khalil, H.K.: Adaptive output feedback control of nonlinear systems represented
by input-output models. IEEE Transactions on Automatic Control 41(2), 177–188
(1996).
doi:10.1109/9.481517.

19. Khalil, H.: Nonlinear Systems (3rd Ed.). NJ: Prentice-Hall, Upper Saddle River
(2002).
doi:10.1016/s0005-1098(01)00289-8.

20. Wie, B.: Space Vehicle Dynamics and Control. American Institute of Aeronautics
and Astronautics (2008).
doi:10.2514/4.860119.


