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Abstract— This paper presents novel optimization-based ap-
proaches for affine abstraction and model discrimination of
uncertain nonlinear systems in the form of nonlinear (basis)
functions with uncertain coefficients. First, we propose a mesh-
based affine abstraction method to conservatively approximate
the uncertain nonlinear functions in the sense of the inclusion
of all possible trajectories by two affine hyperplanes in each
bounded subregion of the state space. As the affine abstraction
is an over-approximation of the original system, any model
invalidation guarantees for the abstraction also hold for the
original system. Next, we extend existing methods to solve the
(passive) model discrimination problem for the piecewise affine
interval models obtained from abstraction by leveraging model
invalidation. It is shown that the model invalidation and dis-
crimination problems can be recast as the feasibility of a mixed-
integer linear program (MILP). Finally, the efficiency of the
approach is illustrated with numerical examples motivated by
intent/formation identification of autonomous swarm systems.

I. INTRODUCTION

In recent years, there is a growing interest in abstraction-
based methods on analyzing reachability, estimating state and
synthesizing controller for cyber-physical systems (CPS).
Since CPS are integrations of networks and embedded com-
puters with physical processes, they often have complex
(uncertain, nonlinear or hybrid) dynamics, which makes the
controller and estimator design challenging. To overcome
this, abstraction approaches that conservatively approximate
the original complex dynamics with simpler dynamics have
been developed [1]. These abstracted simpler systems enable
us to apply the well-developed controller or observer design
methods and ensure that guarantees for the simpler systems
also hold for the original systems [2]–[4].

Literature Review. In general, abstraction is a process that
approximates the system dynamics by simpler models that
“include” all possible trajectories of the original system.
Methods for abstraction have been proposed for several types
of systems, such as linear systems [5], nonlinear systems
[6], and discrete-time hybrid systems [7]. In [3], nonlinear
dynamics was over-approximated as a linear affine system
with a bounded disturbance accounting for the abstraction
error and ensuring conservativeness. In [8], Singh et. al pro-
posed a mesh-based affine abstraction approach for nonlinear
systems with different degrees of smoothness, where a pair
of piecewise affine functions brackets/encloses the original
dynamics in each subregion with a given approximation
accuracy. In [9], two affine hyperplanes were constructed
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to conservatively approximate uncertain affine discrete-time
systems, in which system matrices were assumed to be uncer-
tain and represented by interval matrices/vectors. However,
all above mentioned methods are only applicable for known
nonlinear or uncertain affine models, and not for uncertain
nonlinear models that we consider in this work.

On the other hand, passive model discrimination aims
to distinguish/separate models by exploiting the measured
input-output data and a priori information of the system
(e.g., [10], [11]). This is typically achieved using model
invalidation, which aims to determine whether a finite se-
quence of experimental input-output data measured from a
system can be generated by one member in an admissible
model set [12]. Recently, various model invalidation methods
have been developed for linear parameter varying systems
[13], [14], nonlinear systems [15], switched auto-regressive
models [16], [17], and switched affine systems [11], [18].
To the best of our knowledge, the model invalidation results
for uncertain nonlinear systems are not available in the
literature, with the main difficulty being the nonlinearities
and uncertainties in the system.

Contributions. In this paper, we propose optimization-
based methods to address the affine abstraction problem for
a class of uncertain nonlinear systems and the corresponding
model discrimination problem based on the resulting ab-
stracted piecewise affine interval models. Specifically, we
consider the class of uncertain nonlinear dynamics con-
sisting of nonlinear basis functions with uncertain coeffi-
cients/parameters that are represented by interval matrices.
We first develop a mesh-based affine abstraction approach
to over-approximate the uncertain nonlinear systems by two
hyperplanes in each subregion such that all (worst-case)
system behaviors of the original system are included by
the abstraction. In particular, any model discrimination and
invalidation guarantees for the abstraction also hold for the
original models. Leveraging linear interpolation and proper-
ties of interval matrices, we solve a linear program (LP)
to obtain affine abstraction, which over-approximates the
uncertain nonlinear systems as piecewise affine abstractions.
Then, we further propose an approach to solve the model
discrimination problem for piecewise affine abstractions,
by recasting it as the feasibility of a mixed-integer linear
program (MILP), for which off-the-shelf solvers are readily
available. When compared with our previous efforts [8], [9],
we take advantage of both papers to enable the proposed
affine abstraction to over-approximate the uncertain nonlin-
ear systems. Moreover, as opposed to switched affine systems
in [11], [18], we consider model invalidation for piecewise



affine abstractions, which represent a more general class of
systems. Finally, we demonstrate the effectiveness of our
affine abstraction-based model discrimination approach for
intent/formation estimation of a swarm of vehicles.

II. BACKGROUND

A. Notation

For a vector v ∈ Rn and a matrix M ∈ Rp×q , ‖v‖i and
‖M‖i denote their (induced) i-norm with i = {1, 2,∞}. [n]
is an initial segment 1, 2, . . . , n of the natural numbers. An
interval matrixM is defined as a set of matrices of the form
M = [Ml,Mu] = {M ∈ Rp×q :Ml ≤M ≤Mu}, where
Ml and Mu are p × q matrices, and the inequality is to be
understood componentwise.

B. Modeling Frameworks

Consider a class of uncertain nonlinear discrete-time sys-
tem model G:

xk+1 = Akφ(xk, uk) + wk,
yk = Ckxk + vk,

(1)

where the nonlinear function Akφ(xk, uk) is a linear combi-
nation of nonlinear basis functions φ(xk, uk) with uncertain
coefficients/parameters denoted by Ak ∈ A with bounded
sets A = [Al, Au] ⊂ Rn×d, xk ∈ X denotes system state at
time instant k with a bounded set X = [Xl, Xu] ⊂ Rn,
uk ∈ U denotes control input with bounded set U =
[Ul, Uu] ⊂ Rm and y denotes the system output at time
instant k, wk and vk are the bounded process noise and
measurement noise satisfying ‖wk‖ ≤ εw and ‖vk‖ ≤ εv ,
respectively. The nonlinear basis function φ : X × U → Rd
is the vector field describing the nonlinear dynamics of the
system. We assume φ is Lipschitz continuous. If a feedback
control law is used in the system, the closed-loop dynamics
can also be considered.

Further, we define a partition of the compact state-input
domain X × U ⊆ Rn+m as follows:

Definition 1 (Partition). A partition I of the closed bounded
region X × U ⊂ Rn+m is a collection of p subregions I =
{Ii|i ∈ [p]} such that X × U ⊆

⋃p
i=1 Ii and Ii ∩ Ij =

∂Ii ∩∂Ij , ∀i 6= j ∈ [p], where ∂I` is the boundary of set I`.

For each subregion Ii ∈ I that partitions the domain of
interest, we aim to over-approximate/abstract the nonlinear
f by a pair of affine functions f

i
and f i such that for

all (xk, uk) ∈ Ii, the function f(xk, uk) is sandwiched by
the pair of affine functions, i.e., f

i
(xk, uk) ≤ f(xk, uk) ≤

f i(xk, uk). These affine functions with respect to f over
Ii ∈ I are chosen as

f
i
(xk, uk) = Aixk +Biuk + hi, (2)

f i(xk, uk) = Aixk +Biuk + hi, (3)

where the matrices Ai, Ai, Bi, Bi, and the vectors hi and hi
are constant and of appropriate dimensions. Let (F ,F) be a
pair of families of affine functions with F = {f

1
, . . . , f

p
}

and F = {f1, . . . , fp}. Then, the nonlinear function f :
X × U → Rd is over-approximated with a pair of affine

families (F ,F) over a partition I (i.e., a pair of piecewise
affine functions) if f

i
(xk, uk) ≤ f(xk, uk) ≤ f i(xk, uk),

∀i ∈ [p] and ∀(xk, uk) ∈ Ii.
The abstracted piecewise affine interval model H is then:(
Aixk +Biuk
+hi + wk

)
≤ xk+1 ≤

(
Aixk +Biuk
+hi + wk

)
,∀i ∈ [p],

yk = Ckxk + vk.
(4)

Moreover, we quantify the quality of our affine abstraction
based on the following definition of approximation error.

Definition 2 (Approximation Error [8]). Consider a partition
I = {Ii|i ∈ [p]} of X × U ⊂ Rm+n. If a pair of affine
families (F ,F) over-approximate a nonlinear function f
over the partition I, then the approximation error with
respect to the nonlinear dynamics is defined as e(F ,F) =
maxi∈[p] max(xk,uk)∈Ii ‖f i(xk, uk)− f i(xk, uk)‖∞.

Next, to solve the model discrimination problem via
model invalidation, we further adopt the definition in [11]
of the length-N behavior of original uncertain nonlinear and
abstracted piecewise affine interval models, G and H:

Definition 3 (Length-N Behavior of Original Model G). The
length-N behavior of the uncertain nonlinear model G is the
set of all length-N input-output trajectories compatible with
G, given by the set

BN (G) := {{uk, yk}N−1k=0 | uk ∈ U and ∃xk ∈ X ,
wk ∈ W, vk ∈ V, for k ∈ Z1

N−1, s.t. (1) holds}. (5)

Definition 4 (Length-N Behavior of Abstracted Model H).
The length-N behavior of the abstracted piecewise affine
interval model H is the set of all length-N input-output
trajectories compatible with H, given by the set

BN (H) := {{uk, yk}N−1k=0 | ∃(xk, uk) ∈ Ii, i ∈ [p],

wk ∈ W, vk ∈ V, for k ∈ Z1
N−1, s.t. (4) holds}. (6)

Using the above definitions of system behaviors as well as
the fact that H is an affine abstraction of G (by construction),
we can conclude that BN (G) ⊆ BN (H).

III. PROBLEM STATEMENT

We now formulate the problems of interest to this paper.

Problem 1 (Affine Abstraction). For a given nonlinear n-
dimensional vector field f(xk, uk) = Akφ(xk, uk) with
(xk, uk) ∈ X × U and a given desired accuracy εf , find
a partition I = {I1, . . . , Ip} and a pair of n-dimensional
family of affine hyperplanes F = {f1, . . . , fp} and F =
{f

1
, . . . , f

p
} such that:

e(F ,F) ≤ εf ,
f
i
(xk, uk) ≤ Akφ(xk, uk) ≤ f i(xk, uk),
∀(xk, uk) ∈ Ii,∀i ∈ [p],∀Ak ∈ A,

(7)

where e(F ,F) is the approximation error (cf. Definition 2).
The pair of affine families (F ,F) is then the abstracted
piecewise affine interval model (i.e., affine abstraction of the
nonlinear uncertain dynamics).



Problem 2 (Model Discrimination amongst {G`}Nm

`=1). Given
a sequence of input-output trajectory {uk, yk}N−1k=0 , Nm
uncertain nonlinear models G1,G2, . . . ,GNm

and an integer
N , determine which model the trajectory belongs to. That is,
to find an i that satisfies

BN (Gi) 6= ∅ ∧ (BN (Gj) = ∅,∀j ∈ Z1
Nm

, j 6= i). (8)

However, since the original models G` are uncertain and
nonlinear, Problem 2 is non-trivial to solve directly. Hence,
we aim to address Problem 2 using a related problem that, if
solved, also provides a solution to Problem 2. Specifically,
we plan to consider a two-step process, where the first
step consists of solving Problem 1 to obtain the over-
approximation of the uncertain nonlinear dynamics of G` as
piecewise affine interval models H` and the second involves
solving the following model discrimination problem for the
abstracted models.

Problem 3 (Model Discrimination amongst {H`}Nm

`=1).
Given a sequence of input-output trajectory {uk, yk}N−1k=0 ,
Nm abstracted piecewise affine interval models
H1,H2, . . . ,HNm and an integer N , determine which
model the trajectory belongs to. That is, to find an i that
satisfies

BN (Hi) 6= ∅ ∧ (BN (Hj) = ∅,∀j ∈ Z1
Nm

, j 6= i). (9)

By construction of affine abstraction in Problem 1, we can
leverage the fact that BN (G`) ⊆ BN (H`), which indicates
that the inconsistent models excluded in Problem 3, i.e.,
when BN (Hj) = ∅, are also excluded in Problem 2 because
BN (Gj) ⊆ BN (Hj) = ∅. On the other hand, when Gi
is the true model, then necessarily BN (Gi) 6= ∅ and also
BN (Hi) ⊇ BN (Gi) 6= ∅. Thus, a solution to Problem 3 also
solves Problem 2.

IV. ABSTRACTION AND MODEL DISCRIMINATION

In this section, we introduce optimization-based ap-
proaches for performing affine abstraction and model dis-
crimination of uncertain nonlinear systems (1). The two
methods for solving Problems 1 and 3 (and hence, Problem
2) can be viewed as independent and be used in conjunction
with other abstraction or model discrimination approaches.

A. Mesh-Based Abstraction

To solve Problem 1 for the uncertain nonlinear system
(1), inspired by the results in [8], [9], we first consider a
two-part abstraction approach for a specific subregion Ii.
We will subsequently discuss how the multiple subregions
are obtained to partition the entire domain of interest to
satisfy the desired approximation error. The first part handles
the uncertainty in the coefficients Ak, which expands the
middle inequality in (7) via enumeration of the vertices of
the interval matrix A, as shown in the next lemma.

Each row of the uncertain matrix Ak can be written as a
d-dimensional hyperrectangle that is defined as

Ar = [Al,r1, Au,r1]× · · · × [Al,rd, Au,rd],∀r ∈ [n]. (10)

In the following lemma, the Ai,r, Bi,r and Ak,r denote
the r-th row of the Ai, Bi and Ak, respectively.

Lemma 1. Consider the vertex set of the d-dimensional
hyperrectangle Ar represented as VAr = {vAr,1, . . . vAr,ρ}
with ρ = |VA| ≤ 2d, where ρ = 2d holds when Ak,r is
unstructured, i.e., all elements of Ak,r are independent. The
constraints

Ai,rxk +Bi,ruk + hi,r ≥ (vAr,q)
Tφ(xk, uk), ∀q ∈ [ρ], (11)

Ai,rxk +Bi,ruk + hi,r ≤ (vAr,q)
Tφ(xk, uk), ∀q ∈ [ρ], (12)

are equivalent to Ai,rxk + Bi,ruk + hi,r ≥
Ak,rφ(xk, uk), ∀Ak,r ∈ Ar and Ai,rxk + Bi,ruk + hi,r ≤
Ak,rφ(xk, uk), ∀Ak,r ∈ Ar, for all (xk, uk) ∈ Ii.

Proof. This proof follows similar steps to [9, Lemma 1].
Since Ar is a d-dimensional hyperrectangle with vertex set
VAr = {vAr,1, . . . vAr,ρ}, any point in Ak,r ∈ Ar can be
represented as

ATk,r =

ρ∑
q=1

αqv
A
r,q, (13)

where αq ≥ 0 and
∑ρ
q=1 αq = 1. Multiplying both sides of

(11) and (12) by the nonnegative constraint αq , we have

αq(Ai,rxk +Bi,rui + hi,r) ≥ αq(vAr,q)Tφ(xk, uk),∀q ∈ [ρ],

αq(Ai,rxk +Bi,rui + hi,r) ≤ αq(vAr,q)Tφ(xk, uk),∀q ∈ [ρ].

Adding all of the ρ inequalities above respectively yields
ρ∑
q=1

αq(Ai,rxk +Bi,rui + hi,r) ≥
ρ∑
q=1

αq(v
A
r,q)

Tφ(xk, uk),

ρ∑
q=1

αq(Ai,rxk +Bi,rui + hi,r) ≤
ρ∑
q=1

αq(v
A
r,q)

Tφ(xk, uk).

In light of
∑ρ
q=1 αq = 1 and (13), the sufficiency can be

obtained directly. Conversely, suppose we have Ai,rxk +
Bi,ruk + hi,r ≥ Ak,rφ(xk, uk), ∀Ak,r ∈ Ar and Ai,rxk +
Bi,ruk + hi,r ≤ Ak,rφ(xk, uk). ∀Ak,r ∈ Ar. As the un-
certain set Ar contains every point including all its vertices,
thus, (11) and (12) hold. This completes the proof.

The above lemma converts our problem into inequalities
for certain nonlinear systems (albeit with more inequality
constraints). Hence, we can leverage the mesh-based affine
abstraction approach in [8] to further recast the affine ab-
straction problem in Problem 1 into a LP problem.

Theorem 1. Given a nonlinear function f : Ii → Rn with a
given partition Ii ⊂ Rn+m for any subregion Ii ∈ I, let V =
{v1, v2, . . . , vl} be a set of l grid points of a uniform mesh
of the subregion Ii and C = {vc1, . . . , vc2(n+m)} be a set of
the corner points of the hyperrectangular domain of Ii. The
affine hyperplanes f i and f

i
that over-approximate/abstract

f in domain Ii are given by:

f i = fu,i + σi, f
i
= fb,i − σi,

with each r-th element of σi defined as σi,r = max
q∈[ρ]

σi,r,q ,

where σi,r,q is interpolation error of (vAr,q)
Tφ(xk, uk) ac-

cording to [8, Propositon 2]. fu,i = Ai xk +Bi uk + hu,i,r,
and fb,i = Ai xk+Bi uk+hb,i,r, where Ai, Ai, Bi, Bi, hu,i,r
and hb,i,r are obtained from the following linear program-



ming (LP) problem:

min
θ,Ai,r,Ai,r,Bi,r,Bi,r,hu,i,r,hb,i,r

θ

s.t. Ai,r xk +Bi,r uk + hu,i,r ≥ (vAr,q)
Tφ(xk, uk), (14a)

Ai,r xk +Bi,r uk + hb,i,r ≤ (vAr,q)
Tφ(xk, uk), (14b)

(Ai−Ai)xcj + (Bi−Bi)ucj + hu,i,r −hb,i,r ≤ θ1n, (14c)
∀k ∈ [l],∀ j ∈ [2(n+m)],∀r ∈ [n],∀q ∈ [ρ].

Proof. From Lemma 1, the abstraction of original function
f(xk, uk) = Akφ(xk, uk) is equivalent to the abstraction of
all (vAr,q)

Tφ(xk, uk). Then, following the lines of the proof of
Theorem 1 in [8], the above theorem is obtained trivially.

To reduce the conservativeness, we can partition the
domain of interest into multiple subregions and obtain the
abstraction by solving the problem in Theorem 1 for each
single subregion. The partitioning process can be recursively
implemented until the abstraction error in each subregion is
smaller than a desired accuracy as shown in Algorithm 1
(see detailed description of this algorithm in [8]).

Algorithm 1: Creating a εf -Accurate Partition [8]
Data: f , bound = X × U , resolution r, desired accuracy εf

1 function epsPartition(f, bound, r, εf)
2 (f, f, e(f, f)) ← abstraction(f, bound, r, εf)

3 if e(f, f) ≤ εf then
4 partition = {f, f, bound}
5 return (partition)
6 else
7 I ← divBounds(bound)
8 for i = 1 : 2n+m do
9 cell{i} = epsPartition(f, Ii, r, εf)

10 end
11 partition =

⊕2n+m

i=1 {cell{i}}
(
⊕

= concatenation)
12 end
13 return (partition, I)

1 function divBounds(bound)
2 Refer to Section IV-A for its description
3 return (subBounds)
1 function abstraction(f, bound, r, εf)
2 Refer to Theorem 1 for its description
3 return (f, f, e(f, f))

B. Model Discrimination
In Problem 2, we will assume the following:

Assumption 1. The length-N input-output trajectories are
only consistent with one uncertain nonlinear model. Thus,
we must have BN (Gi) ∩ BN (Gj) = ∅ for all i 6= j.

Assumption 2. The subregion Ii is a closed bounded region
for (xk, uk) ∈ Ii, and its bounds can be described as
following constraints with ci constraints:

Sixk + Tiuk ≤ βi. (15)

where Si, Ti and βi are real matrices/vectors.
Our optimization-based model discrimination approach is

based on model invalidation that eliminates all models that
are incompatible with the observed length-N input-output
trajectory. Since we assume that only one original uncer-
tain nonlinear model can be consistent, with a sufficiently

accurate affine abstraction, i.e., with small enough εf , we
can also assume that the length-N input-output trajectory is
only compatible with one abstracted model. Using this fact,
we propose the following model invalidation algorithm that
(in)validates a specific piecewise affine interval model H`:
Theorem 2. Given an abstracted piecewise affine in-
terval model H` and a length-N input-output sequence
{uk, yk}k=N−1k=0 , the model is invalidated if the following
problem is infeasible:

Find xk, ωk, ai,k, si,k, ∀k ∈ Z0
N−1,∀i ∈ [p]

subject to ∀k ∈ Z0
N−1,∀i ∈ [p] :

xk+1 ≤ Aixk +Biuk + hi + ωk + si,k1n, (16a)
xk+1 ≥ Aixk +Biuk + hi + ωk + si,k1n, (16b)
Sixk + Tiuk ≤ βi + si,k1ci , (16c)
yk = Ckxk + ηk, (16d)
ai,k ∈ {0, 1},

∑
i∈[p] ai,k = 1, (16e)

||ωk|| ≤ εω, ||vk|| ≤ εv, (ai,k, si,k) : SOS-1, (16f)

where si,k is a slack variable that is free when ai,k is zero
and zero otherwise (by virtue of the special ordered set of
degree 1 (SOS-1) constraint).

Proof. ai,k = 1 implies that Sixk+Tiuk ≤ βi holds and its
corresponding constraints (16a)–(16c) hold since the SOS-1
constraint ensures that si,k = 0, which means that the state
xk+1 must be bounded by the given abstraction model if
(xk, uk) ∈ Ii. On the contrary, the si,k is free if ai,k = 0 and
(16a)–(16c) hold trivially. Moreover, due to the constraint
in (16e), only one ai,k = 1 for all i ∈ [p] is possible,
which means that only one partition is valid. Finally, if the
above optimization problem is infeasible, it means that the
input-output sequence {uk, yk}k=N−1k=0 cannot be consistent
with the length-N behavior of H`, i.e., {uk, yk}k=N−1k=0 /∈
BN (H`), hence the model is invalidated.

Next, to solve the model discrimination problem, we can
leverage the model invalidation approach above to elimi-
nate all inconsistent models. Since only one model can be
compatible by Assumption 1, model discrimination can be
achieved when all other inconsistent models are eliminated
except for the true model. This model discrimination process
is summarized in Algorithm 2. As the time horizon k is
increased to N , it is guaranteed to discriminate against all
false models by Assumption 1. The determination of N that
can guarantee model discrimination is called T -detectability

Algorithm 2: Model Discrimination with Length k
Data: Models G1 . . .GNf ,

Input-Output Sequence = {u`, y`}`=k−1
`=0

1 function findModel(G1 . . .GNf , {u`, y`}
`=k−1
`=0 )

2 valid← [Nf ]
3 for i = 1 : Nf do
4 Check Feasibility of Theorem 2
5 if infeasible then
6 Remove i from valid
7 end
8 end
9 return valid



in the literature [11] and will be the subject of future work.

V. SIMULATION RESULTS

In this section, we demonstrate the proposed approaches
for affine abstraction and model discrimination for swarm
intent/formation estimation. All simulations are implemented
in MATLAB on a 2.2 GHz machine with 16 GB of memory.

A. Dynamic Models
The dynamics of each swarm agent is described by the

Dubins Car model [19]:

px,k+1 = px,k + us cos(θk)δt+ wpx,k, (17a)
py,k+1 = py,k + us sin(θk)δt+ wpy,k, (17b)

θk+1 = θk +
us
L

tan(uφ)δt+ wθ,k, (17c)

where the px and py represents the position of the agent
and θ is the heading angle of the agent, all of which are
considered as system states, L is the length between the
front and rear tires and is set to 1.5m, us is the speed of the
agent and is assumed to be in the range of [0.95, 1.05]ms ,
which introduces parametric uncertainties, sampling time
δt is set to 0.1s, wpx,k, wpy,k and wθ,k represent process
noise or heterogeneity among the agents and are set to
be within |wpx,k| ≤ 0.01, |wpy,k| ≤ 0.01 and |wθ,k| ≤
0.0067, respectively. Further, we assume that we observe all
system states with measurement noise signals setting to be
|vpx | ≤ 0.01, |vpy | ≤ 0.01 and |vθ| ≤ 0.004, respectively. In
addition, a reference signal θdesired based on the centroid of
the swarm formation (cx, cy) is assumed to be given:

θdesired = arctan 2(cy − py, cx − px), (18)

which the agents utilize for feedback control according to
the following proportional control law:

uφ = min(
π

8
,max(−π

8
,Kp(θdesired − θ))), (19)

where the saturation functions ensure that the steering angle
of each agent never exceeds [−π8 ,

π
8 ] rad.

We consider three swarm intents or formations, which are
dependent on the choice of the Kp value. When Kp = 0.1
(Model I), the swarm intends to move towards the centroid
of the swarm, while when Kp = −0.1 (Model II), the swarm
moves away from the centroid. Further, we also consider a
third intent with Kp = 0 (Model III) where the swarm agents
do not interact with each other.

For implementation of both abstraction and model discrim-
ination, we used Yalmip [20] and Gurobi [21].
B. Affine Abstraction Results

First, we apply our affine abstraction algorithm to the
system dynamics (17), specifically, the uncertain nonlinear
parts of the dynamics involving us cos(θ), us sin(θ) and
us

L tan(uφ), where uφ is given by (19). The former two
functions are defined on the domain of θ ∈ [−π5 ,

π
5 ],

while the third is defined in the domain of θ × θdesired ∈
[−π5 ,

π
5 ]× [0, π3 ]. Further, since these functions are Lipschitz

continuous on the given interval, the interpolation error of the
abstraction approach is well defined according to Theorem 1.
The desired accuracy is set to be εf,x = 0.3 for the us cos(θ),
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Fig. 1: Illustration of affine abstraction of the uncertain
nonlinear functions us cos(θ), us sin(θ) and us

L tan(uφ).

εf,y = 0.3 for us sin(θ) and εf,θ = 0.02 for us

L tan(uφ). The
result of the affine abstraction is shown in Figure 1.

From Figure 1, we observe that the resulting affine hy-
perplanes envelop the uncertain nonlinear dynamics on the
defined domains of interest and the minimum approximation
error is obtained, as desired.

C. Model Discrimination Results

Next, the model discrimination algorithm is applied to the
abstracted models from Section V-B using sampled input-
output trajectories of 15 time steps, where the input in this
case is θdesired and the outputs are px, py, θ. These outputs
can all be generated using the system dynamics from (17)
with the following initial conditions for 3 agents: [0, 0, 0],
[12, 0, π3 ] and [6, 4

√
3,− 2π

3 ] representing px,0, py,0 and θ0,
respectively. Figure 2 illustrates how the true model of the
system can be detected and we observe that the true model
can be discriminated within 10 time steps (i.e., 1 second).

Next, we vary εf,x, εf,y and εf,θ to investigate their
effects on the maximum number of time steps needed for
model discrimination. The results are tabulated in Table I. We
observe that Model III is relatively hard to be discriminated
from the other models and that while a smaller εf provides
better abstraction and thus, makes model discrimination
easier, it is also interesting to note that no tangible advantage
is gained by further decreasing εf beyond a certain threshold.

TABLE I: Required Number of Time Steps for Model
Discrimination as a Function of Accuracy εf .

Model I Model II Model III
εf,x = 0.3, εf,y = 0.3, εf,θ = 0.5 4 4 10
εf,x = 0.3, εf,y = 0.3, εf,θ = 0.02 4 4 7
εf,x = 0.3, εf,y = 0.3, εf,θ = 0.015 4 4 7
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(b) Model II (Kp = −0.1)
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Fig. 2: Sampled state trajectories (top row) and the corresponding model discrimination results (bottom row). In the state
trajectory figure, the solid lines denote the trajectories of three models within the first 15 steps, red arrows denote the current
heading angles at the 15-th steps and the dash lines denote the future trajectories after 15 steps. In the (bottom) figures
depicting the model discrimination results, for i ∈ {I, II, III}, Flag i is 1 when the corresponding model i is validated and
is 0, if invalidated. Model discrimination is achieved when only one Flag is 1.

VI. CONCLUSION

We proposed optimization-based approaches for affine
abstraction and model discrimination of uncertain nonlinear
systems, where the uncertain nonlinear system of interest is a
linear combination of nonlinear basis functions and bounded
uncertain parameters/coefficients. First, a mesh-based affine
abstraction method is introduced to over-approximate the
complex nonlinear dynamics by two affine hyperplanes that
bracket all original system behaviors in each subregion.
Then, we proposed a model discrimination approach based
on model invalidation for piecewise affine interval models
that are obtained from the abstraction method, which can
be solved as an MILP. Finally, we demonstrated our ap-
proaches on an example of intent/formation identification of
autonomous swarm systems.
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