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Abstract: This paper proposes a time-varying tube-based output feedback model predictive
control (MPC) design for constrained linear systems in the presence of intermittently delayed
observations, where the delayed/missing data patterns for each period satisfy a finite-length
language. The design consists of a dynamic state estimator whose estimation errors satisfy
equalized recovery (a weaker form of invariance with time-varying finite bounds), as well as an
output feedback control law that extends existing tube-based output feedback MPC approaches
to allow time-varying tubes for tightening the original state and input constraints. The resulting
time-varying tube-based output feedback MPC design is robust to time-varying disturbances
and errors, including when the observations are intermittently delayed. Further, we provide
sufficient conditions for recursive feasibility and robust exponential stability of the proposed
design. Simulation results demonstrate that the proposed approach is able to robustly stabilize
and control a constrained linear system despite disturbances, noise and missing/delayed data.
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1. INTRODUCTION

Model predictive control (MPC) is a model-based control
strategy that solves an optimal control problem on-line,
which has lately garnered extensive attention due to its
ability to handle nonlinearity and explicitly account for
constraints. However, earlier works on MPC often required
noiseless full state information and fully known system
dynamics, e.g., Findeisen et al. (2003). Often, only noisy
measurements of a subset of the states are available, while
the system dynamics is affected by disturbances/process
noise. Certainty equivalence and separation principle can
unfortunately not be used to guarantee closed-loop sta-
bility due to nonlinearity of the controller for the con-
strained MPC. Furthermore, sensor data may not always
be available, especially in networked systems where packet
delays and drops may be inevitable, thus MPC may not be
inherently robust (Sakthivel et al. (2018)). This motivates
us to develop a tube-based output feedback MPC strategy
that is robust to missing and delayed data patterns, is
recursively feasible and makes the system robustly expo-
nentially stable to some bounded set.

Literature Review. Survey papers (e.g., Borrelli et al.
(2017) and references therein) categorized robust model
predictive control into (i) open-loop min-max approaches,
where the optimal control sequence is computed based on
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open-loop predictions under the worst-case uncertainty,
e.g., Bemporad et al. (2003), (ii) feedback approaches,
where the robust control policy is optimized, e.g., Kerrigan
and Maciejowski (2004), and (iii) tube-based model predic-
tive controllers, which combine open-loop prediction based
on the nominal system and a disturbance/error invariance
feedback control, e.g., Raković et al. (2012). Open-loop
approaches may be very conservative and feedback ap-
proaches are often computationally intractable except for
some special cases, while tube-based methods provide a
trade-off between optimality and computation by moving
the more intensive computation offline. Earlier tube-based
approaches assume full state information, and more recent
works on output-based methods consider the combination
of state estimation with a robust MPC framework, e.g.,
Copp and Hespanha (2014). However, these approaches do
not directly apply when there is missing or delayed data,
as is the case we are considering.

Thus, another relevant literature pertains to controller and
estimator designs for systems with missing/delayed data,
which have been studied for networked control systems
(e.g., Sinopoli et al. (2004)) and for security problems
taking false data injection attacks into account (e.g.,
Fawzi et al. (2014); Yong et al. (2018)), mainly in a
stochastic setting. More recently, robust controllers and
estimators with worst-case bounds have been proposed for
the missing/delayed data scenario in Rutledge et al. (2018,
2020); Hassaan et al. (2021).



Contributions. In this paper, we propose a time-varying
tube-based output feedback MPC for constrained linear
systems in the presence of delayed and missing observa-
tions, whose patterns satisfy a periodic finite-length lan-
guage. Our design is based on an equalized recovery frame-
work (Rutledge et al. (2018, 2020); Hassaan et al. (2021)),
which is a relaxation of robust (controlled) invariance
and related to N -step recurrence (Fiacchini and Alamir
(2018)). The basic idea proposed is to use a dynamic
state estimator that achieves equalized recovery (thus,
guaranteeing finite time-varying estimation error bounds),
which is then used to find an appropriate control law using
an extension of tube-based output feedback MPC designs
that allows time-varying tubes for tightening the state and
input constraints. Specifically, the contributions are:

(1) A novel time-varying tube-based output feedback
MPC design that is robust to time-varying distur-
bances and errors, including the case of intermittently
delayed observations whose patterns satisfy a periodic
finite-length language specification;

(2) A formal analysis of recursive feasibility and stability
properties for the proposed robust MPC design.

The simulation results demonstrate that the proposed ap-
proach is able to robustly stabilize or control a constrained
linear system despite missing or delayed data.

2. PROBLEM FORMULATION

2.1 Notation and Definitions

Notation: Rn represents the n-dimensional Euclidean
space, Z denotes the set of non-negative integers and Zba
denotes the set of integers from a through b. The operators
÷, ⊕ and 	 denote the modulo operation, Minkowski sum
of sets and Pontryagin difference of sets, respectively, while
‖ · ‖ is used to denote the infinity norm of vectors. An
identity matrix of size s is denoted by Is, a vector of ones of
length s is denoted by 1s, while a zero matrix of dimension
a-by-b is denoted by 0a×b. The inequalities for comparing
vectors and matrices are all element-wise.

In contrast to conventional tube-based approaches where
invariant sets are used as “fixed” tubes, we consider
time-varying tubes based on a weaker requirement called
equalized recovery (Rutledge et al. (2020); Hassaan et al.
(2021)), defined below, that is often easier to compute and
has been shown to be effective in the presence of missing
and delayed data. This concept is also closely related to
N -step recurrent sets in Fiacchini and Alamir (2018).

Definition 1. (Equalized Recovery). A set S0 , {x ∈ Rn |
‖x‖ ≤ µ0} is said to satisfy an equalized recovery level
µ0 with recovery time Td and intermediate levels µi ≥ µ0,
∀i ∈ ZTd−1

1 for the discrete-time control system xk+1 =
Akxk + Bkuk + Wkwk, if for all initial states x0 ∈ S0,
there exists a sequence of control inputs {ui}Td−1

i=0 ∈ U
such that the future state at k = Td satisfies xTd ∈ S0 for

all wk ∈ W and all intermediate states satisfy xi ∈ Si ,
{x ∈ Rn | ‖x‖ ≤ µi} for all i ∈ ZTd−1

1 .

Further, we define the notion of robust exponential stabil-
ity that we will prove later for our proposed design.

Definition 2. (Robust Exponential Stability). A set S is
robustly exponentially stable (Lyapunov stable and ex-

ponentially attractive) for the system xk+1 = Akxk +
Bkuk + Wkwk, wk ∈ W, where W is bounded, with a
region of attraction X if there exist c > 0 and δ ∈ (0, 1)
such that any solution of {xi}i∈Z with initial state x0 ∈ X,
and any admissible disturbance sequence {wi} satisfies the
Hausdorff distance d(xi, S) ≤ cδid(x0, S) for all i ∈ Z.

2.2 System Dynamics and Delayed Data Model

System Dynamics: We consider a constrained discrete-
time linear time-varying system that is subjected to
bounded process and measurement noise given by:

xk+1 = Akxk +Bkuk +Wkwk,
zk = Ckxk + Vkvk,
Yk = {zk−ω(i)|i+ ω(i) = k, i ≤ k},

(1)

where xk ∈ X ⊆ Rn is the system state at time k,
uk ∈ U ⊆ Rm is the input to the system, wk ∈ W ⊆ Rnw is
the process noise, vk ∈ V ⊆ Rnv is the measurement noise,
zk ∈ Rp is the time-stamped observation or measurement
that is possibly affected by a time-delay attack or any
naturally occurring delay, Yk ⊂ Rp is the set of all
measurement data that is received at time step k, ω(i)
is the time delay associated with zi at the time step i
and satisfies ω(i) ∈ Zω0 , and ω is an upper bound on
the number of time steps that a packet is delayed by.
The discrete variable ω(i) = 0 denotes that the i-th
measurement is received without delay, while ω(i) = a
implies that the i-th measurement is delayed by a steps.
The system matrices Ak, Bk, Ck, Wk, Vk and fk are all
known and of appropriate dimensions. We assume that the
process and measurement noises wk and vk are unknown
but bounded with wk ∈ W = {w ∈ Rnw |‖w‖ ≤ ηw} and
vk ∈ V = {v ∈ Rnv |‖v‖ ≤ ηv} for every time step k, while
the control input uk is bounded with uk ∈ U = {u ∈ Rm |
‖u‖ ≤ ηu} and the system state xk is constrained with
xk ∈ X = {x ∈ Rn|‖x‖ ≤ ηx}. Without loss of generality,
we assume that the initial time is k = 0.

Delayed Data Model: Intermittently delayed/missing data
patterns in each time period Td (assumed to be known) are
restricted to a set expressed by fixed-length language speci-
fications, e.g., ‘the i-th observation is delayed by at most m
time steps’ or ‘at most m delayed/missing measurements
in a fixed interval.’ The delayed data patterns can be the
result of naturally occurring delays or packet dropouts
due to communication network congestion or losses, or
caused by deliberate (cyber) attacks by an adversary or
hacker. Formally, our delayed data model is a fixed-length

language L = {Wα}|L|α=1 with period Td that specifies
the set of allowable delay mode sequences ωα(qTd)ωα(1 +
qTd)ωα(2 + qTd) . . . ωα((q + 1)Td − 1) for all q ∈ N, where
the α-th possible sequence is called a word Wα Note that
i+ ω(i) > Td means that the i-th measurement is delayed
beyond the horizon Td, which is assumed to be equivalent
to the situation that the i-th measurement is missing. In
other words, missing data can be considered as a special
case of delayed data in our setting.

To use the information from the delayed-data model,
we use the reduced event-based language framework from
Hassaan et al. (2021). For conciseness, we now directly
introduce the reduced event-based language. Interested
readers can find the detailed process of obtaining the



reduced event-based language from a given delayed-data
model in Hassaan et al. (2021).

Definition 3. (Reduced Event-Based Language). Given a
delayed data model as a fixed-length language L of period

Td, a reduced event-based language LE′
= {E ′α}

|LE
′
|

α=1 is a
set that translates the wordsWα ∈ L into a series of binary
sequences E ′α, called an event sequence, that captures the
history of available data at each step for each word Wα.

2.3 Problem Statement

Problem 1. Given the system dynamics (1), a delayed data
model specified by a language L of period Td, design a
time-varying tube-based output feedback model predictive
controller (MPC) that is recursively feasible and can
robustly stabilize the system (1).

3. MAIN RESULTS

3.1 Tube-Based Output MPC Approach

The objective of this paper is to design a tube-based
output feedback MPC for robustly controlling the system
(1) in the presence of missing and delayed data that satisfy
a language L of period Td, i.e., to solve Problem 1. Similar
to other tube-based designs when there is no missing or
delayed data, our proposed solution consists of three parts:

(i) A dynamic state estimator inspired by Hassaan et al.
(2021) of the form:

x̂k+1 = Akx̂k +Bkuk − uek,
sk+1 = Aksk + uek + L

E′α
k÷Td z̃k,

(2)

with
z̃k =

{
zk − Ck(x̂k + sk), if zk ∈

⋃k
j=0 Yj ,

0, otherwise,

where x̂k is the estimate of xk, sk is an auxiliary
state estimating the estimation error x̃k = xk − x̂k
and L

E′α
k÷Td ∈ Rn×p is the Luenberger gain at the

(k ÷ Td)-th step as a function of the observed prefix
of E ′α within the same fixed-length horizon Td. The
vector uek ∈ Rn is the causal estimator output error
injection term given by:

uek = ν
E′α
k÷Td +

∑k÷Td
i=0 M

E′α
(k÷Td,i)z̃i, (3)

where M
E′α
(k÷Td,i) ∈ Rn×p and ν

E′α
k÷Td ∈ Rn are gain

matrices at the (k÷Td)-th step within a fixed-length
horizon Td, which are also a function of the observed
prefix of E ′α within the same fixed-length horizon Td.

The gain matrices (M
E′α
(k÷Td,i), L

E′α
k÷Td , ν

E′α
k÷Td) will be

designed in Section 3.1.1 to satisfy equalized recovery
despite missing and delayed data. The gains are to
be designed offline, and implemented in the resulting
estimator (2)–(3) at run-time.

(ii) A tracking controller to minimize the difference be-
tween the actual states of the system (1) and their
nominal states x̄k corresponding to the system (1):

x̄k+1 = Akx̄k +Bkūk, (4)

where x̄k ∈ Rn and ūk ∈ Rm are the nominal
state and nominal input, respectively. Specifically, we
consider a causal affine feedback tracking controller
that also satisfies equalized recovery, of the form:

uck =
∑k÷Td
i=0 K(k÷Td,i)(x̂i − x̄i) + λk÷Td , (5)

where K(k÷Td,i) and λk÷Td are feedback gains that
will be designed in Section 3.1.2. Similar to the
estimator in part (i), the gains in (5) are to be
designed offline and uck is implemented at run-time.

(iii) A nominal MPC with time-varying tubes and a pre-
diction horizon Tp for the nominal system (4), which
is subjected to tighter control and state constraints
as well as a terminal constraint:
x̄k ∈ X 	 Sck÷Td , x̄k+Tp ∈ Xf , (6)

ūk ∈ U 	 ({λk} ⊕
k÷Td⊕
i=0

K(k÷Td,i)(S
c
i ⊕ (−Sei ))), (7)

where Sek and Sck are time-varying bounds/tubes for
the estimation and tracking errors that are obtained
in Sections 3.1.1 and 3.1.2, respectively, while Xf will
be defined in Section 3.2. Solving the nominal MPC
problem in Section 3.1.3 at each time step k will
generate optimal sequences of nominal control inputs
ū∗k = {ūk∗k , ūk∗k+1, ū

k∗
k+2, ..., ū

k∗
k+Tp−1} and states x̄∗k =

{x̄k∗k , x̄k∗k+1, x̄
k∗
k+2, ..., x̄

k∗
k+Tp
}, and the first nominal

input ū0∗
k and state x̄0∗

k are taken as the current
nominal input ūk and state x̄k, respectively, i.e.,

ūk = ūk∗k , x̄k = x̄k∗k . (8)

By combining the three components above, the resulting
(run-time) feedback law for the proposed tube-based out-
put feedback MPC with missing/delayed data is given by

uk = ūk + uck, (9)

with ūk and uck given in (8) and (5), respectively.

Next, we describe in detail the design of the estimator and
controller gains, as well as the nominal MPC problem.

3.1.1. Dynamic State Estimator: Using the dynamic
state estimator in (2), the estimation error system with

states x̃k , xk − x̂k and sk can be written as:[
x̃k+1

sk+1

]
=

[
Ak 0n×n

0n×n Ak

][
x̃k
sk

]
+

[
In
In

]
uek+

[
Wkwk

L
E′α
k÷Td z̃k

]
, (10)

z̃k =


[
Ck −Ck

][x̃k
sk

]
+Vkvk, if zk ∈

⋃k
j=0 Yj ,

0, otherwise.
(11)

Then, the problem of finding estimator gains in (2)–(3) is
the same as proposed in Hassaan et al. (2021), the solution
of which will yield minimized estimation error guarantees
{µei}

Td−1
i=0 as well as path-dependent gains Mα,να, and Lα

as stacked forms of the gains in (2)–(3). The structure of
these stacked gains is given in Appendix A. Further, using
the designed dynamic state estimator and considering
that we can use the dynamic finite-horizon estimator
in a periodic fashion owing to the periodic nature of
the missing/delayed data model, we can guarantee that
the state estimation error satisfies equalized recovery (cf.
Definition 1), i.e., the state estimation errors x̃k = xk− x̂k
for all k ∈ Z satisfy time-varying estimator tubes:

x̃k ∈ Sek÷Td , {x | ‖x‖ ≤ µek÷Td}, (12)

where we consider the worst-case estimation error bound
µek÷Td , max

α∈Z|LE′ |
1

µe,αk÷Td at each step (k ÷ Td) in the

nominal MPC problem in Section 3.1.3 since future delay
patterns are not available in a predictive horizon.

3.1.2. Tracking Controller: The goal of the tracking
controller is to find a (bounded) time-varying tube around



the nominal state trajectory obtained by the nominal
MPC in Section 3.1.3 that, similar to the dynamic state
estimator, also satisfies equalized recovery (cf. Definition
1). This controller can also be viewed as a disturbance
rejection controller since it must robustly satisfy equalized
recovery despite the presence of “disturbances” in the form
of process noise wk and state estimation error x̃k.

To design this controller, we first find the tracking error
system corresponding to the system (1) and its nominal
form (4), along with the control input of the form (9).
Specifically, it can be shown that the difference between
the actual state and the nominal state, i.e., ek , xk − x̄k
leads to a tracking error system with state ek given below:

ek+1 = Akek +Bku
c
k +Wkwk, y

c
k = ek − x̃k, (13)

where x̃k is considered a “noise” term with known time-
varying bound that is obtained from (12), while the control
input uck is the affine feedback law in (5), which can also
be expressed in terms of the state ek and “noise” x̃k as:

uck ,
∑k÷Td
i=0 K(k÷Td,i)(x̂i − x̄i) + λk÷Td

=
∑k÷Td
i=0 K(k÷Td,i)(ei − x̃i) + λk÷Td ,

and the output is chosen/computed as the difference
between the state estimate x̂k in (2) and the nominal state

x̄k in (8), given by yck , x̂k − x̄k = ek − x̃k, which is
“available” at each time step, regardless of whether the
actual outputs of the system (1) are available or not. In this
case, both approaches in Rutledge et al. (2020); Hassaan
et al. (2021) are equivalent and applicable. Here, we utilize
the approach in Rutledge et al. (2020) that requires less
decision variables to find the controller gains K(k÷Td,i) and
λk÷Td using Q-parameterization.

Lemma 4. (Tracking Controller Design). For the system
(1) and its nominal counterpart (4) as well as a dynamic
state estimator (2), a finite-horizon tracking controller for
each period given in (5) can achieve equalized recovery

with minimized recovery levels {µci}
Td−1
i=0 for the tracking

errors corresponding to (13) if the following is feasible:

min
Q,r,µc

J(µc)

s.t. Q is m-by-n block lower triangular,

∀(‖w‖ ≤ ηw, ‖x̃i‖ ≤ µei ,∀i ∈ ZTd−1
0 , ‖e0‖ ≤ µc0) :

‖eTd‖ ≤ µc0, µc0 ≥ 0, ‖ei‖ ≤ µci , µci ≥ µc0,∀i ∈ ZTd−1
0 ,

e = Θcw −HBQx̃+ Ξce0 +HBr,
(14)

where
µe =

[
µe0, µ

e
1, . . . , µ

e
Td−1

]>
, µc =

[
µc0, µ

c
1, . . . , µ

c
Td−1

]>
,

Ī = [InTd 0nTd×n] ,
Θc = (I +HBQĪ)HW, Ξc = (I +HBQĪ)A,

(15)

with A, B, H and W defined in Appendix A, which are
obtained by stacking the system dynamics in (13), whereas
µe is obtained from (12). Further, if (14) is feasible, we can
find the controller gains for (5) via:

K = (I +QĪHB)−1Q, λ = (I +QĪHB)−1r, (16)
where Kk÷Td,i and λk÷Td can be obtained from K and λ
as can be seen in their definitions in Appendix A.

Proof. Since the design is within a finite horizon of length
Td, we can stack the equations in (13) and (5) over k ∈ ZTd0
to obtain the following matrix forms:

e = Ae0 +HBuc +HWw,
yc = Īe− x̃, uc = λ+Kyc,

(17)

with stacked trajectories defined as:

e = [e>0 , e
>
1 , . . . , e

>
Td

]>, w = [w>0 , w
>
1 , . . . , w

>
Td−1]>,

yc = [(yc0)>, (yc1)>, . . . , (ycTd−1)>]>,

x̃ = [x̃>0 , x̃
>
1 , . . . , x̃

>
Td−1]>, λ = [λ>0 , λ

>
1 , . . . , λ

>
Td−1]>.

uc = [(uc0)>, (uc1)>, . . . , (ucTd−1)>]>.

Then, following similar steps as the proof in Rutledge et al.
(2018) for the perfect measurement case, we leverage Q-
parameterization to design Q = K(I − ĪHBK)−1 and
r = (I + QĪHB)λ to convert the bilinear problem into a
linear one, which results in the relationship for e as follows:

e = Θcw −HBQx̃+ Ξce0 +HBr.

The rest of the construction follows from the constraints
required to satisfy equalized recovery, as defined in Defi-
nition 1.

The optimization problem (14) contains semi-infinite con-
straints, but can be converted to an equivalent problem
with finite constraints by applying robust optimization
techniques in Ben-Tal et al. (2009).

Further, as with the dynamic state estimator, the periodic
nature of the delayed data model allows us to guarantee
that the tracking (control) error satisfies equalized recov-
ery (cf. Definition 1) in a periodic manner, i.e., the tracking
(control) errors ek = xk − x̄k for all k ∈ Z satisfy time-
varying controller tubes, as follows:

ek ∈ Sck÷Td , {x | ‖x‖ ≤ µck÷Td}. (18)

3.1.3. Nominal MPC with Time-Varying Tubes: For the
nominal system in (4) with tightened state and input
constraints, where the tightening is based on (12) and
(18), the following proposition provides the optimization
problem for the nominal MPC design that is solved at each
time step k to obtain the optimal nominal input ūk and
state x̄k as the first solutions ūk∗k and x̄k∗k (cf. (8)).

Theorem 5. Suppose that the following nominal MPC
problem with prediction horizon Tp satisfies recursive
feasibility (cf. Theorem 6):

min
x̄k
i
,ūk
i

k+Tp−1∑
i=k

(x̄k>i Qx̄ki + ūk>i Rūki ) + x̄k>k+TpQf x̄
k
k+Tp ,

s.t. x̄ki+1 = Ax̄ki +Būki , x̄
k
k+Tp ∈ Xf , (19a)

x̄ki ∈ X 	 Sci÷Td , (19b)

λi + ūki ∈ U 	
i÷Td⊕
j=0

K(i÷Td,j)(S
c
j ⊕ (−Sej )), (19c)

where Q ∈ Rn×n, R ∈ Rm×m and Qf ∈ Rn×n are
positive definite matrices corresponding to state, input
and terminal costs/penalties, respectively. Then, for the
system (1) and its nominal counterpart (4) with tightened
state and input constraints based on (12) and (18), and
with a terminal set Xf , the solution to the above problem
(19), along with the feedback law (9), the dynamic state
estimator (2)–(3) and the tracking controller (5), guaran-
tees that the system (1) always satisfies the (original) state
and input constraints, X and U .

Proof. From the optimization problem (19), it can be
seen that the nominal state at each time step k always
satisfies the tightened state constraint x̄k ∈ X 	 Sck÷Td ,
while from (18), we have ek = xk − x̄k ∈ Sck÷Td . This
implies that xk ∈ x̄k ⊕ Sck÷Td . Since x̄k ∈ X 	 Sck÷Td then
xk ∈ X 	 Sck÷Td ⊕ S

c
k÷Td ⇒ xk ∈ X , i.e., xk ∈ X for all



k ∈ Z. Similarly, the input constraint in the optimization
problem (19) enforces that the nominal input at each
time step k satisfies the tightened constraint (7). Since

uk = ūk + uck from (9) and uck =
∑k÷Td
i=0 K(k÷Td,i)(x̂i −

x̄i) + λk÷Td from (5), we obtain uk ∈ U for all k ∈ Z.

It is noteworthy the sets Se and Sc in (12) and (18)
are hyperboxes; hence, the set constraints in (19b) and
(19c) can be implemented by imposing those constraints
for all of their vertices. Moreover, in the next section, we
will derive some sufficient conditions on the terminal and
stage cost functions and the terminal set in (19) to obtain
recursive feasibility and robust exponential stability.

3.2 Recursive Feasibility and Robust Stability

To prove recursive feasibility of the proposed tube-based
MPC approach and the robust exponential stability of the
closed-loop system, we adopt some common assumptions
on the terminal set constraint, cost functions, etc.

Assumption 1. There exist a dynamic state estimator and
a tracking controller such that the estimation and tracking
errors satisfy (12) and (18), i.e., the estimator design from
Hassaan et al. (2021) and (14) in Lemma 4 are feasible.

Assumption 2. There exists a feedback control gain Kf

for the terminal set Xf such that if x̄k ∈ Xf , then

(Ak + BkKf )x̄k ∈ Xf , where Xf ⊆ X , X 	
⋃Td−1
i=0 Sci

and KfXf ⊆ U ,
⋂Td−1
i=1 Ui with Ui , U 	 ({λi} ⊕⊕Td−1

j=0 K(i,j)(S
c
j ⊕ (−Sej ))). Moreover, X and U are non-

empty.

Assumption 3. The terminal cost function Vf (x̄k) =
x̄>k Qf x̄k and the stage cost function `(x̄k, ūk) = x̄>k Qx̄k +
ū>k Rūk in (19) satisfy

Vf ((Ak +BkKf )x̄k) + l(x̄k,Kf x̄k) ≤ Vf (x̄k), ∀x̄k ∈ Xf
with Kf and Xf satisfying Assumption 2.

Theorem 6. (Recursive Feasibility). If Assumption 2 holds
and the optimization problem in (19) is feasible at k = 0,
then (19) remains feasible at all times k ∈ Z.

Proof. We will prove this by induction. The base case
holds by the assumption that (19) is feasible at k = 0.
For the inductive step, suppose that (19) is feasible at any
predictive time step k. Then, there exist sequences of nom-

inal states and inputs, i.e., {x̄k∗i }
k+Tp−1
i=k and {ūk∗i }

k+Tp−1
i=k ,

that satisfy the tightened constraints in (19b) and (19b),
and x̄k∗k+Tp

∈ Xf . At the following predictive time step

k + 1, the sequences {x̄(k+1)∗
i }k+Tp−1

i=k+1 = {x̄k∗i }
k+Tp−1
i=k+1 and

{ū(k+1)∗
i }k+Tp−1

i=k+1 = {ūk∗i }
k+Tp−1
i=k+1 still satisfy the tightened

constraints in (19b) and (19c), while Assumption 2 guaran-

tees that x̄
(k+1)∗
k+Tp+1 satisfies the terminal condition in (19a),

as well as that x̄
(k+1)∗
k+Tp

= x̄k∗k+Tp
and ū

(k+1)∗
k+Tp

= ūk∗k+Tp
sat-

isfy (19b) and (19c), respectively, since x̄k∗k+Tp
∈ Xf ⊆ X ⊆

X 	 Sc(k+Tp)÷Td and ūk∗k+Tp
= Kf x̄

k∗
k+Tp

∈ U ⊆ U(k+Tp)÷Td .

Hence, recursive feasibility holds.

Theorem 7. (Robust Exponential Stability). Suppose the

Assumptions 1, 2 and 3 hold and let X , {x̄0 |
(19) with k = 0 is feasible} be bounded and S ,

⋃Td−1
j=0 Sci

= {x | ‖x‖ ≤ maxTd−1
j=0 µcj}. Then, for any initial states

x0 ∈ X , x̄0 ∈ X, x̃0 ∈ Se0 and e0 ∈ Sc0, the system

state xk is robustly steered to S exponentially fast (i.e.,
the set S is robustly exponentially stable for the system in
(1); cf. Definition 2) while satisfying the state and input
constraints, X and U .

Proof. Under Assumptions 2 and 3 and the boundedness
of X, it was shown in Mayne et al. (2005) that the value
function of the optimization problem in (19) has a nice
descent property and as a result, the MPC control law
based on (19) exponentially stabilizes x̄k to the origin.
Moreover, by design (cf. Assumption 1), the dynamic
state estimator and tracking controller in Sections 3.1.1
and 3.1.2 guarantee that ek = xk − x̄k ∈ Sck÷Td ⊆ S.
Putting these observations together results in the robust
exponential stability of S for system (1), since xk = ek−x̄k
is robustly steered to S exponentially fast.

4. SIMULATION EXAMPLE

In this section, we demonstrate the effectiveness of our
proposed tube-based output feedback MPC design in the
presence of delayed/missing data via an example with
double integrator dynamics, similar to Mayne et al. (2006):

xk+1 =

[
1 1
0 1

]
xk +

[
1
1

]
uk +

[
1 0
0 1

]
wk,

zk = [1 1]xk + vk,

where xk ∈ X , [−50, 3] × [−50, 3], uk ∈ U , [−3, 3],

wk ∈ W , [−0.05, 0.05] × [−0.05, 0.05] and vk ∈ V =
[−0.01, 0.01]. Further, we consider a delayed data model
with a period of Td = 5, and within each period, the plant
output at the 1st, 2nd and 3rd steps are either on time
or delayed by 1 step. Moreover, the outputs at 2nd and
3rd steps can also be missing. These delayed and missing
data patterns are captured in a finite-length delayed data
language of period Td = 5 as follows:

L =

{
00000, 00100, 00500, 01000, 01100, 01500,
00010, 00110, 00510, 01010, 01110, 01510,
00050, 00150, 00550, 01050, 01150, 01550

}
.

Using the estimator design from Hassaan et al. (2021), we
obtain the path-dependent estimator gains (Mα, Lα, να)

and the recovery levels in (12) as {µei}
Td−1
i=0 = {0.157, 0.207,

0.317, 0.23, 0.45}. On the other hand, the tracking con-
troller design in Lemma 4 yields controller gains (K,λ) and

recovery levels in (18) as {µci}
Td−1
i=0 = {0.645, 0.6827, 0.7022,

0.7256, 0.8135}. Moreover, we utilize a terminal set Xf
that satisfies Assumption 2 and Q = I, R = 0.01I in
the nominal MPC problem in (19) with Tp = 13, which
is recursively solved with the true delayed data pattern as
0100001550011000 . . ., where 0 means that the data was
on time, 1 means a delay of 1 time step, and 5 means
that the data was missing, and with initial nominal state
x̄0 = [−3,−8]>, state x0 chosen randomly within xn0 ⊕ Sc0
and estimate x̂0 chosen randomly within x0 ⊕ Se0 .

The result of the simulation is shown in Figure 1, where
the state xk is robustly steered into S (in green) expo-
nentially fast, while remaining in time-varying estimator
and controller tubes (in magenta and blue) and satisfying
the state and input constraints X and U . When compared
to the trajectory depicted in (Mayne et al., 2006, Figure
1) where there was no missing/delayed data, the solution
of our proposed tube-based output feedback MPC takes a
longer trajectory but is able to robustly control the system
to S even when some data are delayed and/or missing.



Fig. 1. Trajectories of the actual states, nominal states and
state estimates with the proposed tube-based output
feedback MPC, where xk is robustly steered to S (in
green). The blue boxes at each step represent the
controller tube formed from Sck÷Td and the magenta
boxes represent the estimator tube from Sek÷Td .

5. CONCLUSIONS

In this paper, we proposed a time-varying tube-based
output feedback MPC for constrained linear systems in
the presence of missing and delayed data whose patterns
satisfy a periodic finite-length language. The design con-
sists of a dynamic state estimator with time-varying finite
estimation error bounds and an output feedback tube-
based MPC design that extends existing tube-based out-
put feedback MPC methods to permit time-varying tubes
for tightening the state and input constraints. Moreover,
we derived sufficient conditions for recursive feasibility
and robust exponential stability of the proposed design.
The effectiveness of our proposed method to stabilize a
constrained linear system despite intermittently delayed
observations was demonstrated via a simulation example.
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Appendix A. MATRIX DEFINITIONS
Matrices and vectors used in Lemma 4 and those obtained
from Hassaan et al. (2021) are defined as follows:

A=

 In
A1

0...

A
Td
0

, B=

[
B0 · · · 0
...

. . .
...

0 · · · BTd−1

]
,W=

[
W0 · · · 0
...

. . .
...

0 · · · WTd−1

]
,

Lα=


Lα0 0 · · · 0

0 Lα1
. . .

...
...

. . .
. . . 0

0 · · · 0 LαTd−1

 , H=


0 0 0 · · · 0

A1
1 0 0 · · · 0

A2
1 A2

2 0 · · ·
...

...
...

. . .
. . . 0

A
Td
1 A

Td
2 A

Td
3 · · · ATdTd

,

να=

 να0
να1...

ναTd−1

 ,Mα=


Mα

(0,0) 0 · · · 0

Mα
(1,0) Mα

(1,1)

. . .
...

...
...

. . . 0
Mα

(Td−1,0) M
α
(Td−1,1) · · · M

α
(Td−1,Td−1)

 ,

K=


K(0,0) 0 · · · 0

K(1,0) K(1,1)

. . .
...

...
...

. . . 0
K(Td−1,0) K(Td−1,1) · · · K(Td−1,Td−1)

, λ=
 λ0

λ1...
λTd−1

 ,
for all α ∈ N|L

E′
|

1 , where Aki = Ak−1Ak−2...Ai.


