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ABSTRACT
This paper presents path-dependent feedback controllers and esti-

mators with bounded tracking and estimation error guarantees for

discrete-time affine systems with time-varying delayed and missing

data, where the set of all temporal patterns for the missing or de-

layed data is constrained by a fixed-length language. In particular,

we propose two controller/estimator synthesis approaches based on

output feedback and output error feedback parameterizations such

that the tracking or estimation errors satisfy a property known as

equalized recovery, where the errors are guaranteed to satisfy a

recovery level at the start and the end of a finite time horizon, but

may temporarily increase (by a bounded amount) within the hori-

zon. To achieve this, we introduce a mapping of the fixed-length

delayed/missing data language onto a reduced event-based lan-

guage, and present designs with feedback gain matrices that adapt

based on the observed path in the reduced language, resulting in

improved performance. Furthermore, we propose a word observer

that finds the set of words (i.e., the delayed/missing data patterns)

in the original fixed-length language that are compatible with the

observed path. The effectiveness of the proposed approaches when

compared to existing approaches is demonstrated using several

illustrative examples.

CCS CONCEPTS
• Computing methodologies → Computational control the-
ory.
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1 INTRODUCTION
Cyber-physical systems (CPS), e.g., self-driving vehicles, smart med-

ical devices and autonomous robot swarms, integrate networked

computation and physical processes, often with a shared communi-

cation channel. This channel is used to sendmeasured data from sen-

sors to controllers that then determine the control input commands
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to the actuators to operate/regulate physical systems/processes.

However, missing data or delayed measurements caused by sensor

malfunctions or communication network congestion/losses [28, 35]

could degrade the control performance and potentially lead to un-

safe system behaviors. Thus, to guarantee the safe operation of

safety-critical CPS, there is a need for control and estimation algo-

rithms that are robust to delayed and/or missing data.

Literature review: The controller and estimator synthesis problem

for systems subject to missing or delayed data or measurements

have been extensively investigated in the context of networked con-

trol systems (e.g., [4, 28, 35]) as well as in emerging security prob-

lems involving denial of service or false data injection attacks (e.g.,

[1, 11, 32]). For missing and delayed data or measurements modeled

by probability distributions, extensions of the Kalman filter have

been proposed (e.g., [3, 17, 28]) to estimate the system state, includ-

ing the complete in-sequence information method in [34] and the

nonlinear Bayes filter in [31] that recalculates the state estimates

once the delayed measurement arrives at the current time. Similarly,

stabilizing or optimal controllers have been studied in this setting

of probabilistic data loss/delay models (e.g., [12, 26, 35]). However,

these works primarily aim to achieve the best expected or average

estimation/control performance, while safety-critical applications

often require worst-case estimation and tracking error guarantees.

Another modeling approach for time-varying missing and de-

layed data is to characterize the set of all admissible temporal pat-

terns of missing or delayed data, e.g., ‘data are delayed by at most 3

time steps,’ using automata [19] or fixed-length languages [14, 23–

25]. Theoretical analysis of observability, controllability and sta-

bilization for (noiseless) discrete-time linear systems subject to

missing and delayed data have been studied in [18, 19], and more

recently, finite-horizon controller and estimator design has been

considered in [14, 23–25], where the goal is to guarantee a property

known as equalized recovery, i.e., the tracking and estimation error

in the presence of missing and delayed data could have a more

relaxed upper bound within the finite horizon, but is guaranteed to

recover and return back to the initial bounds by the end of the hori-

zon. The notion of equalized recovery is an extension of equalized
performance in observer designs (e.g., [8, 9]) and set invariance in

control (e.g., [7]), which require that the estimation errors or state

bounds are invariant. In particular, [23, 24] developed a prefix-based

controller/estimator for systems with missing data, similar to the

setting we consider; however, this approach does not directly apply

to the delayed data case that we consider in this paper. Moreover,

when compared with results in [14] that does consider delayed data,

our approach allows for adaptation based on the observed path,

resulting in better equalized recovery performance.

A further relevant research area pertains to measurement sched-

uling in control systems (e.g., [2, 10]). However, this research differs
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from our setting where the data patterns are not scheduled but ad-

versarially chosen from the set of admissible patterns.

Contribution: In this paper, we design path-dependent finite-

horizon controllers and estimators that achieve equalized recovery

for time-varying affine systems when the output/measurement

data is prone to time-varying misses and delays (including out-of-

sequence data), where the temporal pattern of the delayed/missing

data phenomenon is constrained to a set of all possible patterns

using a fixed-length language. To tackle this problem, we propose

finite-horizon affine feedback laws based on two parameterization

approaches that are commonly used in the optimal control litera-

ture, that is with output feedback and output error (or disturbance)

feedback, that were found to be equivalent in the absence of miss-

ing or delayed data (e.g., [13, 29]). In particular, we extend existing

equalized recovery controllers/estimators for both parameteriza-

tions (e.g., [14, 23–25]), to allow time-varying and path-dependent

intermediate levels and consider more general polytopic sets for

describing the tracking or estimation error bounds.

Additionally, we construct a reduced event-based language with

unique event sequences and synthesize feedback gains for each of

these unique event sequences in the reduced language, instead of

each possible event sequence, in a manner that resolves conflicts

arising from the ambiguity between event sequences with only

partial observations of the sequence from the history of observed

data patterns/subsequences up to the current time, i.e., the observed

path. This enables our controllers/estimators to adapt based on the

observed path, resulting in marked improvements over existing

works [14, 25] that can only consider the worst-case missing or

delayed data pattern within the language. Moreover, the proposed

controllers/estimators are applicable for delayed data patterns, in

addition to missing data patterns that was considered in [23, 24].

Further, we design a word observer that can estimate the set of all

missing/delayed data patterns that are compatible with the observed

path at each time step, which can be useful for fault/attack pattern

identification and communication network optimization. These

improvements are illustrated in several simulation examples.

2 PROBLEM FORMULATION
2.1 System Dynamics and Delayed Data

Language
System Dynamics: We consider a discrete-time affine time-varying

system subject to bounded process and measurement noise. The

model of the system dynamics is given by:

xk+1
= Akxk + Bkuk +Wkwk + fk ,

zk = Ckxk +Vkvk ,
Yk = {zk−ω (i ) |i + ω (i ) = k, i ≤ k },

(1)

where xk ∈ R
n
is the system state at time k , uk ∈ R

m
is the input

to the system, wk ∈ R
nw

is the process noise, vk ∈ R
nv

is the

measurement noise, zk ∈ R
p
is the time-stamped observation or

measurement that is possibly affected by a time-delay attack or any

naturally occurring delay, Yk ⊂ R
p
is the set of all measurement

data that is received at time step k , ω (i ) is the time delay associated

with zi at the time step i and satisfies ω (i ) ∈ Nω
0
, and ω is an upper

bound on the number of time steps that a packet is delayed by.

The discrete variable ω (i ) = 0 denotes that the i-th measurement

is received without delay, while ω (i ) = a implies that the i-th
measurement is delayed by a steps. The system matrices Ak , Bk ,
Ck ,Wk , Vk and fk are all known and of appropriate dimensions.

We assume that the process and measurement noises wk and vk
are unknown but polyhedrally constrained withwk ∈ W = {w ∈
Rnw |Pww ≤ qw } and vk ∈ V = {v ∈ R

nv |Pvv ≤ qv } for every
time step k , respectively. In addition, we suppose that the control

inputuk is bounded withuk ∈ U = {u ∈ R
m | Puu ≤ qu }. Without

loss of generality, we assume that the initial time is k = 0.

Delayed Data Language [15]: Given a fixed lengthT , we consider
a delayed data model where delayed data patterns are restricted to

a set expressed by fixed-length language specifications, e.g., ‘the

i-th observation is delayed by at mostm time steps’ or ‘at mostm
delayed/missing measurements in a fixed interval.’ The delayed data

patterns can be the result of naturally occurring delays or packet

dropouts due to communication network congestion or losses, or

caused by deliberate (cyber) attacks by an adversary or hacker.

Formally, our delayed data model is a fixed-length language L =

{Wα }
|L |

α=1
that specifies the set of allowable delay mode sequences

ωα (0)ωα (1)ωα (2) . . .ωα (T − 1), where the α-th possible sequence

is called a wordWα . Note that i + ω (i ) > T implies that the i-th
measurement is delayed beyond the horizon T , which is equivalent

to the case that the i-thmeasurement is missing. Thus, in our setting,

missing data can be considered as a special case of delayed data.

2.2 Equalized Recovery
One of themain objectives of this paper is to design a path-dependent

bounded-error estimator, where the estimation error is guaran-

teed to return/recover to the same bound that it started with af-

ter a fixed number of time steps, as an extension of the notion

of equalized performance in [8, 9]. Another problem of interest

is to synthesize a controller that can ensure that the states of

the closed-loop system remain within a certain distance from the

origin (i.e., stable in the sense of Lyapunov), while being sub-

jected to input constraints. Moreover, we can pose a similar prob-

lem for tracking control to track a given desired state trajectory

xd,0,xd,1, . . . ,xd,T (and its corresponding ud,0,ud,1, . . . ,ud,T−1

such that xd,k+1
= Akxd,k + Bkud,k + fk ), and the objective is to

guarantee that the bounds on the tracking error xξ ,k ≜ xk − xd,k
recover to the initial error bound, with a potential temporary

(bounded) increase within the horizon due to missing/delayed data.

The bounded-error estimator and feedback control synthesis

problems can be formulated as a generic equalized recovery problem

for a transformed system:

xξ ,k+1
= Akxξ ,k + Bξ ,kuξ ,k +Wkwk + fξ ,k ,

zξ ,k = Ckxξ ,k +Vkvk ,

Yξ ,k = {zξ ,k−ω (i ) |i + ω (i ) = k, i ≤ k },
(2)

where the transformed states xξ ,k , the transformed output zξ ,k , the
set of available transformed outputs Yξ ,k , the transformed input

uξ ,k ∈ Uξ , Bξ ,k and fξ ,k depend on the problem of interest.

Specifically, for the bounded-error estimator design problem,

the estimation error system for the state estimation error given by

xξ ,k ≜ xk − x̂k can be found to be of the form in (2) with Bξ ,k ≜ I ,

fξ ,k ≜ 0,Uξ ≜ Rm , and the transformed output zξ ,k ≜ zk −Cx̂k ,



Path-Dependent Controller and Estimator Synthesis with Robustness to Delayed and Missing Data HSCC ’21, 2021, Nashville, Tennessee

where x̂ (t ) is a known signal obtained from the following observer:

x̂k+1
= Ak x̂k + Bkuk − ue,k + fk , (3)

where the injection term uξ ,k ≜ ue,k is the transformed input.

On the other hand, the constrained feedback controller synthesis

problem for the system with delayed and missing data in (1) is one

with the system dynamics of the form in (2) with Bξ ≜ B, fξ ,k ≜ fk ,

uξ ,k ≜ uk , zξ ,k ≜ zk and xξ ,k ≜ xk , as well asUξ ≜ U . Further,

for the tracking control problem with a desired trajectory that

satisfies xd,k+1
= Akxd,k + Bkud,k + fk over a horizon T , the

corresponding tracking error system dynamics takes the form in

(2) with xξ ,k ≜ xk − xd,k , Bξ ,k ≜ Bk , fξ ≜ 0, uξ ,k ≜ uk − ud,k ,

zξ (t ) ≜ zk −Cxd,k , andUξ ≜ {uξ ,k ∈ R
m | uξ ,k + ud,k ∈ U}.

Formally, we consider the following equalized recovery property

that we wish to achieve with our proposed feedback controllers

and bounded-error estimators, which generalizes the definition in

[23] (where the polyhedral sets are chosen as hypercubes and the

intermediate level is time-invariant):

Definition 1 (Eqalized Recovery). A controller/estimator is
said to achieve an equalized recovery level µ1 at time t = 0 with
recovery time T and intermediate levels µ

2,k ≥ µ1 if for any xξ ,0 ∈
X0 ≜ {x ∈ Rn |Px ≤ µ1q}, we must have xξ ,k ∈ Xk ≜ {x ∈
Rn |Px ≤ µ

2,kq} for all k ∈ [0,T ] and xξ ,T ∈ X0, where µ1 and µ
2,k

for all k ∈ [0,T ] are scalars, and X0 and Xk are polyhedral sets.

2.3 Problem Statement
We aim to design a path-dependent bounded-error estimator and/or

synthesize a path-dependent feedback controller, that satisfies equal-
ized recovery, which can be stated as follows:

Problem 1 (Controller/Estimator Design). Given the system
dynamics in (2), a desired recovery level µ1, a recovery time T as a
time horizon and a delayed data model specified by a language L
as well as an initial state xξ ,0 satisfying xξ ,0 ∈ X0, find an optimal
affine feedback law uξ ,k that minimizes a cost J ({µ

2,k }
T
k=0

) subject
to µ

2,k ≥ µ1, xξ ,k ∈ X, ∀k ∈ [0,T ] and xξ ,T ∈ X0 (cf. Definition 1).

Specifically, we will address Problem 1 by investigating two

affine feedback laws in Section 3.2 that are commonly used in

the finite-horizon optimal control literature (e.g., [13, 29]), namely

with output feedback and output error feedback parameterizations.

Moreover, we design a word observer to estimate, at each step, the

set of all potential data patterns (i.e., words) from delayed data

language that are compatible with observed data patterns. This

will enable the identification of delayed data patterns that can, in

turn, be useful for communication network optimization or attack

mitigation.

Problem 2 (Word Observer Design). Given a delayed data
model described by a fixed-length language L, design a word observer
that can estimate the set of all potential words (i.e., delayed data
patterns) from the language L that are compatible with observed
data patterns/path at each time step k .

3 DESIGN APPROACH
In this section, we propose controller/observer design approaches to

solve Problems 1 and 2. We first construct an event-based language

LE
from the delayed data language L. Afterwards, path-dependent

controllers/estimators based on output feedback and output error

feedback will be designed, which will utilize the information from

the observed data pattern/path in the event-based language seen

so far to adapt their feedback gains. Moreover, for Problem 2, we

design an inverse mapping algorithm that returns the set of all

possible delayed data patterns that are compatible with observed

data patterns up to the current time.

3.1 Event-Based Language
Given a delayed data language L, containing all possible words cor-

responding to different allowable delayed/missing data patterns, an

event-based language LE
is first constructed to capture the set of

indistinguishable event sequences that correspond to the different

delayed data patterns in L. To build the event-based language, the

following definitions are introduced first (with Nba as the set of nat-

ural numbers from a through b). For examples of this construction,

the readers are referred to [15, Section III-A].

Definition 2 (Event [15]). An event ei, j = d0d1d2 . . .di of time
step i ∈ NT−1

0
is a finite sequence of binary variables dl ∈ {0, 1} for

all l ∈ Ni
0
, where j ∈ N2

i+1−1

0
is an index denoting the j-th potential

event at time step i . The binary variable dl = 1 denotes that the data
of time step l is available at current time step i (i.e., all received data
up until the current step i), while dl = 0 signifies that the data of
time step l is not available at current time step i . Moreover, an event
can be defined using ei, j = binary(j, i + 1) at time step i , where
the function binary returns a binary representation of the decimal
number j ∈ N2

i+1−1

0
with i + 1 digits.

Definition 3 (Event Set [15]). An event set ei = {ei, j }2
i+1−1

j=0
is

a set of all potential events at time step i ∈ NT−1

0
.

Intuitively, an event at time step i represents the information/data

that is available up until the time step i . Since any data from previ-

ous steps or current step only has two possibilities, i.e., received

or not received at the current time i ∈ NT−1

0
, there are totally 2

i+1

different cases. Therefore, the index j of ei, j varies from 0 to 2
i+1−1.

Definition 4 (Event Seqence [15]). An event sequence, de-
noted Eα = e0, j0e1, j1e2, j2 . . . eT−1, jT−1

, is a sequence of events corre-
sponding to a wordWα = {ω (i )}

T−1

i=0
from the fixed length language

L, where the subscripts ji for all i ∈ NT−1

0
are determined by the

wordWα .

In otherwords, an event sequence represents the information/data

that is available/accessible at each time step. For each allowable

delayed/missing data patterns (i.e., word) in a language L, we

can find its corresponding event sequence. As a result, the lan-

guage L = {Wj }
|L |

j=1
containing all allowable delayed data patterns

can be mapped on a new event-based language LE = {Eα }
|L |

α=1

containing all potential event sequences. In particular, for a word

Wα = ω (0)ω (1)ω (2) . . .ω (T − 1), the subscript jk (k ∈ NT−1

0
) in

the corresponding event sequence Eα = e0, j0e1, j1e2, j2 . . . eT−1, jT−1

(cf. Definition 4) can be constructed as

jk =
k∑
ℓ=0

2
ℓ1ω (k−ℓ)≤ℓ , ∀k ∈ N

T−1

0
, (4)
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where 1ω (k−ℓ) denotes an indicator defined as

1ω (k−ℓ)≤ℓ =



1, ω (k − ℓ) ≤ ℓ,

0, ω (k − ℓ) > ℓ.
(5)

Note that the resulting event-based language LE = {Eα }
|L |

α=1
could

have repeated event sequences (i.e., the mapping is surjective).

Thus, we will eliminate repeated event sequences in LE
to obtain a

reduced event-based language LE′ = {E ′α }
|LE
′
|

α=1
⊆ LE

with unique

event sequences E ′α for α ∈ N |L
E′ |

1
.

Having defined an event sequence, we next define the prefix

of an event sequence, which will be used later to describe our

controller/estimator design.

Definition 5 (Prefix of an Event Seqence [15]). For an event
sequence E ′α ∈ L

E′ and i ≤ |E ′α |, the length i prefix of E
′
α is defined

as the event subsequence (E ′α )
[1:i] = e0, j0e1, j1e2, j2 . . . ei−1, ji−1

, where
|E ′α | denotes the number of events in E ′α . The set of all non-empty
prefixes of E ′α is denoted as Pre f (E ′α ).

In addition, we define an observed path based on the history of

observed transformed outputs, which we will relate to the event

sequences in the reduced event-based language whose prefixes

match the observed path in our design in the following section.

Definition 6 (Observed Event and Path). Given the history
of observed transformed outputs up to the current time step k , i.e.,⋃k
i=0

Yξ ,i , the observed event at each time step i is defined as eobsi =

dobsi,0 dobsi,1 dobsi,2 . . .d
obs
i,i , which is a finite sequence of binary variables

dobsi,l ∈ {0, 1} for all l ∈ N
i
0
, where the binary variable dobsi,l = 1

denotes that the data of time step l is available at time step i (i.e.,
zξ ,l ∈

⋃i
j=0

Yξ , j ), while di,l = 0 signifies that the data of time step l is
not available at time step i (i.e., zξ ,l <

⋃i
j=0

Yξ , j ). Then, the observed

path Eobsk is defined as the observed event subsequence at time k
(that, by construction, must be a prefix of a reduced event sequence),
i.e., Eobsk = eobs

0
eobs

1
eobs

2
. . . eobsk ∈Pre f (E ′α ) for some E ′α ∈ L

E′ .

3.2 Affine Feedback Designs
To solve Problem 1, we propose affine feedback controller and

estimator designs based on two commonly used affine feedback

parameterizations that can be found in the finite-horizon optimal

control literature, e.g., [13, 29], namely output feedback and output

error feedback parameterizations. Note that these two parameteri-

zations have been shown to be equivalent when there is no missing

or delayed data [13, Theorem 3.2]; however, it is unclear if this

equivalence still holds when there is missing or delayed data.

In addition, in contrast to the designs in [14, 25] where the worst-

case singleton language L∗ is used (worst according to the partial

ordering defined in [14, 25]), we allow the controller/estimator

gains to adapt to the current observed path (cf. Definition 6), i.e.,

the currently observed partial data patterns or event subsequence.

This path-dependent structure (also known as the prefix-based

approach in [23, 24]) has been shown to lead to better performance

than the worst-case language approach in [25] when some data may

be missing, and we will show in this paper that the performance

improvement is also applicable in our controller/estimator designs

with either delayed or missing data.

3.2.1 Affine Feedback Parameterizations. In particular, we present

two path-dependent affine feedback laws based on commonly used

affine feedback parameterizations, where the path dependency

refers to the adaptation of the controller/estimator design based on

the currently observed data patterns or event sequence.

Output Feedback. Similar to the prefix-based output feedback de-

signs in [23, 24], we consider a feedback policy for the transformed

inputuξ that is affine in the observed transformed outputs up to the

current time {zξ ,i }
k
i=0
=
⋃k
i=0

Yξ ,i and dependent on the currently

observed path/event subsequence Eobsk ≜ eobs
0

eobs
1

eobs
2
. . . eobsk

(cf. Definition 6), as follows:

uξ ,k = д
Eobsk
k +

∑k
i=0

F
Eobsk
k,i z̆ξ ,i , (6)

with

z̆ξ ,i =



zξ ,i , if zξ ,i ∈
⋃k
j=0

Yξ , j ,

0, otherwise,

where F
Eobsk
k,i ∈ Rm×p and д

Eobsk
k ∈ Rm are gain matrices for this

output feedback parameterization. It is noteworthy that the output

feedback policy in (6) can equivalently be interpreted as

uξ ,k = д
Eobsk
k +

∑k
i=0

F
Eobsk
k,i zξ ,i , (7)

with F
Eobsk
k,i = 0 when zξ ,i <

⋃k
j=0

Yξ , j , a fact that we will leverage

in our controller/estimator design with appropriate constraints on

the gain matrix as will be described in more detail in Section 3.2.2.

Output Error Feedback. Moreover, we propose an extension of the

output error feedback parameterization in [13, 14] to allow for path-

dependency based on currently observed path/event subsequence

Eobsk ≜ eobs
0

eobs
1

eobs
2
. . . eobsk (cf. Definition 6) when there is miss-

ing or delayed data. Specifically, this approach includes the design

of a Luenberger-like observer for transformed state as follows:

sk+1
= Aksk + Bξ ,kuξ ,k + fξ ,k + L

Eobsk
k z̃ξ ,k , (8)

with

z̃ξ ,k =



zξ ,k −Cksk , if zξ ,k ∈
⋃k
j=0

Yξ , j ,

0, otherwise,

where L
Eobsk
k ∈ Rn×p is the Luenberger-like gain as a function of

the observed path Eobsk and uξ ,k ∈ R
n
is the transformed input

with causal output error injection given by the following:

uξ ,k = ν
Eobsk
k +

∑k
i=0

M
Eobsk
k,i z̃ξ ,i , (9)

where M
Eobsk
k,i ∈ Rm×p and ν

Eobsk
k ∈ Rm are gain matrices associ-

ated with the currently observed path/event subsequence Eobsk at

time k for the output error feedback parameterization. Similar to

the previous parameterization, the observer and transformed input,

(8) and (9), can equivalently be interpreted as

sk+1
= Aksk + Bξ ,kuξ ,k + fξ ,k + L

Eobsk
k (zξ ,k −Cksk ), (10)

uξ ,k = ν
Eobsk
k +

∑k
i=0

M
Eobsk
k,i (zξ ,i −Cisi ), (11)

with L
Eobsk
i = 0 andM

Eobsk
k,i = 0 when zξ ,i <

⋃k
j=0

Yξ , j , as described

in greater detail in Section 3.2.2.



Path-Dependent Controller and Estimator Synthesis with Robustness to Delayed and Missing Data HSCC ’21, 2021, Nashville, Tennessee

3.2.2 Constraints on Gain Matrices. In both parameterizations,

since we are interested in the offline design of path-dependent

gain matrices during the design phase, one may consider designing

these gain matrices for all possible (observed) paths/event subse-

quences. However, since the number of event subsequences grows

exponentially with time steps k , we propose to instead consider

doubles (Fαk,i ,д
α
k ) or triplets (M

α
k,i ,ν

α
k ,L

α
k ) for each unique event

sequence E ′α of the reduced event-based language LE′
, which in

general is a much smaller subset of all possible paths/event subse-

quences. In fact, this is one of the main motivations for consider-

ing delayed/missing data languages to restrict the set of possible

paths/event subsequences.

Then, when the observed path Eobsk is available at run time, we

only need to select the matrix gains (Fαk,i ,д
α
k ) or (Mα

k,i ,ν
α
k ,L

α
k )

corresponding to the E ′α ∈ L
E′

such that Eobsk = Pre f (E ′α ), i.e.,
we will select the gain matrices at run time as follows:

(F
Eobsk
k,i ,д

Eobsk
k ) ∈ {(Fα ,дα ) |Eobsk = Pre f (E ′α )}, (12)

(M
Eobsk
k,i ,L

Eobsk
k,i ,ν

Eobsk
k ) ∈ {(Mα ,Lα ,να ) |Eobsk = Pre f (E ′α )}, (13)

where (Fα ,дα ) and (Mα ,Lα ,να ) are stacked versions of (Fαk,i ,д
α
k )

and (Mα
k,i ,L

α
k,i ,ν

α
k ) as follows:

Fα=



Fα
0,0 · · · 0

...
. . . 0

FαT−1,0
· · · FαT−1,T−1



,дα=



дα
1

...

дαT−1



,να=



να
1

...

ναT−1



,

Mα=



Mα
0,0 · · · 0

...
. . . 0

Mα
T−1,0

· · ·Mα
T−1,T−1



,Lα=



Lα
0
· · · 0

...
. . . 0

0 · · · LαT−1



.

(14)

However, since multiple event sequences in the reduced event-

based language LE′
may share the same prefixes, these doubles and

triplets cannot be designed independently, as it may result in im-

plementation conflicts. In other words, the same prefixes of length

k mean that these event sequences are not distinguishable from

the history of observed path/data patterns up to time k , Eobsk , and

thus, the corresponding design gains up to time k must be the same

to avoid ambiguity in terms of which (Fαk,i ,д
α
k ) or (M

α
k,i ,ν

α
k ,L

α
k )

should be used, as discussed in detail in [24]. To remedy this, we

need to design the gain matrices (Fα ,дα ) and (Mα ,Lα ,να ) for

each event sequence E ′α of the reduced event-based language LE′

such that if two different event sequences are not distinguishable

until time
¯k , then (Fα

(k ) ,д
α
(k ) ) and (Mα

(k ) ,L
α
(k ) ,ν

α
(k ) ) for both event

sequences should be constrained to be the same for all k ∈ N
¯k−1

0
,

where the subscript (k ) denotes the k-th row of the matrix.

Indistinguishability Constraints. To define these indistinguisha-

bility constraints, we will adopt the following definition from [24]:

Definition 7 (Principle Block Minor [24]). The i-th leading
principal block minor of a block matrix M ∈ Ran×bp , written as
BMi (M ), is the n × p block matrix, BMi (M ) = M1:in,1:ip , for all
i ∈ [1,min(a,b)].

Using the above definitions, we impose the following constraint

due to indistinguishability of event sequences/trajectories in LE′

for both affine feedback parameterizations:

CI (LE′ )=




{(Fα ,дα )} |L
E′ |

α=1

�����������

e ∈ Pre f (E ′α ) ∩ Pre f (E
′
β )

=⇒ ∀E ′α , E
′
β ∈ L

E′
:

(BM |e | (F
α ) = BM |e | (F

β ))

∧((дα )(1: |e |n) = (дβ )(1: |e |n) )




, (15)

CII (LE′ )=




{(Mα ,Lα

να )} |L
E′ |

α=1

��������������

e ∈ Pre f (E ′α ) ∩ Pre f (E
′
β )

=⇒ ∀E ′α , E
′
β ∈ L

E′
:

(BM |e | (M
α ) = BM |e | (M

β ))∧

(BM |e | (L
α ) = BM |e | (L

β ))∧

((να )(1: |e |n) = (ν β )(1: |e |n) )




, (16)

where the former is for the output feedback parameterization and

the latter for the output error feedback parameterization.

Intuitively, if any pair of event sequences shares the same prefix

of a particular length, they are indistinguishable at the correspond-

ing time step based on the received information. Since they are

indistinguishable (and future information is inaccessible in a causal

system), their associated submatrices and subvectors must be con-

strained to be the same to avoid conflicts during implementation.

Delayed/Missing Data Constraints. Moreover, as described in the

previous section, instead of using switched feedback laws in (6), (8)

and (9) due to the delayed/missing data, wewill equivalently employ

the non-switched feedback laws in (7), (10) and (11) by imposing

appropriate constraints on Fα ,Mα
and Lα for each event sequence

E ′α ∈ L
E′

associated with delayed/missing data patterns, where

all the entries in Fα ,Mα
and Lα corresponding to unavailable data

should also be set to zero. To construct this constraint on Fα ,Mα

and Lα , we first define an event matrix associated with the event

sequence E ′α ∈ L
E′
:

Eα =



e (0)
0, j0

0 . . . 0

e (0)
1, j1

e (1)
1, j1

. . . 0

.

.

.
.
.
.

. . .
.
.
.

e (0)T−1, jT−1

e (1)T−1, jT−1

. . . e (T−1)
1, jT−1



, (17)

where e
(l )
i, ji

specifies the (l+1)-th digit of event ei, ji , i.e., dl (cf. Defi-

nition 2). Using this definition, we impose the following constraint

due to delayed and missing data:

DI (LE′ )=


{Fα } |L

E′ |
α=1

�������

∀i, j ∈ NT
1

:

Fα
((i−1)n:(i−Eα (i, j ))n−1,
(j−1)p :(j−Eα (i, j ))p−1)

=0,



, (18)

DII (LE′ )=




{(Mα ,

Lα )} |L
E′ |

α=1

������������

∀i, j ∈ NT
1

:

Mα
((i−1)n:(i−Eα (i, j ))n−1,
(j−1)p :(j−Eα (i, j ))p−1)

=0,

Lα
((i−1)n:(i−Eα (i, j ))n−1,
(j−1)p :(j−Eα (i, j ))p−1)

=0




, (19)

where the superscripts I and II correspond to the output feedback

and output error feedback parameterizations, respectively.

3.2.3 Equalized Recovery Estimator/Controller Designs. Armedwith

the description of the feedback laws and their corresponding con-

straints on the gainmatrices, we nowpresent our estimator/controller

synthesis designs for both proposed output feedback and output

error feedback parameterizations.
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Output Feedback. Since the design incorporates a finite horizon

(determined by the fixed-length language), we can stack the trans-

formed states, inputs, outputs and noise signals as follows:

xξ = (xξ ,0, · · · ,xξ ,T ) ∈ R
n (T+1) , uξ = (uξ ,0, · · · ,uξ ,T−1

) ∈ RmT ,

zξ = (zξ ,0, · · · , zξ ,T−1
) ∈ RpT , w = (w0, · · · ,wT−1) ∈ R

nwT ,

v = (v0, · · · ,vT−1) ∈ R
nvT , ˜f = ( fξ ,0, · · · , fξ ,T−1

) ∈ RnT ,

and rewrite the entire closed-loop trajectory of xξ ,k corresponding

to (2) and (7) for each event sequence E ′α ∈ L
E′

as:

xξ = Pαxww + P
α
xvv + P

α
x0
xξ ,0 + Hŭ

α
ξ ,

uξ = Pαuww + P
α
uvv + P

α
u0
xξ ,0 + ŭ

α
ξ ,

(20)

where

Pαxw = G + HFα (I −CHFα )−1CGW , Pαxv = HFα (I −CHFα )−1V ,
Pαuw = Fα (I −CHFα )−1CGW , Pαuv = Fα (I −CHFα )−1V ,
Pαx0
= (I + HFα (I −CHFα )−1C )A, Pαu0

= Fα (I −CHFα )−1CA,

ŭαξ = Fα (I −CHFα )−1C (G ˜f + Hдα ) + дα ,

W =



Wξ ,0 · · · 0

.

.

.
. . .

.

.

.

0 · · · Wξ ,T−1



, V=



Vξ ,0 · · · 0

.

.

.
. . .

.

.

.

0 · · · Vξ ,T−1



, A =



In
A1

0

.

.

.

AT
0



,

C=



C0 · · · 0 0

.

.

.
. . .

.

.

.
.
.
.

0 · · · CT−1 0



, G=



0 · · · 0

A1

1
· · · 0

.

.

.
. . .

.

.

.

AT
1
· · · ATT



, H=



0 · · · 0

A1

1
Bξ ,0 · · · 0

.

.

.
. . . 0

AT
1
Bξ ,0 · · · ATT Bξ ,T−1



,

(21)

with Aki = Ak−1
Ak−2

...Ai and Fα and дα in (14). Note that the

above formulation is in general not convex in the design variables

Fα and дα . Nonetheless, [29] has shown that a suitable change

of variables (i.e., with Q-parametrization) can recast the above

formulation as one that is convex in the new variables Qα
and rα ,

defined as:

Qα = Fα (I −CHFα )−1,

rα = (I +QαCH )дα ,
(22)

where the original variables can be recovered as follows:

Fα = (I +QαCH )−1Qα ,

дα = (I +QαCH )−1rα = (I + FαCH )rα .
(23)

Furthermore, [20, 22] has shown that gain matrix constraints that

satisfy a property known quadratic invariance remain invariant

under the change of variables (i.e., Q-parameterization).

However, in the context of estimator/controller synthesis with

delayed and missing data, there are two sets of gain matrix con-

straints that are needed, as described in Section 3.2.2, and it is

unclear if either set of constraints remains invariant under the Q-
parameterization. In fact, even if quadratic invariance can be proven,
it would only apply to delayed/missing data constraints and not

the indistinguishability constraints that must hold for different α ’s.
Hence, in this paper, we restrict ourselves to a special case where

these sets of constraints can be shown to be remain invariant under

the change of variance using Q-parameterization:

Assumption 1. For each event sequence/path E ′α ∈ L
E′ , the

corresponding lower triangular event matrix Eα in (17) satisfies:

Eα(i, j ) = 0,∀j > i, if Eα(i,i ) = 0.

This special case corresponds to the scenario with only missing

data patterns or where all delayed data are discarded (i.e., not used

for control or estimation) and treated as ‘missing.’ It is also notable

that this assumption is stronger than the skyline matrix structure

for which quadratic invariance holds [21]. Even so, while the change

of variables via Q-parameterization is invariant for the “sparsity”

constraints related to the delayed/missing data constraints in (18), it

is unclear if the indistinguishability constraints under this assump-

tion also remain invariant with Q-parameterization. The following

lemma essentially answers this question in the affirmative.

Lemma 3.1. Suppose Assumption 1 holds. Then, any F̃α ∈ DI (LE′ )
(cf. (18)) can be factorized as follows:

F̃α = Fα (diag(Eα ) ⊗ I ), (24)

where Fα is unconstrained, diag(Eα ) is a diagonal matrix with only
the diagonal elements of Eα and ⊗ is the Kronecker product.

Consequently, the closed-loop trajectory of xξ ,k corresponding to
each event sequence E ′α ∈ L

E′ can be obtained as in (20)withC andV
replaced byCα ≜ (diag(Eα )⊗I )C andV α ≜ (diag(Eα )⊗I )V , respec-
tively, and (Fα ,дα ) has to satisfy (Fα ,дα ) ∈ CI (LE′ ) (cf. (15)) but
not DI (LE′ ) in (18). Moreover, the constraint (Fα ,дα ) ∈ CI (LE′ )
can be equivalently imposed on Qα = Fα (I −CαHFα )−1 and rα =
(I + QαCαH )дα (cf. (22) with Cα instead of C) as (Qα , rα ) ∈ CIII,
where CIII is defined as:

CIII (LE′ )=




{(Qα , rα )} |L
E′ |

α=1

�����������

e ∈ Pre f (E ′α ) ∩ Pre f (E
′
β )

=⇒ ∀E ′α , E
′
β ∈ L

E′
:

(BM |e | (Q
α ) = BM |e | (Q

β ))

∧((rα )(1: |e |n) = (r β )(1: |e |n) )




.(25)

Proof. First, since Assumption 1 holds, the corresponding Eα

matrix is lower triangular with some columns being zero. Then, it

can be relatively easily shown by basic block matrix multiplication

that any F̃α ∈ DI (LE′ ) (cf. (18)) can be exactly factorized as:

F̃α = Fα (diag(Eα ) ⊗ I ),

where Fα is a full block lower triangular matrix with no sparsity

constraints. Then, note that the stacked/time-concatenated control

law in (7) is of the form of

uξ = д
α + F̃α (Cxξ +Vv ),

for some F̃α ∈ DI (LE′ ). In the above, since F̃α is factorizable,

F̃αC = Fα (diag(Eα ) ⊗ I )C = FαCα ,

F̃αV = Fα (diag(Eα ) ⊗ I )C = FαV α ,

where we definedCα ≜ (diag(Eα )⊗I )C andV α ≜ (diag(Eα )⊗I )V .

Thus, in this case, we could interpret the new estimator/controller

synthesis with output feedback as one with output matrix Cα
and

feedthrough matrix V α
and without the constraint DI (LE′ ).

Finally, we can directly obtain the equivalence of imposing the

constraint on (Fα ,дα ) ∈ CI (LE′ ) (cf. (15)) and on (Qα , rα ) ∈

CIII (LE′ ) (cf. (25)) by applying [23, Propositions 1 & 2]. □

Now, we present the estimator/controller synthesis approach

with output feedback parameterization that borrows ideas from

Q-parameterization to obtain a tractable optimization problem.
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Theorem 3.2 (Eqalized Recovery Estimator/Controller

Synthesis with Delayed/Missing Data (Output Feedback)).

Suppose Assumption 1 holds. For a system with delayed/missing data
patterns defined by a fixed-length language L given in (1), the affine
output feedback estimator/controller given in (6) and (12) solves Prob-
lem 1 (with a given recovery level µ1 and cost function J (·)) if the
following problem is feasible:

min

Qα ,rα ,µα
2

J ({µα
2
}
|LE

′
|

α=1
)

subject to ∀((IT ⊗ Pw )w ≤ 1T ⊗ qw , (IT ⊗ Pv )v ≤ 1T ⊗ qv ,

Pxξ ,0 ≤ µ1q,α ∈ L
E′ ) :

(IT ⊗ Pu ) (u
α
ξ + ud ) ≤ 1T ⊗ qu ,

(IT+1 ⊗ P )x
α
ξ ≤ µα

2
⊗ q, PRT x

α
ξ ≤ µ1q,

xαξ = Pαxww + P
α
xvv + P

α
x0
xξ ,0 + Hŭ

α
ξ ,

uαξ = Pαuww + P
α
uvv + P

α
u0
xξ ,0 + ŭ

α
ξ ,

(Qα , rα ) ∈ CIII (LE′ ), µα
2
≥ µ1,

(26)

where
Pαxw = (I + HQαCα )GW , Pαxv = HQαV α ,

Pαuw = Q
αCαGW , Pαuv = Q

αV α ,

Pαx0
= (I + HQαCα )A, Pαu0

= QαCαA,

ŭαξ = Q
αCαG ˜f + rα , RT =

[
0n×nT In

]
,

(27)

as well asCα ≜ (diag(Eα ) ⊗ I )C and V α ≜ (diag(Eα ) ⊗ I )V , while
the gain matrices Fα and дα can be found from Qα and rα via (23)
and µα

2
≜ [µα

2,0, ..., µ
α
2,T ]
⊤. Moreover, we let µ

2,k ≜ maxα µα
2,k .

Proof. This proof follows similar steps to the derivation in [23].

From the requirements for equalized recovery in Definition (1),

we must have Pxξ ,k ≤ µ
2,kq for all k ∈ [0,T ] and Pxξ ,T ≤ µ1q,

for all (worst-case) realizations of noise wk , vk and initial state

uncertainty xξ ,0. Then, using the change of variables in (22) (i.e.,

Q-parameterization) and the result from Lemma 3.1, we can directly

construct the robust optimization problem given in Theorem 3.2,

similar to [29, Section III-C]. Moreover, the original gain matrices

(Fα ,дα ) can be recovered from (23). □

Then, since the problem in Theorem 3.2 involves semi-infinite

constraints (i.e., for all constraints), we will leverage robust opti-
mization to convert the problem into the following linear program

with a finite number of constraints:

Proposition 3.3 (Robustified Eqalized Recovery Estima-

tor/Controller Synthesis with Delayed/Missing Data (Out-

put Feedback)). The semi-infinite optimization problem (26) in The-
orem 3.2 (that solve Problem 1 with a given recovery level µ1 and cost
function J (·)) is equivalent to the following linear program:

min

Qα ,rα ,µα
2
,Πα

J ({µα
2
}
|LE

′
|

α=1
)

subject to Πα ≥ 0, µα
2
≥ µ1,

Πα


1T ⊗ qw
1T ⊗ qv

µ1q


≤



µα
2
⊗ q

µ1q
1T ⊗ qu


−



(IT+1 ⊗ P )H 0

PRTH 0

IT ⊗ Pu ImT



[
QαCαG ˜f +rα

ud

]
,

Πα


IT ⊗ Pw 0 0

0 IT ⊗ Pv 0

0 0 P


=



(IT+1 ⊗ P ) J
α
x

PRT J
α
x

(IT ⊗ Pu ) Ju
α


,

(Qα , rα ) ∈ CIII (LE′ ),
(28)

with Jαx ≜
[
Pαxw Pαxv Pαx0

]
, Jαu ≜

[
Pαuw Pαuv pαu0

]
, ud =

(ud,0, · · · ,ud,T−1
) and the definitions in (27).

Proof. This proposition can be proven by directly leveraging

techniques from robust optimization [5, 6] to find the robust coun-

terpart to the robust optimization problem in Theorem 3.2. □

Remark 1. Note that even if Assumption 1 does not hold, the re-
placement of F̃α ∈ DI (LE′ ) with Fα (diag(Eα )⊗ I ) on the right hand
side of (24)will enable us to synthesize suboptimal equalized recovery
estimators/controllers with delayed/missing data using Theorem 3.2
and Proposition 3.3, as demonstrated in Section 4.1.

In addition to being applicable for feedback control and bounded-

error estimation with more general delayed data languages, when

compared to a prior work [23], the above results allows for path-

dependent and time-varying intermediate levels µα
2
(i.e., dependent

on α and time step k), which can lead to smaller tracking/estimation

errors at run time. Further, we can consider more general polytopes

than hypercubes in [23]. Moreover, the path-dependent gain matri-

ces can be selected at run time using (12).

Output Error Feedback. Next, we consider the estimator/controller

design based on output error feedback parameterization. We can

similarly stack the transformed states, inputs, outputs and noise

signals and rewrite the entire closed-loop trajectory of xξ ,k corre-

sponding to (2) and (7) for each event sequence E ′α ∈ L
E′

as:

xξ = P̆αxww + P̆
α
xvv + P̆

α
x0
xξ ,0 + P̆

α
xss0 + Hν

α +G ˜f ,

uξ = P̆αuww + P̆
α
uvv + P̆

α
u0
xξ ,0 + P̆

α
uss0 + ν

α ,
(29)

where

P̆αxw = (I + H (Mα + Lα )C )ΓαW ,

P̆αxv = ((HMα +GLα ) (I −CΓαLα ) − ΓαLα )V ,

P̆αx0
= (I + (HMα +GLα )C )Φα , P̆αxs = A − P̆αx0

,

P̆αuw = MαCΓαW , P̆αuv = Mα (I −CΓαLα )V ,

P̆αu0
= MαCΦα , P̆αus = −P̆

α
u0
,

(30)

with A, C , G, H ,W and V in (21), Mα
, Lα and να in (14), and Φα

and Γα are defined as
1
:

Φα=



In
Φα ,1

0

.

.

.

Φα ,T
0



, Γα=



0 · · · 0

Φα ,1
1
· · · 0

.

.

.
. . . 0

Φα ,T
1
· · · Φα ,TT



,

where Φα,ki = Φαk−1
Φαk−2

...Φαi and Φαi = Ai − L
α
i Ci .

It is noteworthy that, similar to the output error feedback ap-

proach in [13], with a fixed s0 and Lα , the above formulation is

convex in our design variablesMα
and να . Hence, no new reformu-

lation such as Q-parameterization is necessary and no additional

assumption similar to Assumption 1 is required.

Then, we present the estimator/controller design approach with

output error parametrization as the solution of the following:

Theorem 3.4 (Eqalized Recovery Estimator/Controller

Synthesis with Delayed/Missing Data (Output Error Feed-

back)). For a system with delayed/missing data patterns defined by a
fixed-length language L given in (1), the affine output error feedback
estimator/controller given in (8), (9) and (13) solves Problem 1 (with a
1
Note that Φα and Γα are functions of α , since there are directly dependent on Lα .
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given recovery level µ1 and cost function J (·)) if the following problem
is feasible:

min

Mα ,Lα ,να ,µα
2

J ({µα
2
}
|LE

′
|

α=1
)

subject to ∀((IT ⊗ Pw )w ≤ 1T ⊗ qw , (IT ⊗ Pv )v ≤ 1T ⊗ qv ,

Pxξ ,0 ≤ µ1q,α ∈ L
E′ ) :

(IT ⊗ Pu ) (u
α
ξ + ud ) ≤ 1T ⊗ qu ,

(IT+1 ⊗ P )x
α
ξ ≤ µα

2
⊗ q, PRT x

α
ξ ≤ µ1q,

xαξ = P̆αxww+P̆
α
xvv+P̆

α
x0
xξ ,0+P̆

α
xss0+Hν

α +G ˜f ,

uαξ = P̆αuww+P̆
α
uvv+P̆

α
u0
xξ ,0+P̆

α
uss0+ν

α ,

(Mα ,Lα ,να ) ∈ CII (LE′ ) ∧ DII (LE′ ), µα
2
≥ µ1,

(31)

with RT =
[
0n×nT In

]
, µα

2
≜ [µα

2,0, ..., µ
α
2,T ]
⊤ and the definitions

in (16), (19) and (30). Moreover, we let µ
2,k ≜ maxα µα

2,k .

Proof. The estimator/controller design follows similar steps to

the design in [14]. It is straightforward to observe that the estima-

tor/controller solves Problem 1 by construction with the additional

indistinguishability and delay/missing data constraints in (16) and

(19) on the matrix gains, as described in Section 3.2. □

Similar to Theorem 3.2, the problem in Theorem 3.4 also involves

semi-infinite constraints (i.e., for all constraints), and thus, we resort
to robust optimization to convert the problem into the following

optimization problem with a finite number of constraints:

Proposition 3.5 (Robustified Eqalized Recovery Estima-

tor/Controller Synthesis with Delayed/Missing Data (Out-

put Error Feedback)). The semi-infinite optimization problem (31)

in Theorem 3.2 (that solve Problem 1 with a given recovery level µ1)
is equivalent to the following linear optimization problem:

min

Mα ,Lα ,να ,µα
2
,Πα

J ({µα
2
}
|LE

′
|

α=1
)

subject to Πα ≥ 0, µα
2
≥ µ1,

Πα


1T ⊗qw
1T ⊗qv
µ1q


≤



µα
2
⊗q

µ1q
1T ⊗qu


−



IT+1⊗P 0

PRT 0

0 I



[
Hνα +P̆αxss0+G ˜f

(IT ⊗Pu ) (ν
α+P̆αuss0)+ImTud

]
,

Πα


IT ⊗ Pw 0 0

0 IT ⊗ Pv 0

0 0 P


=



(IT+1 ⊗ P ) J̆
α
x

PRT J̆
α
x

(IT ⊗ Pu ) J̆
α
u


,

(Mα ,Lα ,να ) ∈ CII (LE′ ) ∧ DII (LE′ ),
(32)

with J̆αx ≜
[
P̆αxw P̆αxv P̆αx0

]
, J̆αu ≜

[
P̆αuw P̆αuv P̆αu0

]
, ud =

(ud,0, · · · ,ud,T−1
) and the definitions in (30).

Proof. Similar to the proof of Proposition 3.3, this result can

be directly obtained by finding the robust counterpart to the ro-

bust optimization problem in Theorem 3.4 using tools from robust

optimization [5, 6]. □

When compared with the output feedback parameterization, this

estimator/controller synthesis approach does not require the satis-

faction of Assumption 1, hence the resulting estimator/controller is

optimal for a more general class of systems with delayed/missing

data. Moreover, in comparison with a prior work [14], we consider

time-varying and path-dependent intermediate levels µα
2,k as well

as a prefix-based/path-dependent design that enables adaptation of

Algorithm 1: Wobs
k =WordObsv (Eobsk ,L)

Data: Observed Path

Eobsk = (dobs
0,0 ) (dobs

0,1 dobs
1,1 ) . . . (dobs

0,k . . .d
obs
k,k );

Language L;

Output: Set of Compatible WordsWobs
k

1 function WordObsv((ei, ji )
T−1

i=0
)

2 InitializeWobs
k = {ϵ }; (where ϵω (0) = ω (0))

3 for i = 0 to T − 1 do
4 for ω̃ ∈ Wobs

k do
5 W ′ = ∅;

6 for ℓ = i to i + ω do
7 ω (i ) = ℓ − i;

8 if ℓ ≤ k dobsi, ℓ = 1 then
9 W ′ =W ′ ∪ {ω̃ω (i )};

10 break;

11 else if ℓ > k then
12 W ′ =W ′ ∪ {ω̃ω (i )};

13 Wobs
k =W ′

;

14 Wobs
k =Wobs

k ∩ L;

15 returnWobs

the gain matrices based on the observed path, Eobsk , that, in turn,

leads to improved performance. Moreover, the path-dependent gain

matrices can be selected at run time using (13).

Note, however, that the optimization problem in Proposition 3.5

still has bilinear terms, but is fortunately relatively sparse, hence

off-the-shelf solvers, e.g., IPOPT [30], can return optimal solutions

very quickly. Moreover, as assumed in [13] and as discussed in detail

in [14, Section IV-C], we can fix Lα and s0 (by choosing s0 = 0 and

Lk such that Ak − LkCk for all k are Hurwitz and have eigenvalues

with sufficiently small magnitudes) to obtain a computationally

tractable linear program without any loss of optimality.

3.3 Word Observer
In addition, given the observed path/event subsequence at each time

step k , i.e., Eobsk = eobs
0
. . . eobsk with eobsi = dobsi,0 dobsi,1 dobsi,2 . . .d

obs
i,i

(cf. Definition 6), we propose a word observer that will map Eobsk
to the set of all words that are compatible with observed sequence

Wobs
k , which can be useful for fault or attack pattern identification.

In particular, we want to findWobs
k =WordObsv (Eobsk ,L) ≜

InvMap (Eobsk ) ∩ L. It can be shown that the inverse mapping of

the observed path finds the set of all words, i.e., InvMap (Eobsk ) =

ω (0)ω (1) . . .ω (T − 1), where ω (i ) for each i ∈ NT−1

0
is given by:

ω (i ) ∈



Nωk−i+1
, if dobsi, ℓ = 0 for all ℓ ∈ Nki ,

{ℓ∗i − i}, otherwise,
(33)

with ℓ∗i being the minimum ℓ ∈ Nki such that dobsi, ℓ = 1 and ω is

the maximum delay. Intuitively, ℓ∗i is the earliest time step at each

the data from time step i is available in
⋃k
i=0

Yi . Moreover, if the
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data at time step i is not received by the current time step k , then
this data could be delayed by an interval between k − i + 1 and the

maximum delay ω. It should be noted that in (33), the second case

results in a set of words, implying that the mapping from Eobsk to

Wobs
is one-to-many. This makes sense because if a data is not

available at any time step within

⋃k
i=0

Yi , it can be considered as

delayed by any number of time steps up to the maximum delay ω.
The algorithm of the word observer is given in Algorithm 1.

3.4 Implementation Strategy
There are multiple different ways, in which the constructed equal-

ized recovery estimators/controllers can be implemented. First,

considering the situation that a T -length delayed/missing data pat-

tern occurs periodically, the same gains can be chosen for each

period because by construction of the equalized recovery estima-

tors/controllers, the tracking or estimation error bound at the last

time step of the period is enforced to be the same at the initial

step of the period. In addition, in the case where there is no de-

layed/missing data, equalized performance (i.e., equalized recovery

with T = 1 [8]) can be achieved by using the corresponding gains.

Then, when a delayed/missing data is detected, we can switch to the

equalized recovery estimator/controller associated with a T -length
languagewhere the first data is delayed/missing. Subsequently, after

the fixed recovery timeT , we can switch the equalized recovery esti-
mator/controller to the equalized performance estimator/controller

again until another delayed/missing data is observed. Moreover,

in the event that the initial tracking or estimation error does not

satisfy the equalized recovery/performance level, the proposed

estimator/controller can also be combined with any asymptotic

estimator/controller (or a modified version of the proposed estima-

tor/controller with a larger initial level), where the latter is used

until the desired equalized level is achieved.

4 EXAMPLES AND DISCUSSION
In this section, the performance of the proposed controllers and

estimators is validated and compared with the approaches in [24]

and [33]. The examples using our proposed estimator are all run

using MATLAB 2017a. For the output feedback parameterization

in (28) that is a linear program, we use Gurobi [16] as the solver,

while for the robustified problem in (32) with output error feedback,

the IPOPT solver [30] is used since the optimization problem (32)

involves many sparse matrices. Moreover, the parameters of s0 in

(32) will be set to zero for all of the presented examples because it

was observed in [14] that the value of s0 has no effect on the per-

formance of the controller/estimator. Moreover, both measurement

and process noises in all of the following examples are bounded by

hypercubes, i.e. ∥w ∥∞ ≤ ηw , ∥v ∥∞ ≤ ηv .

4.1 Bounded-Error Estimator for Batch Reactor
Process (Comparison with [33])

To demonstrate the capability of the estimator proposed in this

paper when compared to [33] in the presence of output delays, we

consider the batch-reactor process in [27], which is a continuous-

time fourth order two-input-two-output system. Using the c2d
command in MATLAB with a sampling time of Ts = 0.05 seconds,

the model is discretized, yielding the following system matrices:

(a) Output feedback estimator. (b) Output error feedback estimator.

(c) Estimator from [33].

Figure 1: Estimator comparison for batch reactor process ex-
ample withWsim = 21210.

A =



1.0795 −0.0045 0.2896 −0.2367

−0.0272 0.8101 −0.0032 0.0323

0.0447 0.1886 0.7317 0.2354

0.0010 0.1888 0.0545 0.9115



, B =



0.0006−0.0239

0.2567 0.0002

0.0837−0.1346

0.0837−0.0046



,

C =
[

1 0 1 −1

0 1 0 0

]
, f =

[
0 0 0 0

]⊤
, V = Ip,W = ∅.

The time horizon of T = 5 is considered, with a maximum

possible output delay of 2 steps within T , except at the last step,
which is always on time. This results in a delayed data model

that can be expressed as the fixed-length language containing

3
4
words, i.e. L = {W1, . . . ,W81}, and we can find the corre-

sponding event-based language LE
and reduced language LE′

from Definitions 2–4. The measurement noise bound ηv = 0.05 is

assumed, which corresponds to 5 standard deviations ofN (0, 0.01
2).

Solving the robustified problem (32) with the cost function J (·) =∑T
k=0

∑ |LE′ |
α=1

µα
2,k and µ1 = 0.33, we obtain the maximum inter-

mediate level maxk,α (µ
α
2,k ) = 0.6912 for ∥x̃ ∥∞ (i.e., with (P ,q) for

describing X0 and Xk as hypercubes).

We compare the run-time results of our proposed approaches

with a design from [33] that employs Kalman filtering with out-

put delays. We initialize the simulation with x (0) = [1, 1, 1, 1]
⊤

and randomly generate initial state error and noise signals using

truncated zero-mean normal distributions with covariance matrices

P0 = (µ1/5)
2I4, Q = ∅ and R = (ηv/5)

2I2, where µ1, ηv correspond

to the values that are 5 times their standard deviations. The true

delay pattern followed by the plant isWsim = 21210, and the

simulation is run 50 times. Figure 1 depicts the trajectories (and

their guaranteed error bounds) for the proposed estimators when

using output feedback and output error feedback, as well as for the

estimator from [33]. The results show the estimation errors from

the proposed approaches staying within the guaranteed bounds,

as expected. Moreover, they also minimize the error at the end of

the horizon in all 50 runs, whereas the estimator from [33] has tra-

jectories that far exceed the guaranteed bounds from the proposed

estimators. Note that for the output feedback design, Assumption 1

does hold; hence the obtained estimator is suboptimal, as discussed
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(a) Output feedback estimator. (b) Output error feedback estimator.

(c) Estimator in [24].

Figure 2: Estimator comparison for adaptive cruise control
example with missing data at k = 1.

in Remark 1. In contrast, the output error feedback estimator does

not require the assumption to hold and is optimal, which demon-

strates the advantage of the output error feedback design when

there is delayed data, whereas the two parameterizations are equiv-

alent when there is no missing or delayed data.

4.2 Bounded-Error Estimator for Adaptive
Cruise Control (Comparison with [24])

Missing data patterns in a finite horizon setup can be considered

as a special case where the missing output is “delayed" beyond the

horizon. Hence, in this example, we compare our approaches with

another equalized recovery estimator by [24] which is only applica-

ble for missing data scenarios. Using the samemodel and simulation

parameters for adaptive cruise control in [24], we set T = 6, µ1 = 1

and the language as L = {060000, 006000, 000600, 000060} that is

equivalent to the missing data specifications given in [24]. Solving

the problems in (28) and (32), we obtain maxk,α µα
2,k = 1.1498 for

both designs, which matches the result in [24]. However, due to

the time-varying property of µα
2,k in our approach, the interme-

diate error bounds do not remain at maximum value, as opposed

to the approach in [24], providing a less conservative solution.

The simulation is performed with the true output pattern being

Wsim = 060000, implying that the data is missing at k = 1. Figure

2 shows that the estimation errors of our approaches are indeed

lower than those from [24], which was presumably made possible

by the time-varying recovery levels.

4.3 Controller Synthesis for Lane-Keeping
Next, we demonstrate the use of our design framework for lane

keeping. As in [23], we represent the lane-keeping system with a

continuous-time double integrator system:

ẋξ ,t =

[
0 1

0 −20

]
xξ ,t +

[
0

1

]
uξ ,t +

[
0

1

]
wt ,

zξ ,t = xξ ,t +vt ,
(34)

(a) Data missing at k = 0, 1 (b) Data missing at k = 6, 7

Figure 3: Tracking control for lane keeping using the out-
put error feedback approach. The boxes represent the maxi-
mum bounds of the deviation from the center line.

where xξ ,t = [xt , ẋt ]
⊤
includes the deviation xt from the center of

the lane as well as the lateral velocity ẋt , while the outputs of the
system are noisy measurements of the state xξ ,t . The process and
measurement noises are bounded by hypercubes with ηw = 0.05

and ηv = 0.1 respectively, whereas the (P ,q) pair for X0 and Xk is

chosen to represent regular hexagonal sets. Using a sampling time

of Ts = 0.1 seconds, the system in (34) is converted to a discrete-

time system. Themissing-data language with a fixed horizonT = 12

is chosen to represent two consecutive missing outputs within the

first 11 steps of the finite horizon T . Using the proposed approach,

a tracking controller is designed that tries to follow the center-line

of the road. Specifically, the output error feedback controller is

applied to two examples for different true missing data patterns—

one in which the first two measurements are missing, and second

in which 7th and 8th measurements in the horizon are missing. The

resulting trajectories of the deviations from the center line for 5

different runs are plotted in Figure 3, where each run corresponds

to different values of the random noises and initial states. It can be

observed that the system is able to track the reference trajectory

when using the proposed output error feedback controller.

5 CONCLUSIONS
In this paper, we proposed path-dependent finite-horizon feedback

controllers and bounded-error estimators that achieve equalized

recovery for time-varying affine systems subject to delayed obser-

vations or missing data. By modeling the delayed/missing data as

a fixed-length language and constructing a reduced event-based

language with unique event sequences, we synthesized equalized re-

covery controllers/estimators whose feedback gains can be adapted

based on the observed path, i.e., the history of observed data pat-

terns up to the current time step. The proposed controller/estimator

is an extension of existing works in [14, 23–25] and can cater to

more generic delay/missing data patterns as well as allows for path-

dependent and time-varying intermediate recovery levels and more

general polytopic sets for describing the tracking or estimation

error bounds. Moreover, we designed a word observer that can

return the set of all words that are compatible with observed data

patterns/path, and demonstrated the effectiveness of our approach

via several illustrative examples.
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