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Abstract—Single gimbal control moment gyros (SGCMGs)
have been widely used on agile satellites to get a rapid
retargeting capability. To enhance the reliability and safety of
the SGCMG system, this paper addresses the fault estimation
and fault-tolerant steering problem. The SGCMG is modeled
as a two-loop system including a wheel speed control loop
and a gimbal rate control loop, and a cascade multiplicative
fault model of SGCMG is developed. Then, in view of the
complexity of the gimbal fault, a local adaptive fault estimator
is proposed to reconstruct the total time-varying fault effects for
each SGCMG. Using the estimated fault effects, a fault-tolerant
steering logic is further developed to not only allocate the com-
manded attitude control torque properly but also compensate
the fault effects. To verify the proposed fault estimator and
fault-tolerant steering logic, numerical simulations are carried
out on a SGCMG-actuated spacecraft.

Index Terms—SGCMG, fault estimation, fault-tolerant con-
trol, steering law

I. INTRODUCTION

Single gimbal control moment gyros (SGCMGs) have
been studied extensively [1], [2], [3] and have been applied
to spacecraft attitude control and momentum management
for various space missions, such as Pleiades and Wordview
series. In practical space missions, redundant momentum
exchange devices are employed to enhance reliability. Even
so, faults or failures may occur occasionally. For instance,
CMG #1 and CMG #2 installed on the Skylab failed in
2002 [4]. These faults or failures may lead to performance
deterioration or even mission failure and some catastrophic
consequence. Thus developing a fault-tolerant control strat-
egy to accommodate the SGCMG fault and maintain a
satisfactory control performance is of significant importance.

For the spacecraft fault-tolerant control (FTC) problem,
various model-based approaches for the reaction wheel (RW)
actuated spacecraft have been proposed. In [5], [6], [7] and
[8], a mathematical model consisting of an effectiveness
gain matrix and a bias vector is proposed to represent four
different kinds of RW fault. In contrast, the fault-tolerant
control results for SGCMG-actuated spacecraft is rare. In
[9], the potential faults are summarized but the control effect
caused by the faults are not evaluated mathematically. In
[10] and [11], the gimbal rate command is designed directly
to accommodate the gimbal fault. However, the fault model
is not established. In this paper, to have a comprehensive
fault model for SCCMG, the mechanism of the SGCMG

is analyzed and a cascade multiplicative fault model of
SGCMG is given.

After establishing the fault model, the fault effects should
be estimated such that a fault-tolerant strategy can be de-
veloped to accommodate the fault. In [12], an indirect fault
estimator was developed to reconstruct the fault. Using the
reconstructed fault information, a fault-tolerant controller
was proposed. In [13], Boskovic and Mehra proposed that
failures of flight control actuator are generally localized to the
actuator dynamics only. Based on this foundation, decentral-
ized local failure detection and identification (FDI) observers
were designed to estimate failure-related parameters for each
of the actuators. Then a intergraded FDI-FTC algorithm was
developed for a nonlinear system actuated by actuators that
possess a higher-order actuator dynamics and may experience
several different types of failures. In [14], local adaptive
observer and finite-time fault-tolerant controller were also
designed to handle RW faults. Inspired by the work of [13]
and [14], we design local adaptive estimators to reconstruct
total fault effects in the gimbal rate control loop for each
SGCMG, rather than to estimate the total resultant error
torque caused by the whole actuator cluster as in [6] and [12].
Then the reconstructed information is used to develop fault-
tolerant steering law for accommodating the gimbal fault.
The proposed local fault estimator is simple to implement,
while being flexible with respect to the possibility of multiple
kinds of faults occurring simultaneously or sequentially. In
addition, we compensate the SGCMG fault in the steering
logic design instead of redesigning the attitude controller
that are commonly used for accommodating faults in tra-
ditional fault-tolerant control systems. That is, our approach
handles the SGCMG faults without reconfiguring the attitude
controller, which avoids the controller switching transient in
existing fault-tolerant attitude control methods, such as [12]
and [14].

The remaining part of this paper is organized as follows.
Section II presents the mathematical fault model of SGCMG.
Section III demonstrates the proposed local fault estimator.
The fault-tolerant steering logic is proposed in Section IV. In
Section V, numerical simulation on a rigid spacecraft using
four SGCMGs is carried out to verify the proposed fault
estimation method and fault-tolerant steering logic. Finally,
this paper ends with the conclusion in Section VI.



II. SGCMG FAULT MODEL

The SGCMG contains a spinning rotor mounted on a
gimbal frame. In nominal condition, the rotor hold a constant
speed using a brushless DC (BLDC) motor, while the gimbal
is manipulated to change the direction of angular momentum
by a stepper motor. The stepper motor provides precise gim-
bal control of CMGs and the BLDC motor offers an efficient
way of driving the momentum wheel to store the angular
momentum [9]. Then a gyroscopic reaction torque orthogonal
to both the rotor spin and gimbal axes is generated. With a
small input of the gimbal, a much larger control torque can
be produced to act on the spacecraft. Specifically, the torque
is proportional to both the angular momentum and gimbal
angular rate and can be calculated as:

t = −h0δ̇t̂, (1)

where h0 is the constant angular momentum of the spinning
rotor, δ̇ is the gimbal rate and t̂ is a unit vector in the direction
of output torque.

For a SGCMG, the flywheel control loop is to hold a
constant h0 and the gimbal control loop is to generate the
gimbal rate δ̇. Both of the two loops contain an electric motor
(EM) and the corresponding variable speed drive (VSD)
system. The potential fault of a SGCMG may occur in the
mechanical and/or electrical system of the EM and sensors
and actuators of the VSD in either rotor control loop or the
gimbal rate control loop.

A. Fault model of an EM-VSD system
The details about potential faults in EM-VSD system can

be found in [9], [15], [16], [17]. Specially, for the EM,
potential faults are categorized into:

• stator faults;
• rotor faults;
• eccentricity-related faults; and
• bearing and gearbox faults or failures.

With regard to the VSD, the faults are classified into:
• sensor faults; and
• actuator (actuator in VSD) faults.
Generally speaking, the component fault of the EM will

influence the system matrix of the EM in its state-space
representation. Consequently, they can be modeled in a
multiplicative way. For the sensors such as Hall position
sensor and electrical tachometer and the inverters act as
actuator in VSD, they can be modeled in an additive way.
Then, based on the result in [18], the SGCMG fault model
can be given as follows:{

Ω = ηΩΩc + Ωo,

δ̇ = ηg δ̇c + δ̇o,
Rotor speed control loop
Gimbal rate control loop (2)

where Ω and Ωc are rotating speed of the flywheel and
its command input, δ̇ and δ̇c are gimbal rate output and
its command from SGCMG steering law, ηΩ and ηg are
effectiveness gains satisfying 0 ≤ ηΩ ≤ 1 and 0 ≤ ηg ≤ 1,
Ωo and δ̇o are bounded offsets of wheel speed and gimbal
rate.

B. SGCMG fault model

As mentioned before, the potential faults may locate in
the rotor speed control loop and/or gimbal rate control loop.
For the rotor control system, the angular momentum is the
product of its inertia JΩ and the rotor angular velocity Ω,
i.e. h0 = JΩΩ. With consideration of the possible faults in
rotor speed control loop, which is modeled in (2), the rotor
momentum subject to faults is given by

h0 = JΩ

(
ηΩΩc + Ωo

)
. (3)

For the gimbal rate control loop of a SGCMG, its fault
can be modeled as in (2):

δ̇ = ηg δ̇c + δ̇o (4)

As stated in [19], the dynamics of CMG gimbal is indepen-
dent of rotor momentum for the case of a very stiff gimbal.
Then the fault model of the SGCMG can be obtained by
substituting (3) and (4) into (1):

t = −JΩ

(
ηΩΩc + Ωo

) (
ηg δ̇c + δ̇o

)
t̂. (5)

For the SGCMGs, faults in the rotor control loop can be
easily detected, and its consequence is equivalent to replacing
the SGCMG by a smaller one that generates less torque.
However, as the gimbal fault has a nonlinear effect to the
torque generated by the SGCMGs, it cannot be handled
straightforwardly like the rotor fault. We will develop local
estimator for each SGCGM to estimate the overall fault effect
in next section.

III. FAULT ESTIMATION FOR SGCMG

In practical space missions, multiple SGCMGs are em-
ployed to generate the commanded torques from attitude
controller. Here, we assume that N SGCMGs (N ≥ 3)
are equipped in the spacecraft, and each of N SGCMGs
may encounter faults. To obtain the fault information in
each SGCMG, we develop a local fault estimator for each
SGCMG. The overall attitude control system with local fault
estimation is demonstrated in Fig. 1.
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Fig. 1: Overall attitude control system with LEs

A. Local Fault Estimator

In light of (4), the gimbal fault model can be further
rewritten as

δ̇ = δ̇c + f. (6)



where δ̇c is the gimbal rate command, f = (ηg − 1)δ̇c + δ̇o
denotes the total fault effect consisting of the loss of effec-
tiveness fault and additive offset. This total fault effect f in
each SGCMG is assumed to be differentiable in the sense
that its time derivative is bounded with a positive constant
f , i.e., |ḟ | ≤ f .

To estimate the total fault effect f in a SGCMG, we define
an auxiliary variable as [12], [20]

φ = f − kδ, (7)

where k is a positive constant. Next, the local adaptive
estimator for fault estimation is proposed as follows:

˙̂
δ = δ̇c + α(δ − δ̂) + f̂ , (8)
˙̂
φ = −k(δ̇c + φ̂+ kδ̂), (9)

where α is a positive design parameter. Define estimation
errors δ̃ = δ − δ̂ and φ̃ = φ− φ̂. Based on the definition of
the auxiliary variable in (7), the fault estimation error can be
expressed as f̃ = φ̃+kδ̃. Then, the estimation error dynamics
of gimbal angle and the auxiliary variable can be obtained
as

˙̃
δ = −(α− k)δ̃ + φ̃, (10)
˙̃
φ = −kφ̃− k2δ̃ + ḟ . (11)

In view of the above error dynamics, we further have

δ̃
˙̃
δ = −(α− k)δ̃2 + δ̃φ̃, (12)

φ̃
˙̃
φ = −kφ̃2 − k2φ̃δ̃ + ḟ φ̃. (13)

The overall estimation process can be concluded as:

Theorem 1. Consider the gimbal fault model in (6) with
loss of effectiveness fault and additive bias fault. Applying
the proposed local adaptive estimator consisting of a state
estimation (8) and an auxiliary variable estimation (9) with
the parameter constraints

k − α < 0, (14)

k4 + 2k2 − (2α+ ε)k + αε+ 1 < 0, (15)

with ε being a small positive constant that is defined in the
proof, the gimbal angle estimate error and fault estimate er-
ror will ultimately converge to small compact sets containing
zero.

Proof. Consider the following Lyapunov function candidate:

V =
1

2
δ̃2 +

1

2
φ̃2 (16)

Taking time derivative of V and considering (12) and (13),
we have

V̇ =− (α− k)δ̃2 − kφ̃2 − (k2 − 1)δ̃φ̃+ ḟ φ̃

≤− (α− k)δ̃2 −
(
k − ε

2

)
φ̃2

− (k2 − 1)δ̃φ̃+
1

2ε
f

2
, (17)

where the inequalities ḟ φ̃ ≤ ε
2 φ̃

2+ 1
2εf

2
with ε being a small

constant and |ḟ | ≤ f , are used.
The foregoing inequality can be further written as

V̇ ≤ −
[
δ̃ φ̃

]
P
[
δ̃ φ̃

]T
+ γ, (18)

where P =

[
α− k 1

2 (k2 − 1)
∗ k − ε

2

]
and γ = 1

2εf
2
.

When (14) and (15) are satisfied, it is clear that the matrix
P is positive-definite. Consequently, we have V̇ < −κV +γ
with κ = 2λmin(P ). Moreover, it is clear that V̇ < 0 when

|δ̃(t)| >
√

γ

λmin(P )
or |φ̃(t)| >

√
γ

λmin(P )
. (19)

Therefore, δ̃ and φ̃ exponentially converge to compact sets
with rates greater than e−κt.

Sδ̃ =

{
δ̃

∣∣∣∣|δ̃| ≤√ γ

λmin(P )

}
, (20)

Sφ̃ =

{
φ̃

∣∣∣∣|φ̃| ≤√ γ

λmin(P )

}
. (21)

In addition, since f̃ = φ̃ + kδ̃, the fault estimation error
converges also converges to a compact set.

Sf̃ =

{
f̃

∣∣∣∣|f̃ | ≤ (k + 1)

√
γ

λmin(P )

}
. (22)

This completes the proof.

IV. FAULT-TOLERANT STEERING LOGIC

In this section, the PD feedback controller is adopted
to achieve attitude tracking. We will proceed to develop a
fault-tolerant SGCMG steering logic to allocate the torque
calculated from attitude controller to each SGCMG while
compensating effects caused by gimbal faults.

A. Spacecraft Attitude Dynamics

The kinematics and dynamics for attitude motion of a rigid
spacecraft can be expressed by the ([21]):

Jω̇ = −ω×Jω + τ + d

q̇ = 1
2 (q× + q0I3)ω

q̇0 = − 1
2q

Tω,

(23)

where J ∈ R3×3 denotes the positive definite inertia matrix
of the spacecraft, ω ∈ R3 is the inertial angular velocity vec-
tor of the spacecraft with respect to an inertial frame I and
expressed in the body frame B, Q =

[
q1 q2 q3 q0

]T
=[

qT q0

]T ∈ R4 denotes the unit quaternion and satisfies the
constraint qTq+q2

0 = 1, I3 ∈ R3×3 denotes a 3-by-3 identity
matrix, τ ∈ R3 denotes the internal control torque produced
by N identical SGCMGs, d is the bounded external distur-
bance, and the notation x× for a vector x =

[
x1 x2 x3

]T
is used to represent the skew-symmetric cross-product matrix
given by:

x× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .



To address the attitude tracking problem, the desired
attitude and the desired angular velocity of the spacecraft
are denoted by unit quaternion Qd =

[
qTd qd0

]T
and ωd.

The attitude tracking error Qe =
[
qTe qe0

]T
is defined as

the relative orientation between attitude Q and target attitude
Qd and is computed as Qe = Q−1

d ⊗ Q, where Q−1
d is

the inverse or conjugate of the desired quaternion, and “⊗”
denotes the quaternion multiplication operator of two unit
quaternion Qi =

[
qTi qi0

]T
and Qj =

[
qTj qj0

]T
and is

defined as follows:

Qi ⊗Qj =

[
qi0qj + qj0qi + q×i qj

qi0qj0 − qTi qj

]
. (24)

The angular velocity error ωe is given by ωe = ω −Cωd,
where C is the rotation matrix, which is defined as C =
(q2
e0−qTe qe)I3+2qeq

T
e −2qe0q

×
e . Consequently, based on the

attitude dynamics in (23), the attitude tracking error system
can be described as

Jω̇e = −(ωe +Cωd)
×J(ωe +Cωd)

+J(ω×
e Cωd −Cω̇d) + τa + d

q̇e = 1
2 (q×e + qe0I3)ωe

q̇e0 = − 1
2q

T
e ωe.

(25)

B. SGCMG Steering Logic Design
The steering law is to map the commanded control torque

u to the gimbal rate δ̇. For a given control torque command
u, the internal control torque generated by N SGCMG
should satisfy

τ = −h0Aδ̇ − ω×h = u, (26)

where h0 is the magnitude of nominal angular momentum,
A is the the Jacobian matrix of the derivative of h, h is
the angular momentum produced by SGCMG cluster, and
δ̇ = [δ̇1, . . . , δ̇N ]T ∈ RN is the actual gimbal rate vector.

Considering SGCMG gimbal fault modeled in (6), the
actual gimbal rate output δ̇ and the gimbal rate command
δ̇c = [δ̇c,1, . . . , δ̇c,N ]T of N SGCMGs have the following
relationship

δ̇ = δ̇c + f . (27)

To compensate the total SGCMG fault effects, the estimated
fault information f̂ = [f̂1, . . . , f̂N ]T from previous section
is used to replace the actual fault f = [f1, . . . , fN ]T in
steering logic design. Then, substituting (27) into (26), the
commanded gimbal rate δ̇c of N SGCMGs in the presence
of faults is chosen such that

−h0A(δ̇c + f̂)− ω×h = u. (28)

To obtain the commanded gimbal rate δ̇c while coping
with SGCMG cluster singularity (rank(A) < 3 at some
specific gimbal angles) and SGMCG faults, the following
fault-tolerant general singular robust (GSR) steering logic
[2] is proposed:

δ̇ = − 1

h0
A#

(
u+ ω×h+ h0Af̂

)
, (29)

where A# = AT
[
AAT + λE

]−1
with A being the Jaco-

bian matrix, λ = 0.01 exp
[
−10 det

(
AAT

)]
, and the matrix

E is expressed as:

E =

 1 ε3 ε2

ε3 1 ε1

ε2 ε1 1

 > 0

with εi = 0.01 sin (0.5πt+ φi), φ1 = 0, φ2 = π/2 and
φ3 = π.

V. NUMERICAL SIMULATION

To verify the proposed local fault estimators and fault-
tolerant steering logic, we consider the three-axis attitude
control problem of a SGCMG-actuated spacecraft subject to
time-varying SGCMG gimbal faults.

The spacecraft used for the simulation has the inertia
J =

[
10 1.2 0.5; 1.2 19 1.5; 0.5 1.5 25

]
kg·m2.

The environmental disturbance model is described by d(t) =[
−0.005 sin(t) 0.005 sin(t) −0.005 sin(t)

]T
N·m. The

spacecraft is required to perform a three-axis attitude maneu-
ver in the space mission. The initial attitude of the spacecraft
is assumed to be Q(0) =

[
−0.5 0.3 −0.4 0.7071

]T
,

while the initial angular velocity is ω(0) =
[
0 0 0

]T
deg/s. Throughout the simulation, we consider a rest-to-rest
attitude maneuver, in which the target attitude is Q(d) =[
0 0.8660 0 0.5

]T
. Four identical SGCMGs in a regular

pyramid configuration with skew angle being β = 54.74
deg are used as actuators to reorient the spacecraft. The
magnitude of nominal angular momentum of each SGCMG
is 1 N·m·s. The Jacobian matrix of the angular momentum
produced by the SGCMG cluster is given by

A =

 −cβ cos δ1 sin δ2 cβ cos δ3 − sin δ4
− sin δ1 −cβ cos δ2 sin δ3 cβ cos δ4
sβ cos δ1 sβ cos δ2 sβ cos δ3 sβ cos δ4

 ,
where cβ ≡ cosβ, sβ ≡ sinβ.

The fault scenario of the four SGCMGs is that the
SGCMG #1 can only supply 50% of the commanded gimbal
rate after t = 2 s, the SGCMG #2 experiences additive offset
fault at t = 30 s with the size of δ̇o2 = −3 deg/s, the SGCMG
#3 is assumed to suffer from partial loss of effectiveness
fault at t = 10 s with ηg3 = 0.3 and additive offset fault at
t = 20 s with δ̇o3 = 2 deg/s, and the SGCMG #4 is fault-
free throughout the simulation. If the proposed fault-tolerant
attitude control system can handle these severe SGCMG
faults, it of course can deal with the less-severe SGCMG
faults or fault-free situation. The initial gimbal angles of four
SGCMGs are set to be δ(0) =

[
15 105 195 −75

]T
deg,

which is near the hyperbolic internal singularities. To achieve
three-axis attitude traking, a PD feedback controller [22] is
used to generate the high-level torque command:

u =−kpJqe−kdJωe+ω×Jω−J
(
ω×
e Cωd−Cω̇d

)
,
(30)
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(d) Actual and commanded gimbal rate.
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Fig. 2: Attitude control performance under the local adaptive fault estimator and existing GSR steering logic without fault
compensation.
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Fig. 3: Attitude control performance under the proposed control scheme using local adaptive fault estimator and fault-tolerant
GSR steering logic.

where kp and kd are two control gains selected as kp =
0.1422 and kd = 0.5333.

For the purpose of comparison, the attitude control system
consisting of PD controller (30), local fault estimator and
conventional GSR steering logic without fault compensation

is also implemented. Since the conventional GSR steering
logic does not compensate the fault effects in steering logic
design, obvious torque error between the commanded torque
from attitude controller and the output torque generated by
the SGCMG cluster is observed, as shown in 2c. This torque



error further leads to a large steady-state attitude tracking
error in attitude control, which can be observed in Fig. 2a.
Although the SGCMG faults are not compensated in the
conventional GSR steering logic, it is clear from Fig. 2e
that the local fault estimator still estimates the fault of each
SGCMG accurately and quickly.

To demonstrate the effectiveness of the proposed attitude
control system, the simulation results with the PD controller
(30), local fault estimator and fault-tolerant steering logic
(29) are shown in Fig. 3. It is observed from Figs. 3a and 3b
that the attitude and angular velocity tracking errors converge
to a small neighborhood of zero under the proposed fault-
tolerant attitude control scheme within 100 s, which outper-
forms the performance of attitude tracking errors shown in
Fig. 2a where SGCMG faults are not taken into account in
steering logic design. Comparing the torque errors of two
steering logics, i.e., Fig. 3c and Fig. 2c, it is clear that the
proposed fault-tolerant GSR steering logic reduces the torque
error significantly, which verifies the effectiveness of our
approach. Fig. 3d shows the actual and commanded gimbal
fault, where fault effects, such as effectiveness decrease of
CMG#1 and additive offsets of CMG#2 and CMG#3, are
observed clearly. For the CMG#4, the actual gimbal rate
follows the commanded value well since it is fault free. Fig.
3e shows the fault estimation errors of local estimators, which
indicate that each lumped control effect caused by gimbal
fault are estimated accurately and the estimation errors con-
verge to zero. The singularity measure det(AAT ) is shown
in Fig. 3f, from which it is observed that the SGMCG cluster
does not fall into hyperbolic internal singularities although
the initial gimbal angle is close to that singularity.

VI. CONCLUSIONS

In this paper, the fault modeling, fault estimation and fault-
tolerant strategy are proposed to handle the SGCMG gimbal
fault. First, the SGCMG is considered as a combination of
two independent EM-VSD systems, which describe the rotor
speed control loop and gimbal rate control loop, respectively.
The potential faults of the SGCMGs in each EM-VSD loop
are analyzed and modeled by an effectiveness matrix and
an additive offset. Then the fault model of the SGCMG
is described in a cascade multiplicative form by combining
two EM-VSD fault models. Based on this fault model, local
fault estimators with respect to each SGCMG are developed
to estimate the total fault effect instead of each individual
fault. It is shown that the proposed local fault estimator
can exponentially converge the fault estimation error with
satisfactory accuracy. Moreover, incorporating the estimated
fault information, a fault-tolerant steering logic is proposed
to accommodate SGCMG gimbal fault while generating a
proper gimbal rate command. Finally, the effectiveness of
the proposed SGCMG fault estimation approach and fault-
tolerant steering logic is demonstrated by numerical simu-
lation of a rigid spacecraft subject to time-varying gimbal
faults.
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