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Abstract— In this paper, we propose a partition-based para-
metric active model discrimination approach for designing
optimal input sequences that distinguish a set of discrete-time
affine time-invariant models with uncontrolled inputs, model-
independent parameters and noises over a fixed horizon, where
the parameters are revealed in real-time. By partitioning the
operating region of the parameters, the input design problem
is formulated as a sequence of offline optimization problems.
Thus, at each time instant, one only needs to determine which
subregions in the resulting partition tree that the revealed
parameters lie in and select the corresponding pre-computed
inputs. The offline optimal input design problem is formulated
as a bilevel problem and further cast as a mixed-integer
linear program. Finally, we demonstrate the effectiveness of the
proposed active model discrimination approach for identifying
the intention of other vehicles in a lane changing scenario.

I. INTRODUCTION

Cyber-physical systems (CPS), such as the power grid, au-
tonomous driving, aerospace system, are ubiquitous and have
a big influence on our daily life. However, the often complex
CPS are inevitably interconnected with other systems, whose
models and behavior patterns such as intention, are not
accessible or only partially known, making it nontrivial to
provide safety guarantees. For example, autonomous vehicles
operate and make decisions such as collision avoidance with-
out the knowledge of the intentions of surrounding drivers
or pedestrians [1], [2]. Similarly, it is of great interest to
rapidly and accurately determine from noisy measurements
whether a system malfunction or faults have occurred and
which components have failed. These are broadly studied in
the field of statistics, machine learning and systems theory.

Literature Review: Approaches for model discrimination,
including automated fault diagnosis and intention identifi-
cation, can be categorized into passive and active methods.
Passive approaches, which are more broadly studied, com-
pare collected input-output data in real time with existing
data to separate models regardless of the input [3], [4], [5].
By contrast, active methods, also known as active model
discrimination, exert a minimal signal or input into the
system to ensure that the behaviors of all models are distinct
and discriminated from each other [6], [7], [8], [9], using
various techniques ranging from polyhedral projection [7] to
a mixed-integer linear program (MILP) [8], [9].
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Furthermore, closed-loop approaches that consider online
measurements have been studied in [10], [11] in order to
reduce the input cost and time needed for model discrimina-
tion. In [11], a multi-parametric method that moves most
of the computation offline is proposed, while in [10], a
partition-based method, similar to the one we are proposing,
is considered. Both approaches [10], [11] use an explicit
set representation of the reachable states in the form of
zonotopes and additionally require the design of a set-valued
observer in a moving horizon fashion. To our knowledge, this
approach does not directly apply when there are time-varying
parameters that are revealed in real time, as in multistage
optimization problems, e.g., [12], and when the time horizon
is fixed, as is the case we are addressing.

Contributions: This paper presents a partition-based para-
metric approach for active model discrimination amongst
a set of discrete-time affine time-invariant models with
common model-independent parameters that are only known
or revealed in real time. These time-varying parameters
can represent real-time information such as varying road
gradients or reference outputs. By leveraging the additional
information from the revealed parameters, the “adaptive”
separating input will lead to improved performance (i.e.,
lower input cost) when compared to an open-loop approach
that does not take this information into account (cf. [9], [13]).
Since solving the active model discrimination problem in real
time is computationally demanding, we propose to move this
active model discrimination problem offline, by solving them
as a function of the parameters (as parametric variables),
i.e., as a parametric active model discrimination problem.
To further alleviate the computational burden, we consider
partitions of the operating regions of the parameters.

We formulate the parametric active model discrimination
problem as a sequence of offline optimization problems, each
of which can be cast as a bilevel problem and converted to a
tractable mixed-integer linear program (MILP) with Special
Ordered Set of degree 1 (SOS-1) constraints. Comparing
with existing approaches [7], [10], our approach uses an
implicit set representation of the states, in contrast to the
rather limiting explicit set representation, e.g., polyhedrons
and zonotopes in [7], [10], respectively. Moreover, our for-
mulation applies to a more general class of affine models
with uncontrolled inputs and model-independent parameters
beyond the classes of models considered in [7], [8], [10]. Fi-
nally, we illustrate the effectiveness of the proposed partition-
based parametric active model discrimination approach to
discriminate amongst the intentions of other human-driven



or autonomous vehicles in a lane changing scenario.

II. PRELIMINARIES

In this section, we introduce some notations and defini-
tions, and describe the modeling framework we consider.

A. Notation and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m a matrix,
with transpose Mᵀ and M ≥ 0 denotes element-wise non-
negativity. The vector norm of x is denoted by ‖x‖i with
i ∈ {1, 2,∞}, while 0, 1 and I represent the vector of zeros,
the vector of ones and the identity matrix of appropriate
dimensions. The diag and vec operators are defined for a
collection of matrices Mi, i = 1, . . . , n and matrix M as:

diagjk=i{Mk} =

Mi

. . .
Mj

 , vecjk=i{Mk} =

Mi

...
Mj

 ,
diagi,j{Mk} =

[
Mi 0
0 Mj

]
, veci,j{Mk} =

[
Mi

Mj

]
,

diagN{M} = IN ⊗M, vecN{M} = 1N ⊗M,

where ⊗ is the Kronecker product.
The set of positive integers up to n is denoted by Z+

n , and
the set of non-negative integers up to n is denoted by Z0

n.
In addition, the set of non-negative integers from j1 to j2
(0 ≤ j1 ≤ j2) is denoted by Zj1j2 .

Definition 1 (SOS-1 Constraints [14]). A special ordered set
of degree 1 (SOS-1) constraint1 is a set of integer, continuous
or mixed-integer scalar variables for which at most one
variable in the set may take a value other than zero, denoted
as SOS-1: {v1, . . . , vN}. For instance, if vi 6= 0, then this
constraint imposes that vj = 0 for all j 6= i.

Definition 2 (Partition). A partition of a polyhedral set P is
a collection of |S| disjoint subsets Pp̂ such that

⋃̂
p∈S
Pp̂ = P ,

where each partition Pp̂ is also a polyhedral set.

B. Modeling Framework

Consider N discrete-time parametric affine time-invariant
models Gi = (Ai, Bi, Bw,i, Ci, fi, gi), each with states ~xi ∈
Rn, outputs zi ∈ Rnz , inputs ~ui ∈ Rm, process noise wi ∈
Rmw , measurement noise vi ∈ Rmv and a common model-
independent parameter p(k) ∈ Rmp that is only known or
revealed in real time. The models evolve according to the
following state and output equations:

~xi(k + 1) = Ai~xi(k) +Bi~ui(k) +Bp,ip(k)

+Bw,iwi(k) + fi, (1)
zi(k) = Ci~xi(k) + vi(k) + gi. (2)

The initial condition for model i, denoted by ~x0
i = ~xi(0),

is constrained to a polyhedral set with c0 inequalities:

~x0
i ∈ X0 = {~x ∈ Rn : P0~x ≤ p0}, ∀i ∈ Z+

N . (3)

1Off-the-shelf solvers such as Gurobi and CPLEX [14], [15] can readily
handle these constraints, which can significantly reduce the search space for
integer variables in branch and bound algorithms.

The first mu components of ~ui are controlled inputs (i.e.,
to be designed as separating inputs), denoted as u ∈ Rmu ,
which are the same for all ~ui, while the other md = m−mu

components of ~ui, denoted as di ∈ Rmd , are uncontrolled
inputs that are model-dependent. Further, the states ~xi are
divided into xi ∈ Rnx and yi ∈ Rny , where ny = n− nx:

~ui(k) =

[
u(k)
di(k)

]
,~xi(k) =

[
xi(k)
yi(k)

]
. (4)

The states xi and yi represent the subset of the states ~xi
that are the ‘responsibilities’ of the controlled and uncon-
trolled inputs, which are to be interpreted as u and di with
the following polyhedral domains (for k ∈ Z0

T−1) with cu
and cd inequalities, respectively:

u(k) ∈ U = {u ∈ Rmu : Quu ≤ qu}, (5)
di(k) ∈ Di = {d ∈ Rmdi : Qd,id ≤ qd,i}, (6)

that must independently ensure the satisfaction of following
polyhedral state constraints (for k ∈ Z+

T ) with cx and cy
inequalities:

xi(k) ∈ Xx,i = {x ∈ Rnx : Px,ix ≤ px,i}, (7)
yi(k) ∈ Xy,i = {y ∈ Rny : Py,iy ≤ py,i}. (8)

On the other hand, the process noise wi and measurement
noise vi are also polyhedrally constrained with cw and cv
inequalities, respectively:

wi(k) ∈ Wi = {w ∈ Rmw : Qw,iw ≤ qw,i}, (9)
vi(k) ∈ Vi = {v ∈ Rmv : Qv,iv ≤ qv,i}, (10)

and have no responsibility to satisfy any state constraints.
Using the partitioned states and inputs, the corresponding

state and output equations in (1) and (2) are rewritten as:

~xi(k + 1) =

[
Axx,i Axy,i
Ayx,i Ayy,i

]
~xi(k) +

[
Bxu,i Bxd,i
Byu,i Byd,i

]
~ui(k)

+

[
Bxp,i
Byp,i

]
p(k) +

[
Bxw,i
Byw,i

]
wi(k) +

[
fx,i
fy,i

]
, (11)

zi(k) = Ci~xi(k) + vi(k) + gi. (12)

Moreover, for the model-independent parameter p(k) of
each model Gi, we assume that it has the following polyhe-
dral operating region:

p(k) ∈ P = {p ∈ Rmp : Qpp ≤ qp}, (13)

over the entire horizon T , i.e., p(k) ∈ P , ∀k ∈ Z0
T−1. At

current time step t, let pm(t) denote the revealed parameter,
which implies that in real time, only pm(k), ∀k ∈ Z0

t are
available as a “feedback” term for active input design.

Note that the above modeling framework is an extension of
[9], [13] with the inclusion of the revealed parameters pm(k),
∀k ∈ Z0

t at current time t, as well as unrevealed parameters
p(k), k > t. The inclusion of the revealed parameters
allows us to capture real-time information such as weight,
road gradient, friction coefficients or reference outputs. The
following example illustrates how reference outputs can be
captured by (revealed/unrevealed) parameters:

Example 1. Consider a simplified model given by

xi(k + 1) = Aoixi(k) +Biu
o
i (k) +Bw,iwi(k) + fi,



with feedback control input uoi (k) given by

uoi (k) = −Ki(y
o
i (k)− ydes(k)) + u(k), (14)

where Ki is a constant control gain matrix, yoi (k) = Coi xi(k)
is the output and ydes(k) denotes the model-independent de-
sired time-varying output reference. Then, we can represent
this model in the form of (1) as:

xi(k + 1) = Aixi(k) +Biu(k) +Bp,ip(k) +Bw,iwi(k) + fi,

with Ai = Aoi − BiKiC
o
i , Bp = −BiKi and the model-

independent parameter p(k) = ydes(k).

Remark 1. We assume throughout the paper that the given
affine models are always well-posed [9], [13]. Otherwise,
models are impractical.

III. PROBLEM FORMULATION

In this paper, we aim to design a causal separating input
vector uT (pm,T−1) as a function of the revealed parameters
pm,T−1, whose k-th subvector is uk(pm,k, {uj−1(·)}kj=0)
with pm,i = vecik=0{pm(k)}, i ∈ {0, . . . , T − 1} and
u−1(·) = ∅. Specifically, ut(pm,t, {uj−1(·)}tj=0)) at each
time instant 0 ≤ t ≤ T − 1 is computed by using only past
and current revealed model-independent parameters pm,t as
well as all past inputs {uj−1(·)}tj=0 (due to causality), so
that the trajectories for all models are unique, while ensuring
that the designed input is optimal with respect to a cost
function J(utT ). Since the separating input is updated with
the newly available model-independent parameter pm, the
resulting performance will be improved when compared to
an open-loop approach (see [9], [13] for example) that does
not leverage this additional real-time information.

However, re-solving the open-loop optimization problem
in real-time (i.e., at each time step) using the newly re-
vealed parameters can be computationally prohibitive for
many applications. Hence, we seek to alleviate the online
computational burden by formulating it as a parametric active
model discrimination problem that can be solved offline as
a function of the revealed pm as parametric variables. More-
over, to respect causality, we formulate the parametric active
model discrimination problem as a sequence of optimization
problems, where the input variable of the optimization prob-
lem at time instant t is constrained to inherit the optimal input
subsequence u∗,t−1

T (k) for all k ∈ Z0
t−1 from the previous

time instant t−1 (see discussion in Section IV-A), as follows:

Problem 1 (Parametric Active Model Discrimination). Con-
sider N well-posed affine models Gi, and state, input and
noise constraints defined in (3) and (5)-(10). For each time
instant t ∈ Z0

T−1 (sequentially, starting from t = 0), with
all past and current revealed pm(k) ∈ P , ∀k ∈ Z0

t as
parametric variables, and given the optimal input sequence
u∗,t−1
T from the previous time instant t− 1, find an optimal

input sequence u∗,tT with fixed horizon T to minimize a
given cost function J(utT ) subject to u(k) = u∗,t−1

T (k)
for all k ∈ Z0

t−1 such that for all possible initial states
x0, uncontrolled inputs dT , unrevealed parameters pt+1:T−1,
process noise wT and measurement noise vT , only one model

is valid, i.e., the output trajectories of any pair of models
have to differ in at least one time instant of the horizon T .

Formally, for each time instant t with the newly revealed
parameter pm(t) and all past parameters and chosen inputs,
the optimization problem can be formulated as a sequence
of optimization problems as follows (for t = 0, . . . , T − 1):

u∗,tT = arg min
uT ,xT

J(uT )

s.t. ∀k ∈ Z0
T−1 : (5) holds, (15a)

∀i, j ∈ Z+
N, i < j,∀k ∈ Z0

T ,
∀x0, yT , dT , pt+1:T−1, wT , vT :

(1)-(3), (6), (8)-(10), (13) holds;
∀k ∈ Z0

t : p(k) = pm(k);

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k)

:

{∀k ∈ Z+
T :

(7) holds}∧
{∃k ∈ Z0

T :
zi(k) 6= zj(k)}.

(15b)

Note that the constraint (15b) not only enforces that the
‘responsibility’ of the controlled input is satisfied but also
guarantees that all models are separated with the computed
optimal input sequence u∗,tT .

IV. MAIN APPROACH

In this section, we proposed a partition-based approach
to solve the parametric active model discrimination problem
defined in Problem 1. Although Problem 1 could be formu-
lated and solved as a multi-parametric program, it remains
computationally expensive when using currently available
toolboxes, e.g., multi-parametric toolbox (MPT) [16], espe-
cially when there are many binary variables. Thus, in this
paper, we consider a slightly more conservative approach
that partitions the operating region P at each time instant,
and solve a sequence of tractable optimization problems for
each possible so that we can solve Problem 1 efficiently.

A. Partition

Recall the operating region P (cf. (13) for its definition)
of the parameter p. At each time instant t ∈ Z0

T−1, let
{Pp̂m(t)(t)}p̂m(t)∈S(t) be a partition of P (cf. Definition 2)
with S(t) = {1, . . . , |S(t)|}, where |S(t)| may vary with
time t. Each subregion Pp̂m(t)(t) is a polyhedral set:

Pp̂m(t)(t) = {p ∈ Rmp : Qp̂m(t)(t)p ≤ qp̂m(t)(t)}. (16)

As a result, any newly revealed parameter pm(t) ∈ Pp̂m(t)(t)
at time instant t ∈ Z0

T−1 can be over-approximated by
pm(t) = p(t) with p(t) ∈ Pp̂m(t)(t).

To clearly illustrate the partition-based method, an exam-
ple partition tree for the parameter p(t) over a fixed horizon
T = 3 is shown in Fig. 1. Since there is no revealed
parameter before the initial time instant, i.e., t = −1, no
partition is carried out at the very top of the partition tree.
At time instant t = 0, the operating region P is partitioned
into two subregions P1(0) and P2(0) with S(0) = {1, 2},
and we pre-compute the separating inputs offline for the two
subregions instead of performing online computation using
the revealed parameter pm(0) itself. At the next time instant
t = 1, we partition the operating region P again into two
subregions P1(1) and P2(1) with S(1) = {1, 2}, which need
not be identical to P1(0) and P2(0) at t = 0, respectively.



Fig. 1: Partition tree for the model-independent parameter p
over a fixed horizon T = 3.

Proceeding with t = 1, we further partition the operating
region into two for each of the preceding node and compute
4 optimal separating inputs corresponding to 4 different
cases. Finally, at the last time instant t = T − 1 = 2, we
again partition the operating regions into two subregions and
compute all 8 optimal separating inputs, which correspond
to 8 different cases/trajectories of subregions that the yet
unknown revealed parameters pm(0), pm(1) and pm(2) may
lie in. As a result, we simplify the online process of solving
Problem 1 for each time instant t ∈ Z0

T−1 to a simple look-up
operation according to the newly revealed parameter pm(t)
and all past parameters. Moreover, to ensure causality, we
constrain the inputs for each node (i.e., at time instant t)
to inherit the inputs of all previous time instants (i.e., from
0 to t − 1) from their parents. For instance, at the node
corresponding the trajectory of {P2(0),P1(1),P1(2)}, the
input u2

T is constrained such that u2
T (0) and u2

T (1) must
be the same as the optimal input u1

T (0) and u1
T (1) from its

parent with the trajectory {P2(0),P1(1)}.
The problem of the partition-based parametric active

model discrimination can be formulated as follows:

Problem 2 (Partition-Based Parametric Active Model Dis-
crimination). For each trajectory of the partition tree given
by {Pp̂m(k)(k)}T−1

k=0 , the parametric active model discrimina-
tion problem in Problem 1 can be reformulated as a sequence
of optimization problems as follows (for t = 0, . . . , T − 1):

u∗,tT = arg min
uT ,xT

J(uT )

s.t. ∀k ∈ Z0
T−1 : (5) holds, (17a)

∀i, j ∈ Z+
N, i < j,∀k ∈ Z0

T ,
∀x0, yT , dT , pt+1:T−1, wT , vT :
(1)-(3), (6), (8)-(10), (13) hold

∀k ∈ Z0
t ,∀p(k) : p(k) ∈ Pp̂m(k)(k);

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k)

:

{∀k ∈ Z+
T :

(7) holds}∧
{∃k ∈ Z0

T :
zi(k) 6= zj(k)},

(17b)

where u∗,t−1
T is the optimal input sequence from the previous

time instant t−1. Note that any pair of trajectories that share
the same node at time instant t on the partition tree, their
optimal input subsequences up to t must be the same.

Comparing with Problem 1, the equality constraints on
parameter p(k) for all k ∈ Z0

t are replaced by its over-

approximation in Problem 2, which corresponds to the sub-
region that the revealed parameter pm(k) lies in.

B. Time-Concatenated Model
Before proceeding with the main approach for solving

the partition-based parametric active model discrimination
problem, we introduce some time-concatenated notations and
write the considered N models in a time-concatenated form.
The time-concatenated states and outputs are defined as

~xi,T = vecTk=0{~xi(k)}, xi,T = vecTk=0{xi(k)},
yi,T = vecTk=0{yi(k)}, zi,T = vecTk=0{zi(k)},

while the time-concatenated inputs and noises are defined as

~ui,T=vecT−1
k=0{~ui(k)}, uT=vecT−1

k=0{u(k)}, di,T=vecT−1
k=0{di(k)},

wi,T=vecT−1
k=0{wi(k)}, vi,T=vecTk=0{vi(k)}.

In addition, for 0 ≤ j1 ≤ j2 ≤ T − 1, we also
define the model-independent parameter sequence as pj1:j2 =
[p(j1)T, . . . , p(j2)T]T ∈ R(j2−j1+1)mp . Therefore, at each
time instant t ∈ Z0

T−1 with the past and current revealed pa-
rameters {pm(k)}tk=0 lying in subregions {Pp̂m(k)(k)}tk=0,
we have revealed parameters p0:t = vectk=0{p(k)}, where
p(k) ∈ Pp̂m(k)(k), ∀k ∈ Z0

t , and unrevealed parameters
pt+1:T−1 = vecT−1

k=t+1{p(k)}, where p(k) ∈ P,∀k ∈ Zt+1
T−1.

The time-concatenated parameter vector over the entire hori-
zon is further defined as pT =

[
pT0:t pTt+1:T−1

]T
.

Given N discrete-time affine models, there are I =
(
N
2

)
model pairs and let the mode ι ∈ {1, · · · , I} denote the pair
of models (i, j). Then, concatenating ~x0

i , ~xi,T , xi,T , yi,T ,
di,T , zi,T , wi,T and vi,T for each model pair, we define

~xι0 = veci,j{~x0
i }, ~xιT = veci,j{~xi,T }, ~uιT = [uTT , d

ιT
T ]T,

xιT = veci,j{xi,T }, yιT = veci,j{yi,T }, zιT = veci,j{zi,T },
dιT = veci,j{di,T }, wιT = veci,j{wi,T }, vιT = veci,j{vi,T }.

The states and outputs over the entire time horizon for
each mode ι can be written as simple functions of the initial
state ~xι0, inputs uT , dιT , parameter pT and noises wιT , vιT :

xιT =M ι
x~x

ι
0+ΓιxuuT +Γιxdd

ι
T +ΓιxppT +Γιxww

ι
T +f̃ ιx, (18)

yιT =M ι
y~x

ι
0+ΓιyuuT +Γιydd

ι
T +ΓιyppT +Γιyww

ι
T +f̃ ιy, (19)

~xιT =Āι~xι0+ΓιuuT +Γιdd
ι
T +ΓιppT +Γιww

ι
T + f̃ ι, (20)

zιT =C̄ι~xιT +D̄ι
dd
ι
T +D̄ι

vv
ι
T +g̃ι. (21)

The matrices and vectors M ι
?, Γι?u, Γι?d, Γι?p, Γι?w and

f̃ ι? for ? ∈ {x, y}, and Āι, Γιu, Γιd, Γιp, Γιω , C̄ι, D̄ι
d,

D̄ι
v , f̃ ι, g̃ι are defined in the appendix. Moreover, the

uncertain variables for each mode ι are concatenated as
x̄ι = [~xιT0 dιTT pTT wιTT vιTT ]T.

We then concatenate the polyhedral state constraints in (7)
and (8), eliminating xT and yT in them and expressing them
in terms of x̄ι and uT . First, let

P̄ ιx = diagi,j diagT {Px,i}, P̄ ιy = diagi,j diagT {Py,i},
p̄ιx = veci,j vecT {px,i}, p̄ιy = veci,j vecT {py,i}.
Then, we can rewrite the polyhedral constraints as:

P̄ ι?x
ι
T ≤ p̄ι? ⇔ Hι

?,tx̄
ι ≤ hι?,t(uT ), ? ∈ {x, y}



where Hι
? = P̄ ι?

[
M ι
? Γι?d Γι?p Γι?w 0

]
and hι?(uT ) =

p̄ι? − P̄ ι?Γι?uuT − P̄ ι? f̃ ι?. Similarly, let

Q̄u = diagT {Qu}, Q̄ι† = diagi,j diagT {Q†,i},
q̄u = vecT {qu}, q̄ι† = veci,j vecT {q†,i}, † ∈ {d,w, v}.

Then, the uncertainties and input constraints in (5)-(6) and
(9)-(10) over the entire horizon are equivalent to Q̄uuT ≤ q̄u
and Q̄ι††

ι
T ≤ q̄ι†. In addition, since the revealed parameters

{pm(k)}tk=0 are located in subregions {Pp̂m(k)(k)}tk=0, the
parameters p0:t satisfy

Q̄pm,0:tp0:t ≤ q̄pm,0:t,

where Q̄pm,0:t = diagtk=0{Qp̂m(k)(k)} and q̄pm,0:t =
vectk=0{qp̂m(k)(k)}. Due to the fact that parameters pt+1:T−1

are unrevealed at the time instant t, we also have

Q̄p,t+1:T−1pt+1:T−1 ≤ q̄p,t+1:T−1,

where Q̄p,t+1:T−1 = diagT−t−1{Qp} and q̄p,t+1:T−1 =
vecT−t−1{qp}. As a consequence, the polyhedral constraint
on pT is obtained as

Q̄p,tpT ≤ q̄p,t,

with Q̄p,t=
[
Q̄pm,0:t 0

0 Q̄p,t+1:T−1

]
and q̄p,t=

[
q̄pm,0:t

q̄p,t+1,T−1

]
.

Moreover, we concatenate the initial state constraint in (3):

P̄ ι0 = diag2{P0}, p̄ι0 = vec2{p0}.
Hence, in terms of x̄ι, we have a polyhedral constraint of
the form Hι

x̄,tx̄
ι ≤ hιx̄,t for each time t ∈ Z0

T−1, with

Hι
x̄,t =


P̄ ι0 0 0 0 0
0 Q̄ιd 0 0 0
0 0 Q̄p,t 0 0
0 0 0 Q̄ιw 0
0 0 0 0 Q̄ιv

 , hιx̄,t =


p̄ι0
q̄ιd
q̄p,t
q̄ιw
q̄ιv

 .
C. Active Model Discrimination Approach

Using the time-concatenated models, we proposed an
optimization-based approach to solve Problem 2. Throughout
this paper, we assume that the following holds:

Assumption 1. In the concatenated constraint of the ‘re-
sponsibility’ of the uncontrolled input, i.e., Hι

yx̄
ι ≤ p̄ιy −

P̄ ιy f̃
ι
y − P̄ ιyΓιyuuT , P̄ ιyΓyu = 0 is satisfied.

Note that Assumption 1 ensures that the resulting opti-
mization problem does not have bilinear terms. If Assump-
tion 1 does not hold, the problem (PPPDID) results in
a mixed-integer nonlinear program (MINLP). A particular
solution to this problem is provided in [13], where a sequence
of restriction approach reduces this MINLP into a computa-
tionally tractable sequence of optimization problems.

Due to the semi-infinite non-convex constraint (17b), Prob-
lem 2 is still not computationally tractable. To tackle this,
we reformulate the optimization problem for each trajectory
of the partition tree in Problem 2 as a bilevel optimization
problem in the following lemma, and then further cast it
into a single level optimization problem by applying KKT
conditions in Theorem 1.

Lemma 1 (Bilevel Optimization Formulation). For each
time instant t ∈ Z0

T−1, given a separability index ε and
a trajectory on the partition tree corresponding to subre-
gions {Pp̂m(k)(k)}T−1

k=0 , the partition-based parametric ac-
tive model discrimination problem in Problem 2 is equivalent
to a sequence of bilevel optimization problems (for t =
0, . . . , T − 1) with the following outer problem:

u∗,tT = arg min
uT

J(uT ) (POuter)

s.t. ∀i ∈ Z+
N ,∀k ∈ Z0

T−1 : (5) holds, (22a)

∀i, j ∈ Z+
N, i < j,∀k ∈ Z0

T ,
∀x0, yT , dT , pt+1:T−1, wT , vT :
(1)-(3), (6), (8)-(10), (13) hold

∀k ∈ Z0
t ,∀p(k) : p(k) ∈ Pp̂m(k)(k);

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k)

:
∀k ∈ Z+

T :
(7) holds,

, (22b)

∀ι ∈ Z+
I : δι∗(uT ) ≥ ε, (22c)

where u∗,t−1
T is the optimal input sequence from time instant

t− 1 and δι∗(uT ) is the solution to the inner problem:

δι∗(uT ) = min
δι,xι0,d

ι
T ,pT ,w

ι
T ,v

ι
T

δι (PInner)

s.t. ∀i ∈ Z+
N ,∀k ∈ Z0

T−1 : (1) holds, (23a)

∀i ∈ Z+
N ,∀k ∈ Z+

T : (2) holds, (23b)
∀xι0, yιT , dιT ,

pt+1:T−1, w
ι
T , v

ι
T

}
:

(3),(6),(13),
(8)-(10) hold, (23c)

∀k ∈ Z0
t ,∀p(k) : p(k) ∈ Pp̂m(k)(k), (23d)

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k), (23e)

∀l ∈ Z1
nz , k ∈ Z0

T : |zi,l(k)− zj,l(k)| ≤ δι. (23f)

Proof. Since the universal quantifier distributes over con-
junction [17, pp. 45–46], we can separate the constraint
(17b) of Problem 2 into two independent constraints for
all possible values of the uncertain variables at time instant
t ∈ Z0

T−1, i.e., the ‘responsibility’ of the controlled input and
the separation condition, respectively. Note that the constraint
associated with the ‘responsibility’ of the controlled input is
convex and kept in the outer problem. We only convert the
non-convex separation condition by considering an equiv-
alent formulation using double negation to get the inner
problem. Details about implementing the double negation on
the separation condition can be found in [9, Lemma 1].

Then, leveraging the literature on robust optimization [18],
[19], we can convert the semi-infinite constraint in (22b)
into linear constraints. Further, we can recast the bilevel
optimization formulation in the foregoing lemma by applying
KKT conditions to obtain an MILP with SOS-1 constraints,
which can readily be solved using off-the-shelf optimization
softwares, e.g., Gurobi and CPLEX [14], [15].

Theorem 1 (Partition-Based Parametric Discriminating Input
Design as a Sequence of MILP). For each time instant t ∈
Z0
T−1, given a separability index ε and a trajectory on the

partition tree corresponding to subregions {Pp̂m(k)(k)}T−1
k=0 ,

the partition-based parametric active model discrimination
problem (Problem 2) under Assumption 1 is equivalent to a



sequence of MILP problems (for t = 0, . . . , T − 1):

u∗,tT = arg min
uT ,Π

ι,δι,x̄ι,µι1,µ
ι
2,µ

ι
3

J(uT ) (PPPDID)

s.t. Q̄uuT ≤ q̄u,
∀k ∈ Z0

t−1 : u(k) = u∗,t−1
T (k),

ΠιT

[
hιx̄,t

p̄ιy − P̄ ιy f̃ ιy

]
≤ p̄ιx − P̄ ιxf̃ ιx − P̄ ιxΓιxuuT ,

Πι diag {Hι
x̄,t, H

ι
y} = Hι

x, Πι ≥ 0,
∀ι ∈ Z+

I : δι(uT ) ≥ ε, 0 = 1− µι3T1,

0 =
∑κ
i=1 µ

ι
1,iH

ι
x̄,t(i,m) +

∑ξ
j=1 µ

ι
2,jR

ι(j,m)

+
∑ξ+ρ
j=ξ+1 µ

ι
3,j−ξR

ι(j,m),∀m = 1, · · · , η,
H̃ι
x̄,t,ix̄

ι − hιx̄,t,i ≤ 0, µι1,i ≥ 0, ∀i = 1, . . . κ,

R̃ιj x̄
ι − rιj + SιjuT ≤ 0, µι2,j ≥ 0, ∀j = 1, . . . ξ,

R̃ιj x̄
ι − δι − rιj + SιjuT ≤ 0, µι3,j−ξ ≥ 0,∀j = ξ + 1, . . . ξ + ρ,

∀ι ∈ Z+
I , ∀i ∈ Z+

κ : SOS-1 : {µι1,i, H̃ι
x̄,t,ix̄

ι − hιx̄,t,i},
∀ι ∈ Z+

I ,∀j ∈ Z+
ξ : SOS-1 : {µι2,j , R̃ιj x̄ι − rιj + S̃ιjuT },

∀ι ∈ Z+
I , ∀j ∈ Zξ+1

ξ+ρ : SOS-1 : {µι3,j−ξ, R̃ιj x̄ι − δι − rιj + S̃ιjuT },

where Πι, µι1,i, µ
ι
2,j , µ

ι
3,j−ξ are dual variables, H̃ι

x̄,t,i is the
i-th row of Hι

x̄,t, R̃
ι
j , S̃

ι
j and rιj are the j-th row of Rι, Sι

and rι, η = I(Tmp+2n+2T (md+mw+mv)) is the number
of columns of Hι

x,t, κ = I(Tmp + 2c0 + 2T (cd + cw + cv))
is the number of rows of Hι

x,t, ξ = 2ITcy is the number of
rows of 0 in (30a), ρ = 2ITnz is the number of rows of 1
in (30a) and u∗,t−1

T is the optimal input sequence from time
instant t− 1.

Proof. Since Assumption 1 holds, it can be verified that the
concatenated form of (22b) is equivalently written as the
following two constraints:

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k), (25)max
x̄ι

Hι
xx̄

ι

s.t. Hι
x̄,tx̄

ι ≤ hιx̄,t
Hι
yx̄
ι ≤ p̄ιy−P̄ ιy f̃ ιy

≤ p̄ιx−P̄ ιxf̃ ιx−P̄ ιxΓιxuuT . (26)

Thus, we can convert the above semi-infinite constraint into
a tractable formulation for each time instant t ∈ Z0

T−1 by
using tools from robust optimization [18], [19] to obtain its
robust counterpart, as shown in problem (PPPDID).

Moreover, concatenating the separation condition of the
inner problem (PInner) with time in each model pair ι ∈ Z+

I

at time instant t ∈ Z0
T−1, the constraint (23f) becomes

Λιx̄ι ≤ δι − Ēιf̃ ι − (ĒιΓιu + F ιu)uT , (27)

where Λι, Ēι, f̃ ι, Γιu and F ιu are matrices related to the
separability condition that will be defined in the appendix.
In addition, we can concatenate the inequalities associated
with x̄ι, according to whether they are explicitly dependent
on uT or not:

Rιx̄ι ≤
[
0
1

]
δι + rι − SιuT , [Explicitly dependent on uT ] (28)

Hι
x̄,tx̄

ι ≤ hιx̄,t, [Implicitly dependent on uT ] (29)

where we define

Rι=

[
Hι
y

Λι

]
, rι=

[
p̄ιy − P̄ ιy f̃ ιy
−Ēιf̃ ι

]
, Sι=

[
P̄ ιyΓιyu

ĒιΓιu + F ιu

]
.

Thus, the inner problem (PInner) for each ι ∈ I in Lemma

1 can be written in the concatenated form:

δι∗(uT ) = min
δι,x̄ι

δι (PInner)

s.t. Rιx̄ι ≤
[
0
1

]
δι + rι − SιuT , (30a)

Hι
x̄,tx̄

ι ≤ hιx̄,t, (30b)

∀k ∈ Z0
t−1 : u(k) = u∗,t−1

T (k). (30c)

Then, by applying KKT conditions to (PInner) and rewrit-
ing the complementary slackness constraints in the KKT
conditions as SOS-1 constraints, we obtain the constraints in
Problem (PPPDID). Thus, for each time instant t ∈ Z0

T−1,
we have converted the bilevel problem defined in Problem 1
into the single level MILP problem (PPPDID).

Note that in comparison to a similar formulation without
parameters in [9], the ‘responsibility’ of the controlled input
(7) is enforced in the outer problem, as is required by the
problem we are addressing, and as a result, it trivially holds
in the inner problem and needs not be explicitly included
there. Moreover, it is worth reiterating that any pair of
trajectories that share the same node at time instant t on the
partition tree must have the same optimal input subsequence
up to t.

V. SIMULATION EXAMPLES

In this section, we apply our proposed approach to the
highway lane changing scenario (modified from [9]), where
the underlying goal is to detect the intention of other road
participants so as to improve driving safety and performance.

A. Parametric Model for a Lane Changing Scenario

Similar to the example in [9], we assume that the other
vehicle always drives in the center of its lane and hence has
no motion in the lateral direction. We also assume that the
lane width is 3.2m. Under these assumptions, the discrete-
time equations of motion for the ego and other vehicles are:

xe(k + 1) = xe(k) + vx,e(k)δt,
vx,e(k + 1) = (1−Kδt)vx,e(k) + ux,e(k)δt

+wx,e(k)δt+Kvdesx,e (k)δt,
ye(k + 1) = ye(k) + vy,e(k)δt+ wy,e(k)δt,
xo(k + 1) = xo(k) + vx,o(k)δt,
vx,o(k + 1) = vx,o(k) + di(k)δt+ wx,o(k)δt,

where, respectively, xe and ye, and vx,e and vy,e are the
ego car’s longitudinal and lateral positions in m, and the
ego car’s longitudinal and lateral velocities in m

s . xo and
vx,o are the other car’s longitudinal position in m and
longitudinal velocity in m

s , while ux,e and di are ego car
and other car’s acceleration inputs in m

s2 , K is a constant
feedback control gain that forces the ego car to follow
its desired longitudinal velocity reference vdesx,e (k) (model-
independent), wx,e, wx,e and wx,e are process noise signals
in m

s2 and δt is the sampling time in s. As discussed in
Example 1, we consider the ego car’s time-varying reference
vdesx,e (k) as a parametric variable in our vehicle models. In
our simulations, we assume that the controlled inputs for
model discrimination are ux,e(k) ∈ Ux ≡ [−7.85, 3.97]ms2



and vy,e(k) ∈ Uy ≡ [−0.35, 0]ms (where y is in the direction
away from the other lane), as well as a control gain of K = 1,
a desired velocity range of vdesx,e ∈ [29, 33]ms , and a sampling
time of δt = 0.3s. In addition, we assume that we have a
noisy observation z(k) = vx,o(k) + v(k).

We consider three driver intention models i ∈ {I , C, M}:
Inattentive Driver (i = I), who fails to notice the ego
vehicle and tries to maintain his driving speed, thus proceed-
ing with an acceleration input which lies in a small range
dI(k) ∈ DI ≡ 10% · U :

AI =


1 δt 0 0 0
0 1−Kδt 0 0 0
0 0 1 0 0
0 0 0 1 δt
0 0 0 0 1

, BI =


0 0 0
δt 0 0
0 δt 0
0 0 0
0 0 δt

,
Bvdes

x,e,I
=
[
0 Kδt 0 0 0

]T
, fI =

[
0 0 0 0 0

]T
,

Bw,I = BI , CI =
[
0 0 0 0 1

]
, DI = 0, Dv,I = 1.

Cautious Driver (i = C), who tends to yield the lane to the
ego car with the input equal to −Kd,C(vx,e(k)− vx,o(k))−
Lp,C(ȳ− ye(k)) +Ld,Cvy,e(k) +dC(k), where Kd,C = 0.9,
Lp,C = 2.5 and Ld,C = 8.9 are PD controller parameters,
ȳ = 2 and the input uncertainty is dC(k) ∈ DC ≡ 5% · U :

AC =


1 δt 0 0 0
0 1−Kδt 0 0 0
0 0 1 0 0
0 0 0 1 δt
0 −Kd,Cδt Lp,Cδt 0 1 +Kd,Cδt

 ,

BC =


0 0 0
δt 0 0
0 δt 0
0 0 0
0 Ld,Cδt δt

, fC =


0
0
0
0

−Lp,C ȳδt

 ,
Bvdes

x,e,C
= Bvdes

x,e,I
, Bw,C = Bw,I , CC = CI ,

DC = DI , Dv,C = Dv,I .

Malicious Driver (i = M), who does not want to yield the
lane and attempts to cause a collision with input equal to
Kd,M (vx,e(k)−vx,o(k))+Lp,M (ȳ−ye(k))−Ld,Mvy,e(k)+
dM (k), if provoked, where Kd,M = 1.1, Lp,M = 2.0 and
Ld,M = 8.7 are PD controller parameters, ȳ = 2 and the
input uncertainty satisfies dM (k) ∈ DM ≡ 5% · U :

AM =


1 δt 0 0 0
0 1−Kδt 0 0 0
0 0 1 0 0
0 0 0 1 δt
0 Kd,Mδt −Lp,Mδt 0 1−Kd,Mδt

 ,

BM =


0 0 0
δt 0 0
0 δt 0
0 0 0
0 −Ld,Mδt δt

 , fM =


0
0
0
0

Lp,M ȳδt

 ,
Bvdes

x,e,M
= Bvdes

x,e,I
, Bw,M = Bw,I , CM = CI ,

DM = DI , Dv,M = Dv,I .

Without loss of generality, we assume that the initial
position of the ego car is 0, and the initial position of the
other car is constrained by their initial relative distance. The
initial velocities of the cars are also constrained to match
typical speed limits of the highway. Further, we assume that
at the beginning, both cars are close to the center of the

lanes. In this case, the initial conditions are as follows:
vx,e(0) ∈ [30, 32]ms , ye(0) ∈ [1.1, 1.8]m,
vx,o(0) ∈ [30, 32]ms , xo(0) ∈ [7, 12]m.

(31)

Moreover, the velocity of the ego vehicle is constrained
between [27, 35]ms at all times to obey the speed limit of
a highway and the lateral position of the ego vehicle is
constrained between [0.5, 2]m. Process and measurement
noise signals are also limited to the range of [−0.01, 0.01]
and the separability threshold is set to ε = 0.1ms .

B. Simulation Results and Discussions
The operating region of vdesx,e (k) over the entire time

horizon T = 3 is P = [29, 33] and for convenience, we
choose to partition the operating region into two subregions
that are identical for each time instant, i.e., P1(k) = [29, 31]
and P2(k) = [31, 33] for k = 0, 1, 2. In total, we have 2T

different trajectories, as depicted in the partition tree over
the entire horizon in Fig. 1.

For our simulations, we consider two optimization costs:
(i) ‖uT ‖1 that enforces sparsity (leads to minimal number of
non-zero inputs) and (ii) ‖uT ‖∞ that ensures comfort (with
small maximum input amplitudes). For each trajectory, an
optimal separating input is computed offline that guarantees
the velocities of the other vehicles under each intention are
different by at least ε = 0.1.

As observed in Fig. 1, by using the partition-based method,
the cost at each node of the partition tree is reduced mono-
tonically from its parent node. In particular, this means that
our proposed approach improves on the performance of the
approach that does not take the revealed information into
account, shown at the top of the partition tree. When a certain
node does not improve on the cost from its parent (e.g., at t =

(a) Input uT with J = ‖uT ‖∞ (b) Input uT with J = ‖uT ‖1

Fig. 2: Trajectories of the controlled inputs when the op-
erating range of the revealed parameter pm(k) = vdesx,e (k)
is partitioned into two subregions at each time. In figure
legend, trajectories P1-P8 indicate different combinations
of the partitions over the entire horizon and are defined as
P1 = {P1(0),P1(1),P1(2)}, P2 = {P1(0),P1(1),P2(2)},
P3 = {P1(0),P2(1),P1(2)}, P4 = {P1(0),P2(1),P2(2)},
P5 = {P2(0),P1(1),P1(2)}, P6 = {P2(0),P1(1),P2(2)},
P7 = {P2(0),P2(1),P1(2)}, P8 = {P2(0),P2(1),P2(2)}.
In addition, P corresponds to the entire operating region.



1 or t = 2), it means the additional revealed parameter does
not change the optimal input that is needed for separation.
This can also be observed in Fig. 2, which shows the optimal
input sequence associated with each trajectory.

VI. CONCLUSION

In this paper, a partition-based parametric active model
discrimination approach was proposed for computing a
sequence of optimal inputs that guarantee optimal sepa-
ration/discrimination among a set of discrete-time affine
time-invariant models with uncontrolled inputs, model-
independent parameters and noise signals over a fixed time
horizon, where the parameters are revealed in real-time. The
approach allows us to take advantage of real time information
(i.e., the revealed parameters) to improve the model discrim-
ination performance. Moreover, we move the computation
of the optimal separating input offline by considering the
revealed parameters as parametric variables and introducing
partitions of its operating region. Leveraging tools from
robust optimization and applying double negation and KKT
conditions, we formulate the offline input design problem as
a sequence of tractable MILP problems. We demonstrated
our proposed approach on an example of intention estimation
in a lane changing scenario, showing that the proposed
approach outperforms the approach that does not use the
real-time revealed information about the parameters.
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APPENDIX

In this appendix, we provide definitions of matrices and
vectors that were previously omitted to improve readability.

A. Time-Concatenated Matrices and Vectors in Section II-B:

Ai,T =


Ai
A2
i

...
ATi

, Θi,T =


I 0 · · · 0
Ai I · · · 0
...

. . .
AT−1
i AT−2

i · · · I

 ,
f i,T = vec

T
{fi}, f̃i,T = Θi,T f i,T , g̃i,T = vec

T
{gi},

Ei = diag
T
{Ci}, Fu,i = diag

T
{Du,i}, Fd,i = diag

T
{Dd,i},

Fv,i = diag
T
{Dv,i}, Ax,i =

[
Axx,i
Ayx,i

]
, Ay,i =

[
Axy,i
Ayy,i

]
.

For † = {x, y} and ? = {u, d, p, w} :

B?,i =

[
Bx?,i
By?,i

]
, B†?,d,i,T = diag

T
{B†?,i},

Γ?,i,T =


B?,i 0 · · · 0
AiB?,i B?,i · · · 0

...
. . .

AT−1
i B?,i AT−2

i B?,i · · · B?,i

,
A†,d,i,T = diag

T
{
[
A†x,i A†y,i

]
},

M†,i,T = A†,d,i,T

[
I

Ai,T−1

]
, f†,i,T = vec

T
{f†,i},

f̃†,i,T = A†,d,i,T

[
0

Θi,T−1

]
f i,T−1 + f†,i,T ,

Γ†?,i,T = A†,d,i,T

[
0 0

Γ?,i,T−1 0

]
+B†?,d,i,T .

B. Matrices and Vectors in Theorem 1:

A
ι

= diag
i,j
{Ai,T }, C

ι
= diag

i,j
{Ei}, g̃ι = vec

i,j
{g̃i,T },

Γιu = vec
i,j
{Γu,i,T }, Γιd = diag

i,j
{Γd,i,T }, Γιw = diag

i,j
{Γw,i,T },

Γιp = diag
i,j
{Γp,i,T }, f̃ ι = vec

i,j
{f̃i,T }, D

ι
u = vec

i,j
{Fu,i},

D
ι
d = diag

i,j
{Fd,i}, D

ι
v = diag

i,j
{Fv,i}, E

ι
=

[
Ei −Ej
−Ei Ej

]
,

Λι = E
ι [
A
ι

Γιd Γιw 0
]

+
[
0 F

ι
d 0 F

ι
v

]
.

For † = {x, y} :

Γι†u = vec
i,j
{Γ†u,i,T },Γι†d = diag

i,j
{Γ†d,i,T },Γι†p = vec

i,j
{Γ†p,i,T },

Γι†w = diag
i,j
{Γ†w,i,T },M ι

† = diag
i,j
{M†,i,T }, f̃ ι† = vec

i,j
{f̃†,i,T }.

For ∗ = {d, v} :

F
ι
∗ =

[
F∗,i −F∗,j
−F∗,i F∗,j

]
, F

ι
u =

[
Fu,i − Fu,j
Fu,j − Fu,i

]
, gι =

[
g̃i − g̃j
−g̃i + g̃j

]
.


