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Abstract In this paper, the problem of spacecraft attitude control with soft faults of
actuators is investigated. A robust fault-tolerant controller is proposed in spacecraft
with the explicit model predictive control. Firstly, Fault model of the actuator is
established with the method based on explicit model prediction. Then, considering
the model uncertainty and the system state disturbance, the control problem based
on the spacecraft actuator failure state was transformed into the multi-parametric
quadratic programs (MPQP) under the constraints. Finally, a recursive process of
combining and replacing solutions is given to extract the required explicit control
laws. By designing the terminal cost function and constraint set appropriately, it is
proved that the MPC controller is robust to the constraints applied in the closed loop
of the uncertain system and the input to the stability of the origin state.

Keywords Passive fault-tolerant control ·Model predictive control ·
Multiparameter programming · Dynamic programming · Fault-tolerant control in
spacecraft

1 Introduction

In the spacecraft attitude control, failure of an actuator may cause irreparable damage
and inevitably appear disturbance anduncertainty.Therefore, the designof the control
system should not only be robust to disturbances and uncertainties, but also be fault-
tolerant. Control systems that maintain overall stability and acceptable levels under
fault conditions are called fault-tolerant control systems (FTC).

With the continuous development of fault diagnosis technology, the corresponding
fault-tolerant control methods are also gradually developed, especially the method
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based on analytical model. This method is often divided into two categories, namely,
passive fault-tolerant control (PFTC)method and active fault-tolerant controlmethod
(AFTC). AFTC method is to adjust the parameters of the controller according to the
fault (after the fault occurs) to compensate for the fault, and the structure needs to
be changed if necessary. Obviously, this method requires a designed control algo-
rithm. However, this method can improve the performance of the controlled system.
Generally speaking, most active fault-tolerant controls require fault diagnosis (FD)
subsystems or modules to obtain fault-related information [1]. By contrast, PFTC
method is based on the idea of robust control [2]. In related reports, passive fault-
tolerant control is often divided into reliable stabilization, simultaneous stabilization,
and integrity. Passive fault-tolerant controlmethod is essentially a robust control tech-
nology, which is effective only for faults in a specific range, and generally speaking,
it is more conservative [3].

At present, different FTC methods have been proposed, but Model Predictive
Control (MPC) has not been used to solve the control problem of spacecraft actuators
under passive FTC. The main problem of MPC is the large amount of calculation
online, which limits its wide application. Considering the limited power supply,
data storage, and computing resources of spacecraft, an explicit predictive control
(EMPC) is proposed to solve this problem [4]. In this method, the optimal solution
of the closed-loop system is obtained offline. The original MPC problem is modified
by dynamic programming and multi-parameter programming, and it is transformed
into a multi-stage optimization problem [5]. However, for the design of spacecraft
actuators, there is no robust fault-tolerant controller for disturbance and uncertainty.

In this paper, the factors such as actuator failure, disturbance, and model uncer-
tainty are combined into the predictive control problem of spacecraft linear systems,
robust fault-tolerant explicit control lawsunder state and input constraints are derived.
On the basis of the work of Kourama, the algorithm adopts the method of combining
dynamic programming with multi-parameter programming [6]. By using the idea of
constraint rearrangement, the control problem based on the failure state of spacecraft
actuator is transformed into a constrained multi-parameter optimization problem.
Finally, the recursive process of combinatorial and substitution solutions is given to
obtain the required explicit control law.

2 Problem Formation

Considering the following satellite model assumptions:

• All state variables in the model are based on the satellite body-fixed frame Ob.
• The origin of Ob coincides with the center of gravity of the satellite, the inertial

matrix of a satellite is I = diag{i11, i22, i33}.
• The satellite’s reaction wheel generates internal control torque around the satel-

lite’s main axis, the axial inertia of the momentumwheel is Is , The axis of rotation
in the ontology coordinate system is C = [0, 1, 0]T .
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• Satellite external control moment
∑

τcontrol ! τ = [τ1, τ2, τ3]T, provided by
thrusters, can act directly on the angular velocity of the satellite’s main axis, the
only interfering moment to be considered is the gravity gradient moment.

2.1 Satellite Attitude Model

A preliminary and relatively complex satellite model can be described as

ω̇b
ib = J−1[−S

(
ωb
ib

)(
Iωb

ib + CIsωs
)
+ τe − J−1Cτa

]

ω̇s = − CTJ−1[−S
(
ωb
ib

)(
Iωb

ib + CIsωs
)
+ τe

]
+

[
CTJ−1C+ I−1

s

]
τa

η̇ = − 1
2
εTωb

ob

ε̇ = 1
2
[ηI+ S(ε)]ωb

ob (1)

where J is the satellite’s overall inertia matrix, I is the inertial matrix of the satellite,
Is is the axial inertia matrix of reaction wheel, C is the matrix for the reaction wheel,
ωs is the angular velocity of the reaction wheel, τa is the reaction wheel control
torque.

τe =
∑

τcontrol +
∑

τdisturbance,
∑

τcontrol ! τ = [τ1, τ2, τ3]T (2)

S(ωb
ib) ! ω× =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



, ω =




ωx

ωy

ωz



. (3)

2.2 Satellite Attitude Model

Model in (1) must be differentiated relative to the total state vector, the total state
vector is currently selected as x = [ω1,ω2,ω3,ωs, η, ε1, ε2, ε3]T . In this way, the
nonlinear control law f(x,u) = [ω̇b

ob, ω̇s, η̇, ε̇]T ! [ f1, . . . , f8]T. The linearized
system can be expressed as follows:

{
ẋ = Ax + Bu
y = Cx + Du

. (4)

Considering the observability and controllability of linear systems, select equi-
librium point xp = [0, 0, 0, 0, 1, 0, 0, 0]T, up = [0, 0, 0, 0], the solution formula
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of the state equation is used to ensure that the continuous state equation and the
discretized state equation have the same solution at the sampling time. Transform
the state-space model of discrete system into the following form:

{
x((k + 1)T ) = G(T )x(kT )+ H(T )u(kT )
y(kT ) = C(T )x(kT )+ D(T )u(kT )

(5)

Decoupling this system into a six-degree-of-freedom state system, the matrix in
(6) is as follows:

A =





0 0 (1 − kx )ω0 0 −8kxω2
0 0

0 0 0 0 0 −6ky i22ω2
0

κ

(kz − 1)ω0 0 0 0 0 0
1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0





B =





1
i11

0 0
0 1

κ
0

0 0 1
i33

0 0 0
0 0 0
0 0 0





, (6)

where

kx =
i22 − i33

i11
, ky =

i11 − i33
i22

, kz =
i22 − i11

i33
, κ = i22 − is .

3 Fault Model Prediction Description

3.1 Linear Discrete System Under Spacecraft Failure

The state equation of linear discrete spacecraft is as follows:

xk+1 = f (xk, uk) = Axk + B'kuk +Wdk, (7)

where xk ∈ Rn, uk ∈ Rm, dk ∈ Rs are state, input, and disturbance vector respec-
tively, subject to constraints X = {x ∈ RnGx ≤ µ} and u = {u ∈ RmHu ≤ γ }
are convex polyhedron, G ∈ RnM , µ ∈ RnM , H ∈ RmN×m , γ ∈ RmN ; additionally,
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unknown disturbances dk are restricted to dL
i ≤ dk,i ≤ dU

i (i = 1, . . . , r), system
coefficient matrix A, B are uncertain matrices; unknown boundary matrix )A)B
are defined as follows:

)A ∈ A =
{
)A ∈ Rn×n|−εa|A0|≤ )A ≤ εa|A0

}
(8)

)B ∈ B =
{
)B ∈ Rn×n|−εb|B0|≤ )B ≤ εb|B0

}
, (9)

where A0 B0 are nominal matrices, use |X | represent
{∣∣Xi j

∣∣}, X =
{
Xi j

}
, uk,i stands

for the ith actuator of time k and uF
k,i denotes its defective form written as

εk,i ∈ R =
{
εk,i ∈ R|0 ≤ εk,i ≤ εUi ≤ 1

}
, (10)

whereas εk,i and εUi indicate the corresponding failure percentage at time instant k
and its upper bound, respectively. Therefore, εk,i = 0 indicates the state of health
while εk,i = 1 indicates the correspondence of input is completely invalid. Now let’s
define

'k ! Im − εk , εk ! diag
{
εk,1, . . . , εk,m

}
, Im denote the unit matrix of order m,

uF
k = 'kuk , so the MPC problem under constraints is defined as[7]:

min
Ut

J =
N−1∑

k=0

[
x̄Tk|t Qx̄kt + uTk|t Ruk|t

]
+ x̄TNt P x̄N |t , (11)

where

x̄k+1|t = A0 x̄k|t + B0uk|t , k = 0, 1, 2 . . . , N − 1 (12)

xk+1|t = Axk|t + B'kuk|t +Wdk|t , k = 0, 1, 2, . . . , N − 1 (13)

uk|t ∈ U =
{
u ∈ Rm, Hu ≤ γ

}
, k = 0, 1, 2 . . . , N − 1 (14)

xN |t ∈ X f =
{
x ∈ Rn,G f x ≤ µ f

}
(15)

and ∀)A0|t , . . . ,)Ak−1|t satisfies (5), ∀)B0|t , . . . ,)Bk−1|t satisfies
(6)∀α0t , . . . ,αk−1|t satisfies (7).

A control sequence Ut = {u0|t , . . . , uN−1|t } is a robust solution for the
explicit/multi-parametric MPC problem, x0|t = xt , the matrices Q, P are positive
semi-definite, R is positive definite and X f contains the origin in its interior. N
is the prediction length. At each sampling time, the objective of this work is to
obtain a control sequence U and in extension the optimal control variables ut for the
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optimization as functions of the state variables xt (7), it is obvious that deriving the
control variables utas explicit functions of the states xt is not possible with the current
nominal mp-MPC methods which meets the constraints of all allowable values of
disturbance, uncertainty, and actuator fault. In order to be applied to multi-parameter
programming, it is assumed that the objective function only punishes the behavior of
nominal systems (such as Kourama 2013). This closed-form solution of the problem
is named as a robust fault-tolerant explicit control law.

3.2 Model Prediction Dynamic Programming

In this step, based on the ideas of multi-stage decomposition, problem (11)–(13)
with N decision variables is expressed as a multi-stage optimization problem where
the time instant t represents each of the stages of the problem with N optimization
problems and one decision variable, that is

minUt J =
N−1∑

k=0

[
x̄Tk|t Qx̄k|t + uTk|t Ruk|t

]
+ x̄TN |t P x̄N |t (16)

where

x̄k+1 = A0 x̄k + B0uk, k = i, . . . , N − 1

xi ∈ χ , ui ∈ U , xi+1 ∈ Xi+1 =
{
x ∈ Rn,Gi+1x ≤ µi+1

}
.

(17)

The optimization problem (16) is solved stage wise, starting from i = N − 1 and
solving it repetitively backwards until i = 0,where effects of all uncertain parameters
are captured as xi+1 = Axi + B'i ui ,where the only optimization variable is the
control variable ui at the current stage and only the state and input constraints at the
current stage are considered [8].

3.3 Model Prediction Constraint Arrangement

The key step in the proposed method is to rearrange the constraint beat to ensure
the robustness and fault tolerance of our controller, all constraints (17)–(20) can be
rewritten as

Gi+1A0xi + Gi+1)Ai xi + Gi+1B0ui − Gi+1B0εi ui+
Gi+1)Biui − Gi+1)Biεi ui + Gi+1Wdi ≤ µi+1,

(18)
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Considering the perturbation, uncertainty and worst case of actuator failure, the
model constraint prediction is rearranged as follows:

Gi+1A0xi + Gi+1B0ui
+max(Gi+1)Ai xi − Gi+1B0εi ui + Gi+1)Biui
−Gi+1)Biεi ui + Gi+1Wdi ) ≤ µi+1 (19)

−yi ≤ xi ≤ yi (20)

−vi ≤ ui ≤ vi . (21)

3.4 Multi-parametric Programming

The convexity of (16) can be used to derive a convex multi-parameter programming
problem by considering the assumptions as follows [9]:

• Considering ϕi =
[
uT
i , y

T
i , v

T
i

]T as the optimization variable.
• Considering θi =

[
xTi , u

T
i+1, . . . , u

T
N−1

]T as the optimization parameters.
• Considering objective function only penalizes the nominal system x̄k+1 = A0 x̄k+

B0uk , therefore x̄k+1 = Ak−i+1
0 xi +

k∑
j=i

Ak− j
0 B0u j (k = i, . . . , N − 1).

The design of robust controller control law for spacecraft is transformed into the
multi-parameter quadratic optimization problem as follows:

minϕi

{
1
2
ϕT
i Hiϕi + θT

i Fiϕi

}
(22)

Aciϕi ≤ bci + Bciθi , (23)
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where

H = R +
N−1∑

i=t

BT
0

(
Ai−1−t
0

)T
QAi−1−t

0 B0

H = R +
N−1∑

i=t

BT
0

(
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0

)T
QAi−1−t

0 B0

F =




(

N−1∑

t+1

2
(
Ai−t
0

)T
QAi−1−t

0

)T

×
(

N−1∑

i=t+2

2BT
0

(
Ai−t−2
0

)T
QAi−1−t

0 B0

)

×
(

N−1∑

i=t+3

2BT
0

(
Ai−t−3
0

)T
QAi−1−t

0 B0

)T

· · ·
(
BT
0 PAN−1−t

0 B0
)




In addition, Aci ,bci ,Bci is simply obtained from constraints (18)–(20), By using
the transformation zi ! ϕi + H−1

i FT
i θi , the problem is converted to the standard

form of the multi-parameter quadratic programming problem, which is

min
zi

1
2
zTi Hi zi (24)

Aci zi ≤ bci + Siθi , (25)

where Si = Aci H−1
i FT

i + Bci , it should be a positive symmetric definite matrix, a
problem solved by Yalmip in the multi-parameter toolbox, the solution inMPT takes
the form of [10]:

ui = K j
i θi + k j

i

i f θi ∈ CR j
i =

{
θ A j

θi
θ ≤ b j

θi

}
. (26)

At the end of the current stage, the t-robust controllability set for the feasibility
constraint in (17) can be obtained either by performing set theoretic computations,
or by taking the union that allowable constraint region of the next stage is calculated
as follows:

Xi =
⋃

j

cR j
i . (27)

At the end of each phase, the solution of form (26) is obtained through thismethod,
but the expected control law is only a function of xi . These formulas (28)–(30) show
how to extract the required explicit control law by combining the solution of previous
and current stages which are obtained from the algorithm:
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ui = Kr
xi xi + Kr

ui u pre + kri i f Ar
xi xi + Ar

ui u pre ≤ brθi (28)

upre = Kq
prexi+1 + kqpre i f Aq

prexi+1 ≤ bqpre, (29)

where upre =
[
uT
i+1, . . . , u

T
N−1

]T and Kq
pre , k

q
pre A

q
pre , b

q
pre are obtained at the end of

previous stage for the critical region, CRq
pre, rewrite the system using the nominal

model xi+1 = A0xi + B0ui in the following form:

[
Im −Kr

ui
−Kq

pre B0 Im×(N−i−1)

][
ui
u pre

]
=

[
kri
kpre

]
+

[
Kr

xi
K q

pre A0

]
xi . (30)

It is possible tofind twocritical regions from Ar
xi xi+Ar

ui u pre ≤ brθi and A
q
pre A0xi+

Aq
pre B0ui ≤ bqpre, which is the critical region for the sequence from ui to uN−1, An

empty intersection indicates that there is no feasible solution in the current r − q
combination. This procedure is required to being repeated at the end of each stage.
In this way, the control problem based on the failure state of spacecraft actuator is
transformed into a multi-parameter optimization problem under constraints.

4 Simulation

4.1 2U Cubic Satellite Parameters Initialized

Table 1 summarizes some of the main physical parameters. These values were used
in the previous analysis and will be used in the simulation section of this paper [11],
adopting the satellite attitude kinematics and dynamics model in the paper, the oper-
ating altitude of the micro-nano satellite is 17125 km, the moment of inertia of the
satellite on three axes is I = diag{4.251, 4.330, 3.669}[kg m2], [12] the satellite’s
state variable is x = [ω1,ω2,ω3, η,α1,α2,α3]T,ω1,ω2,ω3 are, respectively, satellite
triaxial angular velocities, η,α1,α2,α3 are the corresponding quaternions, respec-
tively. In order to facilitate tracking and control, the state quantity of the satellite is
set as x = [ω1,ω2,ω3,α1,α2,α3]T. The fixed sampling time is 0.1 s, and the state
constraint is

Table 1 Observation from
the state partition

Observe Fixed manipulation Value

ω1, ε1 ω2, ε2,ω3, ε3 case1 = [0, 0, 0, 0]
ω2, ε2 ω2, ε2,ω3, ε3 case2 = [0, 0, 0, 0]
ω3, ε3 ω2, ε2,ω3, ε3 case3 = [0, 0, 0, 0]
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−[0.5; 0.5; 0.5; 0.5; 0.5; 0.5] <= X <= [0.5; 0.5; 0.5; 0.5; 0.5; 0.5];

The input constraint is:

−[0.484; 0.484; 0.039] <= U <= [0.484; 0.484; 0.039];

The state matrix is Q = diag(200,200,200,1,1,1);
The input matrix is R = diag(100,200,100);
The uncertainty of system model is σ= 0.1, upper limit of the fault αU = 0.5.

The predicted step size is N = 4, and the system control partition obtained by offline
calculation is shown in Table 1.

4.2 Simulation Results

In order to study the high performance of the designed controller, the behavior of
the closed-loop system starting from any initial condition x0 is simulated. As can be
seen from Fig. 1, which illustrates the explicit region of the satellite rolling angular
velocity and rolling angle, the explicit region of the satellite pitch velocity and pitch
angle is depicted in Fig. 2. Figure 3 also reflects the explicit region of the yaw angular
velocity and yaw angle.

Taking pitch angle and yaw angle as an example, their control law partitions are
indicated in Fig. 4, corresponding to u1, u2, u3 from top to bottom. In this way,
different control law permutation and combination under different states can be
obtained.

Figure 5 demonstrates the state partitions of all angular velocities when the roll
angle, pitch angle, and yaw angle are special values of zero; Fig. 6 illustrates the

Fig. 1 Feasible critical
region of the observation1
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Fig. 2 Feasible critical
region of the observation2

Fig. 3 Feasible critical
region of the observation3

state partitions of all Euler parameters when the roll velocity, pitch velocity, and yaw
velocity are special values of zero.

In order to study the high performance of the designed controller, the
behavior of the closed-loop system starting from any initial condition x0 =
[0.1; 0.2; 0.5; 0.3; 0.4; 0.1] is simulated. The system is affected by random allow-
able disturbance, uncertainty, and actuator failure. Figure 7 shows the curve of the
three control laws changing with time, it can be seen that the control input basically
reaches the balance at 4 s.

In Fig. 8 three curves of angular velocity over time are shown and Fig. 9 reflects
curves of Euler quaternions over time, indicating that after a fault occurs, the system
can quickly and timely search for an emergency plan through explicit predictive
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Fig. 4 Feasible region of the
control law

Fig. 5 Feasible region of all
angular velocities

control, so as to stabilize the spacecraft attitude quickly. Especially, the transient
response is faster and the steady-state accuracy is higher.

5 Conclusion

In this work, a new methodology was applied in micro-satellite to deal with a robust
fault-tolerant explicit solution as an EMPC problem with objective quadratic func-
tion and linear state and input constraints. The micro-satellite system was exposed to
unknown bounded disturbances, actuator failures as well as model uncertainties. A
multi-stage optimization program was implemented by using the multi-parametric
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Fig. 6 Feasible region of all
Euler parameters

Fig. 7 Feasible region of
control law

programming and dynamic programming approaches. Furthermore, an implemented
constraint rearrangement formulation was imposed which ensures the immunity of
the attitude system to the worst situation such as disturbances, uncertainties, and
faults. Additionally, a recursive process was used to combine the stage-by-stage solu-
tions and to extract the expected explicit control law. The numerical simulations show
that the proposed controller is obviously successful in achieving high performance
in quality as well as in the presence of parametric uncertainty, external disturbance,
actuator failure, and control input constraints. At the same time, it provides an idea
for cooperative control and distributed control of multi-spacecraft.
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Fig. 8 Simulation results of
the angular velocity

Fig. 9 Results of the Euler
parameters with time
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