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Abstract— In this paper, we present a bounded-error esti-
mator that achieves equalized recovery for discrete-time time-
varying affine systems subject to missing data. By augmenting
the system state estimate with a Luenberger-like observer error,
we formulate the equalized recovery estimator design problem
as a semi-infinite optimization problem, and leverage tools from
robust optimization to solve it. Due to the design freedom
introduced by the Luenberger-like observer, we can place the
eigenvalues of the augmented system to desired locations, which
results in a more optimal intermediate level in the equalized
recovery problem than existing approaches in the literature.
Furthermore, as an extension of the proposed equalized re-
covery estimator, we consider missing data in the estimator
design, where a fixed-length language is used to specify the
allowable missing data patterns. Simulation examples involving
an adaptive cruise control system are given to demonstrate the
equalized recovery performance of the proposed estimator.

I. INTRODUCTION

With the rapid advancement in technology, systems are
becoming more complex with passing years. Since there are
certain crucial system states that cannot be directly mea-
sured/observed through system outputs, state estimators, also
known as state observers, are designed to tackle this problem.
A great deal of current state estimators heavily depends
on the accuracy of the sensor measurement. However, as
systems such as autonomous vehicles, power grids, smart
buildings, etc, become integrated and distributed, significant
missing data or communication delays across the sensor
networks may be inevitable and these issues need to be
addressed when designing estimators. Otherwise, these data
losses may deteriorate the estimator performance and cause
the resulting closed-loop system to be unstable.

Literature review: Over the years, many different estima-
tion techniques such as the Kalman filter [1] and Luenberger
observer [2] along with their variations and extensions have
been introduced. In addition to these asymptotic estima-
tion approaches, set-valued observers [3] and `∞ filters
[4], which can construct a set of compatible state values
based on measured outputs, have also received considerable
attention in the context of fault detection and estimation,
attack identification, resilient control, etc. Taking the issues
of missing or intermittent data due to sensor failures or
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package drops into account, several approaches for estimator
design in the presence of missing data are also proposed. In
[5], by modeling the arrival of the sensor data observation
as a random process, a Kalman filter with missing and
intermittent observations was presented. In [6], a random
missing data process described by Markov chains is assumed,
and a jump linear estimator is proposed, which is computa-
tionally efficient but suboptimal, to deal with missing data.
However, since both approaches assume known probability
distributions for the discrete state/mode switching process
corresponding to missing data, they can only optimize the
expected/average estimation performance. On the other hand,
instead of assuming that the missing data process is stochas-
tic, Rutledge et al [7] modeled the missing data by using a
fixed-length language specification that specifies the set of
allowable missing data patterns over a fixed time horizon.
In contrast to the approaches for probabilistic intermittent
observations such as [5] and [6], estimators using the fixed-
length language specification for missing data patterns en-
sure estimation performance for the worst-case missing data
scenario.

Another set of relevant literature pertains to bounded-error
estimators. Recently, a new property for bounded estimation
error known as equalized performance has been proposed
[8], which means the estimation error will not increase at all
times. In [9], a locally superstable observer with equalized
performance was introduced to obtain state estimates with
bounded errors from partial state observation, which fur-
ther enables the synthesis of output-feedback control laws
for discrete-time piecewise-affine systems subject to linear
temporal logic specifications. In [7], a finite horizon affine
estimator was proposed by leveraging Q-parameterization
from [10] to achieve equalized recovery, i.e., the estimation
error may satisfy a more relaxed error bound for a finite
horizon after which it recovers to the desired error bound.

Contribution: In this paper, we propose a bounded-error
dynamic estimator based on state augmentation that achieves
equalized recovery of the state estimation error for discrete-
time affine time-varying systems in the presence of missing
data caused by sensor failures or packet drops. First, in the
case of no missing data, we introduce a Luenberger-like
observer to estimate the state error dynamics, and further
augment our state estimate with the Luenberger-like observer
error. For this augmented system, inspired by the result in
[11] for affine feedback receding horizon control, we show
that the equalized recovery estimator design problem can
be formulated as a semi-infinite optimization problem. By



leveraging tools from robust optimization, we can recast
the equalized recovery estimator design problem as a non-
convex but sparse optimization problem for which efficient
off-the-shelf optimization softwares are available. Then, by
expressing missing data patterns as fixed-length language
specifications, we extend the proposed estimator to handle
the worst-case missing data scenario (and thus, the estimator
also applies for less severe missing data scenarios). Com-
paring with the recent bounded-error estimator in [7], since
we incorporate a Luenberger-like observer into our proposed
equalized recovery estimator, we have more design freedom
for potentially obtaining a smaller intermediate estimation er-
ror level, as illustrated in our simulation examples. Moreover,
we discuss the effects of fixing some decision variables of
our non-convex formulation to obtain a convex optimization
problem and provide some examples where some suitable
fixed choices of these variables lead to no loss in optimality.

II. PROBLEM FORMULATION

A. Notations

Throughout the paper, Rn is used to represent the n-
dimensional Euclidean space, N for positive integers and Bn
for the n-dimensional binary vector. The symbol ⊗ denotes
the Kronecker product, ‖ · ‖ is used to denote the infinity
norm of vectors or matrices. An identity matrix of size s is
denoted by Is, a vector of ones of length s is denoted by 1s,
while a zero matrix of dimension a-by-b is denoted by 0a×b.
The inequalities for comparing vectors and matrices are all
element-wise.

B. System Dynamics

In this paper, we consider discrete-time affine time-varying
systems with bounded errors as follows:

xk+1 = Akxk +Bkuk +Wkwk + f,

yk =

{
Ckxk + Vkvk, qk = 1,

∅, qk = 0,

(1)

where xk ∈ Rn is the system state at time k , uk ∈ Rm is the
input to the system, wk ∈ Rn is the process noise, yk ∈ Rp is
the output of the system accessible by sensors and vk ∈ Rp
is the measurement noise. The system matrices Ak, Bk, Ck,
Wk, Vk and f are all known. qk ∈ {0, 1} is the measurement
mode which indicates whether the measurement at time k is
available or missing. We assume that wk and vk are bounded
with ‖wk‖ ≤ ηw and ‖vk‖ ≤ ηv for every k. Without loss
of generality, we assume that the initial time is k = 0.

Missing Data Language: As in [7], we consider a missing
data model with no assumption that the measurement mode
sequence follows a known stochastic process, but that they
are restricted to a set of missing data patterns expressed
by fixed-length language specifications, e.g., ‘every n-th
observation is missing’ or ‘at least m available measurements
in the fixed interval’. More formally, within a finite time
horizon T , our missing data model is a fixed-length language
L ⊆ BT that specifies the set of allowable measurement
mode sequences {qk}T−1

k=0 .

C. Equalized Recovery

The focus of our paper is to design a bounded-error estima-
tor, where the estimation error is guaranteed to return/recover
to the same bound that it started with after a fixed number
of time steps, as an extension of the notion of equalized
performance in [8]. In terms of a time horizon T , we enforce
that the estimation error bound at the end of the horizon is
guaranteed to be at most the same as the bound at the start
of the horizon. Formally, we consider the equalized recovery
problem as defined in [7]:

Definition 1 (Equalized Recovery [7]). An estimator is said
to achieve an equalized recovery level µ1 at time 0 with
recovery time T and intermediate level µ2 ≥ µ1 if for any
initial state estimate x̂0 that satisfies ||x̃0|| ≤ µ1, we have
‖x̃k‖ ≤ µ2 for all k ∈ [0, T ] and ‖x̃T ‖ ≤ µ1, where x̂k
is the state estimate at time k and x̃k , xk − x̂k is the
estimation error.

D. Problem Statement

The objective of this paper is to design a bounded-error
estimator that satisfies equalized recovery, which can be
stated as follows:

Problem 1 (Estimator Design). Given the system dynamics
in (1), a desired recovery level µ1, a recovery time T as
a time horizon and a missing data model specified by a
language L as well as an initial state estimate x̂0 that
satisfies ‖x̃0‖ ≤ µ1, design an optimal bounded-error state
estimator with estimate x̂k and estimation error x̃k = xk−x̂k
for all k ∈ [0, T ] that minimizes the intermediate level µ2

subject to µ2 ≥ µ1, ‖x̃k‖ ≤ µ2, ∀k ∈ [0, T ] and ‖x̃T ‖ ≤ µ1.

III. ESTIMATOR DESIGN APPROACH

In order to tackle Problem 1, we consider a finite horizon
dynamic estimator with an augmented state x̄k ,

[
x̂>k s>k

]>
(inspired by [11]) as follows:

x̂k+1 = Akx̂k +Bkuk − ue,k + f,
sk+1 = Aksk + ue,k + Lk(ỹk − Cksk),
ŷk = Ckx̂k,

(2)

where x̂k ∈ Rn is the estimate of the system state xk,
sk ∈ Rn is an auxiliary state (that can be interpreted as the
Luenberger-like observer error), ŷk is the estimated output
from the estimated state, and ue,k ∈ Rn is the following
causal output error injection term:

ue,k = νk +

k∑
i=0

M(k,i)(ỹi − Cisi), (3)

where ỹk , yk−ŷk = yk−Ckx̂k while Lk ∈ Rn×p, M(k,i) ∈
Rn×p and νk ∈ Rn are to-be-designed gain matrices at time
k. x̂0 is given whereas s0 is a design variable. Note that
unlike [11], we do not assume that (Ak − LkCk) is stable
with the Luenberger-like observer gain Lk. The effect of
eigenvalues of (Ak−LkCk), which can be controlled by Lk
will be covered in the discussion in Section IV-C.

First, we present the estimator design for the perfect case
when there is no missing data. Then, we will extend those



results from the perfect case to the case of missing data
patterns that satisfy a given fixed-length language.

A. Perfect Case: No Missing Data

In this case, we assume that the observer has access to all
the measurement data at any given time, which means that
qk = 1 for all k ∈ [0, T − 1]. Before proceeding, we define
some additional notations for stacked versions of the various
signals (with ek , x̃k − sk):

x̃ =
[
x̃>0 . . . x̃>T

]>
, s =

[
s>0 . . . s>T

]>
, e =

[
e>0 . . . e>T

]>
,

ue =
[
u>e,0 . . . u

>
e,T−1

]>
, ν =

[
ν>0 . . . ν>T−1

]>
,

w =
[
w>0 . . . w>T−1

]>
, v =

[
v>0 . . . v>T−1

]>
.

In the following theorem, we formulate the estimator
design as a semi-infinite optimization problem:

Theorem 1 (Perfect Measurement Scenario). An optimal
finite-horizon affine estimator (2) that solves Problem 1 when
there is no measurement data loss is obtained by solving the
following optimization problem:

min
M,ν,µ2,s0,L

µ2

subject to ∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤ µ1) :
‖x̃‖ ≤ µ2, ‖RT x̃‖ ≤ µ1,
x̃ = Θw + Ψv + Ξx̃0 + Υs0 + Eν,

(4)

where
RT =

[
0n×nT In

]
,

Θ = (I + E(M + L)C)ΓW,
Ψ = (E(M + L)(I − CΓL)− ΓL)V,
Ξ = (I + E(M + L)C)Φ,
Υ = A− Ξ,

(5)

with A, C, E, L, M , W , V , Γ and Φ defined in the Appendix.

Proof. With the estimator defined in (2) for the system in
(1), the error dynamics of the system will be as follows:

x̃k+1 = xk+1 − x̂k+1,
= Akx̃k + ue,k +Wkwk,

ỹk = Ckx̃k + Vkvk,
(6)

where x̃k and ỹk are state estimation error and output error
respectively. These error dynamics in (6) can be viewed as
another dynamic system with the state now being the error
x̃k and the control input to the system being ue,k.

For this ‘new’ system, inspired by [11], we then consider
a Luenberger-like observer for the estimator design in the
following form:

sk+1 = Aksk + ue,k + Lk(ỹk − Cksk), (7)

where sk is the Luenberger-like estimate of error x̃k and Lk
is the Luenberger-like observer gain at time k.

Considering the error system defined in (6) as well as its
observer defined in (7), we will have the following estimation
error of the error system:

ek = x̃k − sk. (8)

Since the design is incorporating a finite time horizon T ,
we can stack the augmented system states, measurements
and errors, as well as rewrite (6), (7), (8) and (3) with the

stacked matrices, to obtain the following affine equations:
s = As0 + Eue + EL(Ce+ V v),
e = Φe0 − ΓLV v + ΓWw,
ue = M(Ce+ V v) + ν,
e = x̃− s.

(9)

Here, the terms s0 and e0 are the initial values of s and e,
respectively.

Then, we can find the estimation error x̃ as:
x̃ = e+ s

= Θw + Ψv + Ξx̃0 + Υs0 + Eν
(10)

and the x̃T value at the end of the time horizon is given by

x̃T = RT x̃.

Finally, based on the requirements for equalized recovery in
Definition 1, we must have ‖x̃k‖ ≤ µ2 for all k ∈ [0, T ] and
‖x̃T ‖ ≤ µ1 for the worst-case noise w, v and uncertainty in
the initial state estimate x̃0. �

B. Robustification

In the optimization problem defined in Theorem 1, we
have for all constraints involving w, v and x̃0 that are semi-
infinite, which makes them not readily solvable. Leveraging
ideas from robust optimization [12], [13], we robustify the
problem such that we only have finitely many constraints.
The robustified problem is given below:

Proposition 1 (Robust Problem for Estimation). After ro-
bustification, the problem (1) takes the following form:

min
M,ν,µ2,s0,
L,Π1,Π2

µ2

subject to Π1 ≥ 0,Π2 ≥ 0,[
Π1

Π2

]ηw1ηv1
µ11

 ≤ [µ21

µ11

]
−


I 0
−I 0
0 I
0 −I

[ Eν + Υs0

RT (Eν + Υs0)

]
,

[
Π1

Π2

]

I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

 =


I 0
−I 0
0 I
0 −I

[ G
RTG

]
,

(11)
where G ,

[
Θ Ψ Ξ

]
with Θ,Ψ,Ξ defined in (5), while Π1

and Π2 are dual matrix variables of appropriate dimensions.

Proof. Since ‘∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤ µ1) such
that ‖x̃‖ ≤ µ2 and ‖RT x̃‖ ≤ µ1 hold’ is equivalent to the
conjunction of ‘∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤ µ1) such
that ‖x̃‖ ≤ µ2 holds’ and ‘∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤
µ1) such that ‖RT x̃‖ ≤ µ1 holds,’ we will only derive the
robustification of the former. The latter can derived similarly.

The constraint ‘∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤ µ1) such
that ‖x̃‖ ≤ µ2 holds’ is equivalent to

max
‖w‖≤ηw,‖v‖≤ηv,
‖x̃0‖≤µ1

[
I
−I

]
(Θw+Ψv+Ξx̃0 +Υs0 +Eν) ≤ µ21.

Since the variables in the preceding maximization appear
linearly, we can simply apply duality theory from the liter-



ature of linear programming with Π1 being the dual matrix
variable and there will be no duality gap, i.e., the dualization
or conversion is exact. �

Remark 1. The optimization problem in Proposition 1 has
bilinear constraints because of Ψ and the product of Υ and
s0. However, the problem is relatively sparse, hence off-
the-shelf nonlinear optimization solvers can return optimal
solutions very quickly, as is demonstrated in our simulation
example. On the other hand, if we fix L and s0, the
problem becomes a linear programming (LP) problem. We
will provide guidelines in Section IV-C on how to choose L
and s0 without any loss of optimality.

C. Missing Data Case

To deal with measurement data loss, Theorem 1 is further
extended to the missing data scenario, where the missing data
patterns are described by a fixed-length language, L ⊆ BT ,
which is assumed to be known. For instance, the language
L = {σ ∈ BT |σ has at least m 1’s in T time steps} defines
the missing data pattern of ‘there exists at least m available
data over a time horizon T .’ A specific language L may
contain multiple words, i.e., with cardinality |L| ≥ 1, but
the estimator design approach in Theorem 1 only handles
the case with |L| = 1. To cope with the case where |L| > 1,
we employ a less than or equal operator (�) defined in [7]
for two words σ1 ∈ L and σ2 ∈ L in a language L ⊆ RT :

σ1 � σ2 ⇐⇒ ∀i ∈ [1, T ] : σ1[i] = 0 =⇒ σ2[i] = 0.

Thus, according to the � operator, we can obtain a worst-
case language L∗ , {σ∗ ∈ BT }, where σ∗ is the least upper
bound of the set L that is computed by implementing a bit-
wise logic AND operation among all words in L [7]. As
a result, we only have to consider the missing data pattern
where the observations are always available to the designer.

Theorem 2 (Estimator Design with Missing Data). A finite-
horizon affine estimator, which can solve Problem 1 when
there is measurement data loss defined by a fixed-length
language L∗ = {σ∗} with |L∗| = 1, will exist if the following
problem has a feasible solution:

min
M,ν,µ2,s0,L

µ2

subject to ∀(‖w‖ ≤ ηw, ‖v‖ ≤ ηv, ‖x̃0‖ ≤ µ1,
i ∈ {i : σ∗(i) = 0}) :
‖x̃‖ ≤ µ2, ‖RT x̃‖ ≤ µ1,
x̃ = Θw + Ψv + Ξx̃0 + Υs0 + Eν,
MΛi = 0, LΛi = 0 and ν>Λi = 0,

(12)

where Λi = bi⊗ Ip with bi ∈ RT being the i-th basis vector
in RT , while RT , Θ, Ψ, Ξ and Υ are defined in Theorem 1.

Proof. The proof is almost the same as the proof to Theorem
1 besides additional constraints introduced to set the i-th
column of matrices M and L, and the i-th row of vector v to
zero, ∀i ∈ {i : σ∗(i) = 0} for when the data is missing. �

The robustification of the formulation in Theorem 2 can
be carried out in the exact same manner as in Proposition
1. In fact, the resulting optimization problem is the same as

in Proposition 1 with the addition of MΛi = 0 and LΛi =
0 for all i ∈ {i : σ∗(i) = 0} as constraints. Moreover,
since the worst-case language L∗ is considered in Theorem
2, the constructed estimator also applies to other fixed-length
languages whose worse-case is L∗.

D. Implementation of the Estimator

The proposed equalized recovery estimator can be utilized
in several different scenarios. First, if the missing data pattern
periodically repeats itself with a period of T steps, then we
can ‘reset’ the time back to k0 every T steps and use the same
estimator with the same gain matrices L, M and ν, since the
proposed estimator enforces that the estimation error bound
at the end of the horizon is no more than the bound at the
start of the horizon.

On the other hand, when there is no missing data for
certain time intervals, we can simply use an equalized
performance estimator, which is essentially the equalized
recovery estimator with T = 1 (cf. [8] for its precise defini-
tion). In addition, we can apply the equalized performance
estimator to guarantee the bounded estimation error level
until a missing data is observed, after which we immediately
switch to an equalized recovery estimator (with a language
where the first data is missing). Then, when the estimation
error returns/recovers to the previous level, the equalized
performance estimator can be used again until the next time
a missing data is detected.

IV. EXAMPLE AND DISCUSSION

In this section, using an example of a discrete-time affine
system, we demonstrate capabilities of our proposed equal-
ized recovery estimator in handling missing data patterns
described by a fixed-length language L. In particular, we
compare our simulation results with those from an existing
equalized recovery estimator [7] to show the advantages
of our approach. Moreover, we investigate the influence
of choosing different Luenberger-like observer gain L and
initial state s0 on the estimation error guarantees.

A. Adaptive Cruise Control Example

To validate the capability of achieving equalized recovery
of the proposed estimator, we consider the adaptive cruise
control (ACC) system in [7], which is a discrete-time affine
system model (1) with time-invariant matrices given by:

A =

 0.9964 0 0
−0.4991 1 0.5

0 0 1

 , B =

 0.3643× 10−3

−0.0911× 10−3

0

 ,
C =

[
1 0 0
0 1 0

]
, f =

−0.0028
0.0007

0

 ,W =

 0
0.125
0.5

 , V = Ip.

Throughout the simulation, the value of the equalized recov-
ery level is chosen as µ1 = 1 and the time step for recovering
the estimation error is specified as T = 6, which corresponds
to a time horizon of 3 seconds.

For the simulation, we use YALMIP [14] in the MATLAB
environment with various solvers to solve the problem. For
the nonlinear optimization problem in Proposition 1 (when



Lk and s0 are decision variables), we use IPOPT [15],
a nonlinear programming solver, as our solver of choice
because it exploits the sparsity of the matrices involved to
quickly solve the problem. When we fix the values of L and
s0, the equalized estimator design problem becomes an LP
problem, and in this case, we also use the Gurobi solver [16]
to illustrate the influence of solver choices on the solutions.

B. Results

First, we consider the perfect scenario with no missing
data. In this case, the fixed-length language is just L = {1T }.
When using the optimization formulation in Theorem 1,
we obtain the optimal value of the intermediate level of
µ2 = 1.05, which is the same as the level obtained by the
estimator in [7]. It can be observed from Figure 1 that the
results of both approaches (when using IPOPT) are very
close to each other. Moreover, the optimizal Luenberger-
like gain is L = [1.31,−1.6; 0.05, 0.51; 0.81,−1.06], which
results in eigenvalues of (A−LC) to be {1.04, 0.07±0.48j},
which shows that (A − LC) need not be stable. Moreover,
the obtained s0 = 10−7[−0.19;−0.24; 0.15] is evaluated by
the solver to be approximately zero.

(a) Proposed Observer (b) Observer from [7]

Fig. 1: Estimation errors with no missing data for 500 runs.

Next, we consider missing data patterns that satisfy the
language L = {101111, 110111}. It is clear from its defini-
tion in Section III-C that the worst-case language is L∗ =
{100111}. Solving the optimization problem in Theorem 2
with this worst-case language, we get the same optimal value
of µ2 = 1.05 with L = [0.76, 0.04; 0.11, 1.97; 0.8, 1.97]
that makes the eigenvalue locations to be λ(A − LC) =
{−0.09, 0.18±0.07j} and s0 = 10−7[0.08;−0.1;−0.1] that
is also close to zero. As shown in Figure 2, comparing
the proposed approach with the one in [7] under the same
missing data scenario, we see that, using our approach, the
optimal intermediate level µ2 remains the same as in the no
missing data scenario, while the approach in [7] computes
a larger µ2. This example suggests that the proposed state
augmentation approach has additional ‘degrees of freedom’
(with more states and gain matrices) when compared with
the approach in [7], which enables our approach to obtain a
smaller µ2.

C. Discussion

Next, we discuss the effects of varying the eigenvalues
of the Luenberger-like observer state matrix A − LC by
fixing Luenberger-like gain L and value of s0 (such that the

(a) Proposed Observer with miss-
ing data at k = 2

(b) Observer from [7] with miss-
ing data at k = 2

(c) Proposed Observer with miss-
ing data at k = 3

(d) Observer from [7] with miss-
ing data at k = 3

Fig. 2: Estimation errors with missing data and recovery
time T = 6 for 500 runs (using “worst-case” language with
missing data at both k = 2 and k = 3).

optimization problem in Proposition 1 becomes a linear pro-
gramming (LP) problem) on the overall estimator guarantee
in terms of the minimum value of µ2.

First, to see the effect of s0 on the estimator guarantees,
we compute the optimal intermediate level µ2 with respect
to different s0. We observed (plots omitted for brevity) that
varying s0 does not affect the optimal value of µ2 for
any chosen L. In addition, although varying s0 results in
different optimal matrices M and ν for the causal output
error injection term ue, it does not affect the resulting true
estimation error x̃ = x − x̂. Thus, without any loss of
optimality, we can set s0 as a constant (e.g., s0 = 0) instead
of including it as a decision variable in Proposition 1.

Then, fixing s0 = 0, we investigate the effect of varying
the Luenberger-like gain L, and hence, the eigenvalues of
the Luenberger observer error (A − LC) (as an augmented
new system state) on the optimal intermediate level µ2. As
before, we consider the worst-case language L∗ = {100111}.
In particular, we vary L such that (A − LC) has one
eigenvalue at 0 and a pair of complex conjugate eigenvalues
at r(cos(θ) ± j sin(θ)) with r ∈ [0, 1.5] and θ ∈ [0, π], and
compute the optimal intermediate level µ2 for each L. The
trend obtained from solving the problem is shown in Figure
3, from which we see that the value of µ2 does not change in
the blue area in Figure 3a. Moreover, we observe the same
trend for its projection onto the real axis in Figure 3b, where
µ2 does not change for real eigenvalues varying from -0.7143
to 0.9286. This implies that we can fix the Luenberger-like
gain L through eigenvalue placement such that the spectral
radius of (A − LC) is small enough to obtain the optimal
estimator guarantee instead of optimizing it, which simplifies
the optimization problem in Proposition 1 to an LP problem.



(a) Heat map of µ2 values with vary-
ing complex eigenvalue locations (Blue:
µ2 = 1.05, Yellow: µ2 > 1.05).

(b) Projection of Figure
3a with Im(λ) = 0.

Fig. 3: Effects of eigenvalue location on optimal µ2.

Finally, it is also interesting to note that the use of different
solvers can result in different actual estimation error x̃, even
though the optimal intermediate level µ2 remains the same,
as we would expect. Specifically, when we fix the values
of L and s0, we have an LP problem and both the IPOPT
and Gurobi solvers can be applied. Our simulation results
(not depicted for brevity) show that IPOPT yields a lower
actual estimation error x̃ than Gurobi and the optimal values
of ν and M for the two solvers are different, although their
optimal intermediate levels µ2 are identical. This observation
can be attributed to the fact that Problem 1 may have
multiple minimizers that result in the same optimal µ2 (i.e,
the solution is not unique), thus different solvers may select
a different optimal solution that leads to different actual
estimation errors x̃.

V. CONCLUSION

This paper considered the equalized recovery estimator
design problem for discrete-time time-varying affine systems
in the presence of missing data, where the missing data
model is expressed by a fixed-length language that consists
of a set of missing data patterns. First, for the case with no
missing data, the system state estimate is augmented with
a Luenberger-like observer error, and using this augmented
system, we formulate the estimator design problem as a non-
convex but sparse optimization problem. Then, an extension
is presented when there is missing data, where a robust
solution is provided for the worst-case language. Future
work will explore the handling of communication delays and
missing data when designing equalized recovery estimators.

REFERENCES

[1] R. E. Kalman and R. S. Bucy. New results in linear filtering and
prediction theory. Journal of Basic Engineering, 83(3):95–108, 1961.

[2] D. G. Luenberger. Observers for multivariable systems. IEEE
Transactions on Automatic Control, 11(2):190–197, 1966.

[3] J. S. Shamma and K. Tu. Set-valued observers and optimal disturbance
rejection. IEEE Transactions on Automatic Control, 44(2):253–264,
1999.

[4] M. Milanese and A. Vicino. Optimal estimation theory for dynamic
systems with set membership uncertainty: An overview. Automatica,
27(6):997–1009, 1991.

[5] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry. Kalman filtering with intermittent observations. IEEE
Transactions on Automatic Control, 49(9):1453–1464, 2004.

[6] S. Smith and P. Seiler. Estimation with lossy measurements: Jump
estimators for jump systems. IEEE Transactions on Automatic Control,
48(12):1453–1464, 2003.

[7] K. J. Rutledge, S. Z. Yong, and N. Ozay. Optimization-based design of
bounded-error estimators robust to missing data. In IFAC Conference
on Analysis and Design of Hybrid Systems, pages 157–162, 2018.

[8] F. Blanchini and M. Sznaier. A convex optimization approach to
synthesizing bounded complexity `∞ filters. IEEE Transactions on
Automatic Control, 57(1):216–221, 2012.

[9] O. Mickelin, N. Ozay, and R. M. Murray. Synthesis of correct-by-
construction control protocols for hybrid systems using partial state
information. In American Control Conference, pages 2305–2311,
2014.

[10] J. Skaf and S. P. Boyd. Design of affine controllers via convex
optimization. IEEE Transactions on Automatic Control, 55(11):2476–
2487, 2010.

[11] P. J. Goulart and E. C. Kerrigan. Output feedback receding horizon
control of constrained systems. International Journal of Control,
80(1):8–20, 2007.

[12] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applica-
tions of robust optimization. SIAM Review, 53(3):464–501, 2011.

[13] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.
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APPENDIX: MATRIX DEFINITIONS

The matrices given in Theorem 1 are defined as follows:

W =


W0 0 · · · 0

0 W1
. . .

...
...

. . . . . . 0
0 · · · 0 WT−1

 , V =


V0 0 · · · 0

0 V1
. . .

...
...

. . . . . . 0
0 · · · 0 VT−1

 ,

C =


C0 0 · · · 0 0

0 C1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 CT−1 0

 , L =


L0 0 · · · 0

0 L1
. . .

...
...

. . . . . . 0
0 · · · 0 LT−1

 ,

M =


M(0,0) 0 · · · 0

M(1,0) M(1,1)

. . .
...

...
...

. . . 0
M(T−1,0) M(T−1,1) · · · M(T−1,T−1)

 ,

A =


In
A1

0
...

AT−1
0

AT0

 , Φ =


In
Φ1

0
...

ΦT−1
0

ΦT0

 ,

E=



0 0 0 · · · 0
A1

1 0 0 · · · 0

A2
1 A2

2 0 · · ·
...

...
...

. . . . . . 0
...

...
. . . 0

AT1 AT2 · · · · · · ATT


, Γ=



0 0 0 · · · 0
Φ1

1 0 0 · · · 0

Φ2
1 Φ2

2 0 · · ·
...

...
...

. . . . . . 0
...

...
. . . 0

ΦT1 ΦT2 · · · · · · ΦTT


,

where Aki = Ak−1Ak−2...Ai, Φki = Φk−1Φk−2...Φi and
Φk = Ak − LkCk.


