
QUATERNION IDENTITIES

John L. Crassidis∗

The purpose of this work is to maintain a collection of quaternion
identities, which can be used for control and estimation purposes.

CROSS PRODUCT IDENTITIES

The matrix cross product is a skew-symmetric matrix, which is defined as

[u×] ≡

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (1)

with u×v = [u×]v. Since [u×]u = 0, then [u×] must be singular. The eigenvalues of [u×]
are given by λ1 = 0 and λ2, 3 = ±||u||j. Some useful identities for cross product matrix
include:1

[u×]T = −[u×] (2a)

[u×]v = −[v×]u (2b)

[u×][v×] = −
(
uTv

)
I3×3 + vuT (2c)

[u×]3 = −
(
uTu

)
[u×] (2d)

[u×][v×]− [v×][u×] = vuT − uvT = [(u× v)×] (2e)

uvT [w×] + [w×]vuT = −[{u× (v ×w)}×] (2f)

(I3×3 − [u×])(I3×3 + [u×])−1 =
1

1 + uTu

{
(1− uTu)I3×3 + 2uuT − 2[u×]

}
(2g)

||u× v||2I3×3 =
(
uTu

)
vvT +

(
vTv

)
uuT −

(
uTv

) (
uvT + vuT

)
+ (u× v) (u× v)T

(2h)

adj ([u×]) = uuT (2i)

where In×n is an n × n identity matrix (0n×n is an n × n matrix of zeros). Other useful
properties are listed here as well. If M is an arbitrary square matrix, then

M [u×] + [u×]MT + [(MTu)×] = Tr(M)[u×] (3a)

M [u×]MT = [{adj(MT )u}×] (3b)

[{(Mu)× (Mv)}×] = M [(u× v)×]MT (3c)

(Mu)× (Mv) = adj(MT ) (u× v) (3d)

[u×][Tr(M)I3×3 −M ][u×]T = (uTMu)I3×3 − uuTMT −MTuuT + (uTu)MT (3e)

where Tr denotes the trace operator and adj denotes the adjoint matrix. If we write M in
terms of its columns

M =
[
u1 u2 u3

]
(4)
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then
det(M) = uT

1 (u2 × u3) (5)

where det denotes the determinant. Also, if A is an orthogonal matrix with determinant 1,
then from we have Eq. (3b)

A[u×]AT = [(Au)×] (6)

These cross product relations are useful to prove many of the quaternion identities shown
in this document.

QUATERNION KINEMATICS

One of the most useful attitude parameterization is given by the quaternion.2 Like the
Euler axis/angle parameterization, the quaternion is also a four dimensional vector, defined
by as

q ≡
[
ϱ
q4

]
(7)

with

ϱ ≡
[
q1 q2 q3

]T
= ê sin(ϑ/2) (8a)

q4 = cos(ϑ/2) (8b)

where ê is a unit vector corresponding to the axis of rotation and ϑ is the angle of rotation.
Since a four-dimensional vector is used to describe three-dimensions, the quaternion com-
ponents cannot be independent of each other. The quaternion satisfies a single constraint
given by qTq = 1, which is analogous to requiring that ê be a unit vector in the Euler
axis/angle parameterization. Define the following matrix:

A(q) ≡ ΞT (q)Ψ(q)

= (q4I3×3 − [ϱ×])2 + ϱϱT

= (q24 − ϱTϱ)I3×3 + 2ϱϱT − 2q4[ϱ×]

(9)

where the matrices Ξ(q) and Ψ(q) are given by

Ξ(q) ≡
[
q4I3×3 + [ϱ×]

−ϱT

]
(10a)

Ψ(q) ≡
[
q4I3×3 − [ϱ×]

−ϱT

]
(10b)

Note that if qTq = 1, then A(q) is the attitude matrix. An advantage to using quaternions
is that the attitude matrix is quadratic in the parameters and also does not involve tran-
scendental functions. For small angles the vector part of the quaternion is approximately
equal to half angles, so that ϱ ≈ α/2 and q4 ≈ 1, where α is a vector of small angle
rotations.

The quaternion kinematics equation is given by

d

dt
q =

1

2
Ξ(q)ω =

1

2
Ω(ω)q (11)
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where

Ω(ω) ≡

−[ω×] ω

−ωT 0

 (12)

Also, another useful identity is given by

Ψ(q)ω = Γ(ω)q (13)

where

Γ(ω) ≡

[ω×] ω

−ωT 0

 (14)

The inverse kinematics is given by multiplying Eq. (11) by ΞT (q), and using the identity
in Eq. (16a), leading to

ω = 2ΞT (q) q̇ (15)

A major advantage of using quaternions is that the kinematics equation is linear in the
quaternion and is also free of singularities.

THE MATRICES Ξ(q), Ψ(q), Ω(ω) AND Γ(ω)

The matrix Ξ(q) obeys the following helpful relations:

ΞT (q)Ξ(q) = (qTq)I3×3 (16a)

Ξ(q)ΞT (q) = (qTq)I4×4 − qqT (16b)

ΞT (q)q = 03×1 (16c)

ΞT (q)λ = −ΞT (λ)q for any λ4×1 (16d)

Note that Ψ(q) also follows the same identities shown in Eq. (16). The matrices Ω(ω) and
Γ(ω) follow

Ω2(ω) = Γ2(ω) = −(ωTω)I4×4 (17)

The determinants of Ω(ω) and Γ(ω) are given by

det[Ω(ω)] = det[Γ(ω)] = (ωTω)2 (18)

The eigenvalues of both Ω(ω) and Γ(ω) are given by λ1, 2, 3, 4 = ±||ω||j. Also, Ω(b) and
Γ(r) commute for any b and r, so that

Ω(b)Γ(r) = Γ(r)Ω(b) (19)

Equation (17) is useful to simplify the derivative of Eq. (11), with

q̈ =
1

2
Ξ(q)ω̇ +

1

2
Ω(ω)q̇

=
1

2
Ξ(q)ω̇ − 1

4
(ωTω)q

(20)

where Eq. (11) has been used in Eq. (20). Note that the dynamics equation3 for ω̇ can be
substituted into Eq. (20), which relates the quaternion to a torque input.
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The identities in Eqs. (9), (11) and (13) are very useful in attitude determination.
Consider the following identity:

bTA(q)r = bTΞT (q)Ψ(q)r

= −qTΩ(b)Γ(r)q
(21)

Hence, the matrix Ω(b)Γ(r) can used to form Davenport’s K matrix:4

K ≡

B +BT − Tr(B)I3×3 (b× r)

(b× r)T Tr(B)

 = −Ω(b)Γ(r) (22)

where
B ≡ b rT (23)

Another interesting approach involves writing Eq. (21) as

bTA(q)r = −qTΩ(b)Γ(r)q

= qT
[
||b||||r||I4×4 − CTC

]
q

(24)

with

C =
||b||1/2||r||1/2√

2

[(b̂+ r̂)×] −(b̂− r̂)

(b̂− r̂)T 0

 (25)

where b̂ = b/||b|| and r̂ = r/||r||. This can be used to develop a square-root attitude
determination algorithm.5 Another identity closely related to Eq. (24) is given by6

Ξ(q)b−Ψ(q)r =

−[(b+ r)×] (b− r)

−(b− r)T 0

q (26)

Also, using specific relationships of r to b, the following identities are true:7

2(qTq)−1Ξ(q)[b×]ΞT (q) =

[(b+ r)×] −(b− r)

(b− r)T 0

 , with r = (qTq)−1AT (q)b (27a)

2(qTq)−1Ψ(q)[b×]ΨT (q) =

[(b+ r)×] (b− r)

−(b− r)T 0

 , with r = (qTq)−1A(q)b (27b)

Equations (26) and (27) are derived from a measurement model that is linear in the quater-
nion.

Some useful identities are given by1

Ω(ω)Ξ(q) = −Ξ(q)[ω×]− qωT (28a)

Γ(ω)Ψ(q) = Ψ(q)[ω×]− qωT (28b)
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Other identities are given by

Ω(ω)Ψ(q) = [−q4I4×4 +Ω(ϱ)]

[ω×]

ωT

−

2(ϱTω)I3×3

0T3×1


= −(qTq)−1

{
Ξ(q)[ω×] + qωT

}
A(q)

(29a)

Γ(ω)Ξ(q) = [−q4I4×4 + Γ(ϱ)]

−[ω×]

ωT

−

2(ϱTω)I3×3

0T3×1


= (qTq)−1

{
Ψ(q)[ω×]− qωT

}
AT (q)

(29b)

More identities are given by

ΞT (q)Ω(ω)Ξ(q) = −(qTq)[ω×] (30a)

ΨT (q)Γ(ω)Ψ(q) = (qTq)[ω×] (30b)

ΞT (q)Γ(ω)Ξ(q) = [A(q)ω×] (30c)

ΨT (q)Ω(ω)Ψ(q) = −[AT (q)ω×] (30d)

Ξ (Γ(ω)q) = Γ(ω)Ξ(q) (30e)

Ψ (Ω(ω)q) = Ω(ω)Ψ(q) (30f)

Ξ (Ω(ω)q) = (qTq)−1Γ
(
AT (q)ω

)
Ξ(q) = −qωT + Ξ(q)[ω×] (30g)

Ψ (Γ(ω)q) = (qTq)−1Ω(A(q)ω)Ψ(q) = −
{
qωT +Ψ(q)[ω×]

}
(30h)

Ω(b× r) =
1

2
[Ω(r)Ω(b)− Ω(b)Ω(r)] (30i)

Γ(b× r) =
1

2
[Γ(b)Γ(r)− Γ(r)Γ(b)] (30j)[(

ΞT (q)K q
)
×
]
= A(q)BT −BAT (q) (30k)

ΞT (q)K q = [b×]A(q)r (30l)

ΨT (q)K q = −[r×]AT (q)b (30m)

where K and B are given by Eqs. (22) and (23), respectively. Also, Eqs. (30i)-(30m) are
valid for any 3 × 1 vectors b and r. Let’s see how the identities in Eq. (30) can be used
to derive the sensitivity matrix used in the extended Kalman filter.8 Our goal is to find an
expression for

H ≡ ∂

∂q

[
(qTq)−1A(q)r

]
=

∂

∂q

[
(qTq)−1ΞT (q)Γ(r)q

]
(31)

where the identities in Eqs. (9) and (13) have been used in Eq. (31). Evaluating the partial
in Eq. (31) gives

H = (qTq)−1

{
∂

∂q

[
ΞT (q)

]}
Γ(r)q+ (qTq)−1ΞT (q)Γ(r)− 2 (qTq)−2ΞT (q)Γ(r)qqT (32)

Using Eqs. (16d) and (30e) in Eq. (32) leads to

H = (qTq)−1ΞT (q)Γ(r) + (qTq)−1ΞT (q)Γ(r)− 2 (qTq)−2ΞT (q)Γ(r)qqT (33)
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Assuming that qTq = 1 and collecting terms yields

H = 2ΞT (q)Γ(r)
[
I4×4 − qqT

]
= 2ΞT (q)Γ(r)Ξ(q)ΞT (q) (34)

where Eq. (16b) has been used in Eq. (34). Using Eq. (30c) in Eq. (34) gives

H = 2 [A(q)r×] ΞT (q) (35)

Note that the matrix [A(q)r×] is used in the multiplicative filter.8

SUCCESSIVE ROTATIONS

Another advantage of quaternions is that successive rotations can be accomplished using
quaternion multiplication. Here we adopt the convention of Lefferts, Markley, and Shuster8

who multiply the quaternions in the same order as the attitude matrix multiplication (in
contrast to the usual convention established by Hamiliton2). Suppose we wish to perform
a successive rotation. This can be written using

A(q̄)A(q) = A(q̄⊗ q) (36)

The composition of the quaternions is bilinear, with1

q̄⊗ q = QL(q̄)q = QR(q) q̄ (37)

where

QR(q) ≡
[
Ξ(q) q

]
(38a)

QL(q) ≡
[
Ψ(q) q

]
(38b)

Note that QR(q) and QL(q) are orthogonal matrices if qTq = 1, so that

QR(q)Q
T
R(q) = (qTq)I4×4 (39a)

QL(q)Q
T
L(q) = (qTq)I4×4 (39b)

The matrices Ω(ω) and Γ(ω) can be written as

Ω(ω) = QL

([
ω
0

])
(40a)

Γ(ω) = QR

([
ω
0

])
(40b)

Two identities are given as follows:

QL(q) Γ(ω) = Γ(ω)QL(q) (41a)

QR(q)Ω(ω) = Ω(ω)QR(q) (41b)

The conjugate quaternion is given by

q∗ ≡
[
−ϱ
q4

]
= T q (42)
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which is directly related to the complex conjugate,9 where

T ≡

−I3×3 03×1

0T3×1 1

 (43)

Note that T−1 = T . The inverse quaternion is defined by

q−1 =
q∗

||q||
(44)

Note that q⊗ q−1 =
[
0 0 0 1

]T ≡ ITq if qTq = 1, which is the identity quaternion (if q

is not normalized then q⊗q∗ =
[
0 0 0 (qTq)

]T
). The quaternion conjugate and inverse

are very useful since

A−1(q/||q||) = AT (q/||q||) = A (q∗/||q∗||) (45)

The quaternion and its conjugate also follow

q = QL(q)Iq = QR(q)Iq (46a)

q∗ = QL(q
∗)Iq = QR(q

∗)Iq (46b)

Some useful identities are given by

QR(q
∗) = QT

R(q) (47a)

QL(q
∗) = QT

L(q) (47b)

and

T QL(q) = QR(q
∗)T (48a)

QL(q)T = T QR(q
∗) (48b)

Other useful identities are given by1

[T QL(q)]
2 = [QL(q)T ]

2 = QL(q)QR(q
∗) = QR(q

∗)QL(q) =

A(q) 03×1

0T3×1 (qTq)

 (49a)

QL(q
∗)Ξ(q)A(q) = (qTq)2

I3×3

0T3×1

 (49b)

QR(q
∗)Ψ(q)AT (q) = (qTq)2

I3×3

0T3×1

 (49c)
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More identities are given by

QL(q)QR(q̄) = QR(q̄)QL(q) (50a)

QR(Iq) = QL(Iq) = I4×4 (50b)

QL(q̄⊗ q) = QL(q̄)QL(q) (50c)

QR(q̄⊗ q) = QR(q)QR(q̄) (50d)

Q−1
L (q) = (qTq)−1QL(q

∗) (50e)

Q−1
R (q) = (qTq)−1QR(q

∗) (50f)

QL(q)Ω(r)QL(q
∗) = Ω (A(q)r) (50g)

QR(q
∗)Γ(r)QR(q) = Γ (A(q)r) (50h)

and

QL(q⊗ q̄) = (qTq)−1QL(q)QL(q̄⊗ q)QT
L(q)

= (q̄T q̄)−1QT
L(q̄)QL(q̄⊗ q)QL(q̄)

(51a)

QR(q⊗ q̄) = (qTq)−1QT
R(q)QR(q̄⊗ q)QR(q)

= (q̄T q̄)−1QR(q̄)QR(q̄⊗ q)QT
R(q̄)

(51b)

A common quantity used in estimation and control is the error quaternion between two
quaternions, denoted by

δq ≡
[
δϱ
δq4

]
= q⊗ q̄∗ (52)

where q̄ is the estimated quaternion in estimation theory or the desired quaternion in control
theory. Using the rules of quaternion multiplication, δϱ and δq4 can be shown to be given
by

δϱ = ΞT (q̄)q (53a)

δq4 = q̄Tq (53b)

Note that as q̄ approaches q, then δϱ approaches zero. Another error quaternion is defined
by

δqI ≡
[
δϱI
δq4

]
= q̄∗ ⊗ q = (q̄T q̄)−1(q̄∗ ⊗ δq⊗ q̄) (54a)

δq = (q̄T q̄)−1(q̄⊗ δqI ⊗ q̄∗) (54b)

where δqI is used to denote a “space-referenced error quaternion” vector. Using the rules
of quaternion multiplication, δϱI can be shown to be given by

δϱI = ΨT (q̄)q (55)

Relationships between δϱ and δϱI are given by

δϱ = (qTq)−1A(q)δϱI = (q̄T q̄)−1A(q̄)δϱI (56a)

δϱI = (qTq)−1AT (q)δϱ = (q̄T q̄)−1AT (q̄)δϱ (56b)
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Equation (56) clearly shows the meaning of the space-referenced error quaternion. Identities
involving ΞT (q̄)Ξ(q) and ΨT (q̄)Ψ(q) are given by10

ΞT (q̄)Ξ(q) = δq4I3×3 + [δϱ×] (57a)[
ΞT (q̄)Ξ(q)

]−1
= (δqTδq)−1

[
δq4I3×3 − [δϱ×] +

δϱ δϱT

δq4

]
(57b)

ΨT (q̄)Ψ(q) = δq4I3×3 − [δϱI×] (57c)[
ΨT (q̄)Ψ(q)

]−1
= (δqT

I δqI)
−1

[
δq4I3×3 + [δϱI×] +

δϱIδϱ
T
I

δq4

]
(57d)[

ΞT (q̄)Ξ(q)
]−1

ΞT (q)Ξ(q̄) = (qTq)−1(q̄T q̄)−1A(q)AT (q̄) (57e)[
ΨT (q̄)Ψ(q)

]−1
ΨT (q)Ψ(q̄) = (qTq)−1(q̄T q̄)−1AT (q)A(q̄) (57f)

Note that the inverses of ΞT (q̄)Ξ(q) and ΨT (q̄)Ψ(q) are singular for 180 degree errors.
Equation (57) can used to develop a control law that produces linear error dynamics.10,11

Some other identities involving these inverses are given by[
ΞT (q̄)Ξ(q)

]−1
δϱ =

δϱ

δq4
(58a)[

ΨT (q̄)Ψ(q)
]−1

δϱI =
δϱI
δq4

(58b)

2
[
ΞT (q̄)Ξ(q)

]−1
ΞT ( ˙̄q)q = −(qTq)−1(q̄T q̄)−1δA ω̄ (58c)

2
[
ΞT (q̄)Ξ(q)

]−1
ΞT ( ˙̄q)Ω(ω)q = (qTq)−1(q̄T q̄)−1

{
[ω×]δA ω̄ +

ωT δA ω̄

δq4
δϱ

}
(58d)

2
[
ΞT (q̄)Ξ(q)

]−1
ΞT (¨̄q)q = −(qTq)−1(q̄T q̄)−1δA ˙̄ω − ω̄T ω̄

2δq4
δϱ (58e)

where δA ≡ A(q)AT (q̄). Note that if the quaternions are normalized, then Eqs. (58a) and
(58b) are each equivalent to a Rodrigues vector or Gibbs vector.

Other relations involving the quaternion conjugate are given by1[
A(q)ω

0

]
= q⊗

[
ω
0

]
⊗ q∗ (59a)[

AT (q)ω
0

]
= q∗ ⊗

[
ω
0

]
⊗ q (59b)

QL(q)Ω(ω)QL(q
∗) = Ω (A(q)ω) (59c)

QL(q
∗)Ω(ω)QL(q) = Ω

(
AT (q)ω

)
(59d)

QR(q
∗)Γ(ω)QR(q) = Γ (A(q)ω) (59e)

QR(q)Γ(ω)QR(q
∗) = Γ

(
AT (q)ω

)
(59f)

Identities involving QL(q⊗ q̄∗) are given by

ΨT (q)QL(q⊗ q̄∗)Ψ(q̄) = (qTq)(q̄T q̄)I3×3 (60a)

QL(q⊗ q̄∗) = (qTq)−1(q̄T q̄)−1Ξ(q)A(q⊗ q̄∗)ΞT (q̄) + q q̄T (60b)
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QL(q⊗ q̄∗)Ξ(q̄) = (qTq)−1Ξ(q)A(q⊗ q̄∗) (60c)

ΞT (q)QL(q⊗ q̄∗) = (q̄T q̄)−1A(q⊗ q̄∗)ΞT (q̄) (60d)

ΞT (q)QL(q⊗ q̄∗)Ξ(q̄) = A(q⊗ q̄∗) (60e)

Identities involving QR(q̄
∗ ⊗ q) are given by

ΞT (q)QR(q̄
∗ ⊗ q)Ξ(q̄) = (qTq)(q̄T q̄)I3×3 (61a)

QR(q̄
∗ ⊗ q) = (qTq)−1(q̄T q̄)−1Ψ(q)A(q∗ ⊗ q̄)ΨT (q̄) + q q̄T (61b)

QR(q̄
∗ ⊗ q)Ψ(q̄) = (qTq)−1Ψ(q)A(q∗ ⊗ q̄) (61c)

ΨT (q)QR(q̄
∗ ⊗ q) = (q̄T q̄)−1A(q∗ ⊗ q̄)ΨT (q̄) (61d)

ΨT (q)QR(q̄
∗ ⊗ q)Ψ(q̄) = A(q∗ ⊗ q̄) (61e)

Equation (51b) can be used to replace QR(q̄
∗ ⊗ q) with QR(q⊗ q̄∗) if needed.

Some interesting multiplication properties are given by[
ω
0

]
⊗ q = Ω(ω)q = Ξ(q)ω (62a)

q⊗
[
ω
0

]
= Γ(ω)q = Ψ(q)ω (62b)

The quaternion conjugate also obeys the same relationships:[
ω
0

]
⊗ q∗ = Ω(ω)q∗ = Ξ(q∗)ω (63a)

q∗ ⊗
[
ω
0

]
= Γ(ω)q∗ = Ψ(q∗)ω (63b)

If we define ωI ≡ AT (q)ω, which is used to denote the “space-referenced angular velocity”
vector in kinematical equations, then the following relationships can be derived:

q∗ ⊗
[
ω
0

]
= (qTq)−1

[
ωI
0

]
⊗ q∗ (64a)

Γ(ω)q∗ = (qTq)−1Ω(ωI)q
∗ (64b)

Ψ(q∗)ω = (qTq)−1Ξ(q∗)ωI (64c)

and [
ω
0

]
⊗ q = (qTq)−1q⊗

[
ωI
0

]
(65a)

Ω(ω)q = (qTq)−1Γ(ωI)q (65b)

Ξ(q)ω = (qTq)−1Ψ(q)ωI (65c)

Note that the matrix Γ(ω) is not equivalent to (qTq)−1Ω(ωI), and Ω(ω) is not equivalent to
(qTq)−1Γ(ωI) in general. As with Eq. (62), the relationships in Eqs. (63) and (64) are often
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used in estimation theory.8 Also, if we define ωB ≡ A(q)ω, then the following relationships
can be derived: [

ω
0

]
⊗ q∗ = (qTq)−1q∗ ⊗

[
ωB
0

]
(66a)

Ω(ω)q∗ = (qTq)−1Γ(ωB)q
∗ (66b)

Ξ(q∗)ω = (qTq)−1Ψ(q∗)ωB (66c)

and

q⊗
[
ω
0

]
= (qTq)−1

[
ωB
0

]
⊗ q (67a)

Γ(ω)q = (qTq)−1Ω(ωB)q (67b)

Ψ(q)ω = (qTq)−1Ξ(q)ωB (67c)

Note that the matrix Ω(ω) is not equivalent to (qTq)−1Γ(ωB), and Γ(ω) is not equivalent
to (qTq)−1Ω(ωB) in general. We also should note that ωB is not referred to as the “body-
referenced angular velocity” since ω is most often already given in body coordinates. The
vector ωB is merely another rotated vector from ω.

MORE KINEMATICS

In this section, we will show more kinematically relationships used for estimation and
control purposes. The first involves the kinematical relationship for δq. Unless otherwise
stated, all quaternions used in this section are assumed to be normalized. Taking the time
derivative of Eq. (52) gives

d

dt
δq =

d

dt
[q]⊗ q̄−1 + q⊗ d

dt

[
q̄−1

]
(68)

We now need to determine an expression for the derivative of q̄−1. The estimated/desired
quaternion kinematics model follows

d

dt
q̄ =

1

2
Ξ(q̄)ω̄ =

1

2
Ω(ω̄)q̄ (69)

Taking the time derivative of q̄⊗ q̄−1 =
[
0 0 0 1

]T
gives

d

dt
[q̄]⊗ q̄−1 + q̄⊗ d

dt

[
q̄−1

]
= 0 (70)

Substituting Eq. (69) into Eq. (70) gives

1

2
Ω(ω̄)q̄⊗ q̄−1 + q̄⊗ d

dt

[
q̄−1

]
= 0 (71)

Since q̄⊗ q̄−1 =
[
0 0 0 1

]T
, and using the identity in Eq. (62a), then Eq. (71) reduces

down to
1

2

[
ω̄
0

]
+ q̄⊗ d

dt

[
q̄−1

]
= 0 (72)
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Solving Eq. (72) for the derivative of q̄−1 yields

d

dt

[
q̄−1

]
= −1

2
q̄−1 ⊗

[
ω̄
0

]
= −1

2
Γ(ω̄)q̄−1 = −1

2
Ψ(q̄−1)ω̄ (73)

where the identities in Eq. (63b) are used in Eq. (73).

Substituting Eqs. (73) and (11) into Eq. (68), and using the definition of the error
quaternion in Eq. (52) gives

d

dt
δq =

1

2

{[
ω
0

]
⊗ δq− δq⊗

[
ω̄
0

]}
(74)

We now define the following error angular velocity: δω ≡ ω− ω̄. Substituting ω = ω̄+ δω
into Eq. (74) leads to

d

dt
δq =

1

2

{[
ω̄
0

]
⊗ δq− δq⊗

[
ω̄
0

]}
+

1

2

[
δω
0

]
⊗ δq (75)

Next, using the helpful identities in Eq. (62), replacing q with δq, leads to

d

dt
δq = −

[
[ω̄×]δϱ

0

]
+

1

2

[
δω
0

]
⊗ δq (76)

Equation (76) can be written as

d

dt
δϱ = −[ω̄×]δϱ+

1

2
(δq4δω − [δω×]δϱ) (77a)

d

dt
δq4 = −δωTδϱ (77b)

Equation (77a) can also be derived by taking the derivative of Eq. (53a), which leads to

d

dt
δϱ =

1

2

[
ΞT (q̄)Ξ(q)ω − ΞT (q)Ξ(q̄)ω̄

]
(78)

Equation (57a) can used to prove that Eq. (77a) is equivalent to Eq. (78). This identity is
valid for non-normalized quaternions as well.

Another useful kinematical equation is the derivative of δqI , which follows

d

dt
δqI =

[
[ω̄I×]δϱI

0

]
+

1

2
δqI ⊗

[
δωI
0

]
(79)

where ω̄I ≡ AT (q̄)ω̄ and δωI ≡ ωI − ω̄I . Equation (79) can be written as

d

dt
δϱI = [ω̄I×]δϱI +

1

2
(δq4δωI + [δωI×]δϱI) (80a)

d

dt
δq4 = −δωT

I δϱI (80b)
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Equation (80a) can also be derived by taking the derivative of Eq. (55), which leads to

d

dt
δϱI =

1

2

[
ΨT (q̄)Ψ(q)ωI −ΨT (q)Ψ(q̄)ω̄I

]
(81)

Equation (57c) can used to prove that Eqn. (80a) is equivalent to Eq. (81). This identity
is valid for non-normalized quaternions as well. By comparing Eq. (77b) with (80b) we see
that δωTδϱ = δωT

I δϱI , which is true only if the quaternions are normalized. If this is not
true, then the following identity can be used:

δωTδϱ =
[
(qTq)−1AT (q)ω − (q̄T q̄)−1AT (q̄)ω̄

]T
δϱI (82)

The quaternion kinematics equation in Eq. (11) can also be written as

d

dt
q =

1

2
Ψ(q)ωI =

1

2
Γ(ωI)q (83a)

ωI = 2ΨT (q) q̇ (83b)

where the definition of the attitude matrix in Eq. (9) can be used to easily prove Eq. (83a).
The derivative of the matrix Ξ(q) is given by1

d

dt
Ξ(q) =

1

2
Γ(ωI)Ξ(q) (84a)

=
1

2
Ω(ω)Ξ(q) + Ξ(q)[ω×] (84b)

= −1

2
qωT +

1

2
Ξ(q)[ω×] (84c)

The derivative of the matrix Ψ(q) is given by

d

dt
Ψ(q) =

1

2
Ω(ω)Ψ(q) (85a)

=
1

2
Γ(ωI)Ψ(q)−Ψ(q)[ωI×] (85b)

= −1

2
qωT

I − 1

2
Ψ(q)[ωI×] (85c)

Equations (84) and (85) lead to some more identities that are valid for non-normalized
quaternions:

(qTq)−1Γ(ωI)Ξ(q) = Ω(ω)Ξ(q) + 2Ξ(q)[ω×] (86a)

= −qωT + Ξ(q)[ω×] (86b)

and

Ω(ω)Ψ(q) = (qTq)−1 {Γ(ωI)Ψ(q)− 2Ψ(q)[ωI×]} (87a)

= −(qTq)−1
{
qωT

I +Ψ(q)[ωI×]
}

(87b)

Note the relation of the identities in Eq. (87) to Eq. (29a). Derivatives of the matrices
QL(q) and QR(q) are given by1

d

dt
QL(q) =

1

2
Ω(ω)QL(q) =

1

2
QL(q)Ω(ωI) (88a)

d

dt
QR(q) =

1

2
QR(q)Γ(ω) =

1

2
Γ(ωI)QR(q) (88b)

where the identities in Eqs. (59d) and (59f) have been used in Eq. (88).
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