## ELE539A: Optimization of Communication Systems

 Lecture 2: Convex Optimization and Lagrange DualityProfessor M. Chiang<br>Electrical Engineering Department, Princeton University

February 7, 2007

## Lecture Outline

- Convex optimization
- Optimality condition
- Lagrange dual problem
- Interpretations
- KKT optimality condition
- Sensitivity analysis

Thanks: Stephen Boyd (some materials and graphs from Boyd and Vandenberghe)

## Convex Optimization

A convex optimization problem with variables $x$ :

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1,2, \ldots, p
\end{array}
$$

where $f_{0}, f_{1}, \ldots, f_{m}$ are convex functions.

- Minimize convex objective function (or maximize concave objective function)
- Upper bound inequality constraints on convex functions ( $\Rightarrow$ Constraint set is convex)
- Equality constraints must be affine


## Convex Optimization

- Epigraph form:

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1,2, \ldots, p
\end{array}
$$

- Not in convex optimization form:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & \frac{x_{1}}{1+x_{2}^{2}} \leq 0 \\
& \left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

Now transformed into a convex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

## Locally Optimal $\Rightarrow$ Globally Optimal

Given $x$ is locally optimal for a convex optimization problem, i.e., $x$ is feasible and for some $R>0$,

$$
f_{0}(x)=\inf \left\{f_{0}(z) \mid z \text { is feasible },\|z-x\|_{2} \leq R\right\}
$$

Suppose $x$ is not globally optimal, i.e., there is a feasible $y$ such that $f_{0}(y)<f_{0}(x)$

Since $\|y-x\|_{2}>R$, we can construct a point $z=(1-\theta) x+\theta y$ where $\theta=\frac{R}{2\|y-x\|_{2}}$. By convexity of feasible set, $z$ is feasible. By convexity of $f_{0}$, we have

$$
f_{0}(z) \leq(1-\theta) f_{0}(x)+\theta f_{0}(y)<f_{0}(x)
$$

which contradicts locally optimality of $x$
Therefore, there exists no feasible $y$ such that $f_{0}(y)<f_{0}(x)$

## Optimality Condition for Differentiable $f_{0}$

$x$ is optimal for a convex optimization problem iff $x$ is feasible and for all feasible $y$ :

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0
$$

$-\nabla f_{0}(x)$ is supporting hyperplane to feasible set

Unconstrained convex optimization: condition reduces to:

$$
\nabla f_{0}(x)=0
$$

Proof: take $y=x-t \nabla f_{0}(x)$ where $t \in \mathbf{R}_{+}$. For small enough $t, y$ is feasible, so $\nabla f_{0}(x)^{T}(y-x)=-t\left\|\nabla f_{0}(x)\right\|_{2}^{2} \geq 0$. Thus $\nabla f_{0}(x)=0$

## Unconstrained Quadratic Optimization

Minimize $f_{0}(x)=\frac{1}{2} x^{T} P x+q^{T} x+r$
$P$ is positive semidefinite. So it's a convex optimization problem $x$ minimizes $f_{0}$ iff $(P, q)$ satisfy this linear equality:

$$
\nabla f_{0}(x)=P x+q=0
$$

- If $q \notin \mathcal{R}(P)$, no solution. $f_{0}$ unbounded below
- If $q \in \mathcal{R}(P)$ and $P \succ 0$, there is a unique minimizer $x^{*}=-P^{-1} q$
- If $q \in \mathcal{R}(P)$ and $P$ is singular, set of optimal $x:-P^{\dagger} q+\mathcal{N}(P)$


## Duality Mentality

Bound or solve an optimization problem via a different optimization problem!

We'll develop the basic Lagrange duality theory for a general optimization problem, then specialize for convex optimization

## Lagrange Dual Function

An optimization problem in standard form:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1,2, \ldots, m \\
& h_{i}(x)=0, \quad i=1,2, \ldots, p
\end{array}
$$

Variables: $x \in \mathbf{R}^{n}$. Assume nonempty feasible set
Optimal value: $p^{*}$. Optimizer: $x^{*}$

Idea: augment objective with a weighted sum of constraints
Lagrangian $L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)$
Lagrange multipliers (dual variables): $\lambda \succeq 0, \nu$
Lagrange dual function: $g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)$

## Lower Bound on Optimal Value

Claim: $g(\lambda, \nu) \leq p^{*}, \quad \forall \lambda \succeq 0, \nu$
Proof: Consider feasible $\tilde{x}$ :

$$
L(\tilde{x}, \lambda, \nu)=f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\tilde{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x}) \leq f_{0}(\tilde{x})
$$

since $f_{i}(\tilde{x}) \leq 0$ and $\lambda_{i} \geq 0$
Hence, $g(\lambda, \nu) \leq L(\tilde{x}, \lambda, \nu) \leq f_{0}(\tilde{x})$ for all feasible $\tilde{x}$
Therefore, $g(\lambda, \nu) \leq p^{*}$

## Lagrange Dual Function and Conjugate Function

- Lagrange dual function $g(\lambda, \nu)$
- Conjugate function: $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$

Consider linearly constrained optimization:

$$
\begin{gathered}
\begin{array}{c}
\text { minimize } \quad f_{0}(x) \\
\text { subject to } \quad A x \preceq b \\
C x=d
\end{array} \\
g(\lambda, \nu)=\inf _{x}\left(f_{0}(x)+\lambda^{T}(A x-b)+\nu^{T}(C x-d)\right) \\
=-\quad-b^{T} \lambda-d^{T} \nu+\inf _{x}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x\right) \\
=-b^{T} \lambda-d^{T} \nu-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)
\end{gathered}
$$

## Example

We'll use the simplest version of entropy maximization as our example for the rest of this lecture on duality. Entropy maximization is an important basic problem in information theory:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & A x \preceq b \\
& \mathbf{1}^{T} x=1
\end{array}
$$

Since the conjugate function of $u \log u$ is $e^{y-1}$, by independence of the sum, we have

$$
f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

Therefore, dual function of entropy maximization is

$$
g(\lambda, \nu)=-b^{T} \lambda-\nu-e^{-\nu-1} \sum_{i=1}^{n} e^{-a_{i}^{T} \lambda}
$$

where $a^{i}$ are columns of $A$

## Lagrange Dual Problem

Lower bound from Lagrange dual function depends on $(\lambda, \nu)$. What's the best lower bound that can be obtained from Lagrange dual function?

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

This is the Lagrange dual problem with dual variables $(\lambda, \nu)$
Always a convex optimization! (Dual objective function always a concave function since it's the infimum of a family of affine functions in $(\lambda, \nu))$

Denote the optimal value of Lagrange dual problem by $d^{*}$

## Weak Duality

What's the relationship between $d^{*}$ and $p^{*}$ ?
Weak duality always hold (even if primal problem is not convex):

$$
d^{*} \leq p^{*}
$$

Optimal duality gap:

$$
p^{*}-d^{*}
$$

Efficient generation of lower bounds through (convex) dual problem

## Strong Duality

Strong duality (zero optimal duality gap):

$$
d^{*}=p^{*}
$$

If strong duality holds, solving dual is 'equivalent' to solving primal. But strong duality does not always hold

Convexity and constraint qualifications $\Rightarrow$ Strong duality
A simple constraint qualification: Slater's condition (there exists strictly feasible primal variables $f_{i}(x)<0$ for non-affine $f_{i}$ )

Another reason why convex optimization is 'easy'

## Example

Primal optimization problem (variables $x$ ):

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & A x \preceq b \\
& \mathbf{1}^{T} x=1
\end{array}
$$

Dual optimization problem (variables $\lambda, \nu)$ :

$$
\begin{array}{ll}
\text { maximize } & -b^{T} \lambda-\nu-e^{-\nu-1} \sum_{i=1}^{n} e^{-a_{i}^{T} \lambda} \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

Analytically maximize over the unconstrained $\nu \Rightarrow$ Simplified dual optimization problem (variables $\lambda$ ):

$$
\begin{array}{ll}
\text { maximize } & -b^{T} \lambda-\log \sum_{i=1}^{n} \exp \left(-a_{i}^{T} \lambda\right) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

Strong duality holds

## Saddle Point Interpretation

Assume no equality constraints. We can express primal optimal value as

$$
p^{*}=\inf _{x} \sup _{\lambda \succeq 0} L(x, \lambda)
$$

By definition of dual optimal value:

$$
d^{*}=\sup _{\lambda \succeq 0} \inf _{x} L(x, \lambda)
$$

Weak duality (max min inequality):

$$
\sup _{\lambda \succeq 0} \inf _{x} L(x, \lambda) \leq \inf _{x} \sup _{\lambda \succeq 0} L(x, \lambda)
$$

Strong duality (saddle point property):

$$
\sup _{\lambda \succeq 0} \inf _{x} L(x, \lambda)=\inf _{x} \sup _{\lambda \succeq 0} L(x, \lambda)
$$

## Economics Interpretation

- Primal objective: cost of operation
- Primal constraints: can be violated
- Dual variables: price for violating the corresponding constraint (dollar per unit violation). For the same price, can sell 'unused violation' for revenue
- Lagrangian: total cost
- Lagrange dual function: optimal cost as a function of violation prices
- Weak duality: optimal cost when constraints can be violated is less than or equal to optimal cost when constraints cannot be violated, for any violation prices
- Duality gap: minimum possible arbitrage advantage
- Strong duality: can price the violations so that there is no arbitrage advantages


## Complementary Slackness

Assume strong duality holds:

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}, \nu^{*}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} h_{i}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right)
\end{aligned}
$$

So the two inequalities must hold with equality. This implies:

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1,2, \ldots, m
$$

Complementary Slackness Property:

$$
\begin{aligned}
\lambda_{i}^{*}>0 & \Rightarrow f_{i}\left(x^{*}\right)=0 \\
f_{i}\left(x^{*}\right)<0 & \Rightarrow \lambda_{i}^{*}=0
\end{aligned}
$$

## KKT Optimality Conditions

Since $x^{*}$ minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over $x$, we have

$$
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0
$$

Karush-Kuhn-Tucker optimality conditions:

$$
\begin{gathered}
f_{i}\left(x^{*}\right) \leq 0, \quad h_{i}\left(x^{*}\right)=0, \quad \lambda_{i}^{*} \succeq 0 \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 \\
\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)+\sum_{i=1}^{p} \nu_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0
\end{gathered}
$$

- Any optimization (with differentiable objective and constraint functions) with strong duality, KKT condition is necessary condition for primal-dual optimality
- Convex optimization (with differentiable objective and constraint functions) with Slater's condition, KKT condition is also sufficient condition for primal-dual optimality (useful for theoretical and numerical purposes)


## Waterfilling

$$
\begin{array}{ll}
\text { maximize } & \sum_{i=1}^{n} \log \left(\alpha_{i}+x_{i}\right) \\
\text { subject to } & x \succeq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

Variables: $x$ (powers). Constants: $\alpha$ (noise)
KKT conditions:

$$
\begin{gathered}
x^{*} \succeq 0, \quad \mathbf{1}^{T} x^{*}=1, \quad \lambda^{*} \succeq 0 \\
\lambda_{i}^{*} x_{i}^{*}=0, \quad-1 /\left(\alpha_{i}+x_{i}\right)-\lambda_{i}^{*}+\nu^{*}=0
\end{gathered}
$$

Since $\lambda^{*}$ are slack variables, reduce to

$$
\begin{gathered}
x^{*} \succeq 0, \quad \mathbf{1}^{T} x^{*}=1 \\
x_{i}^{*}\left(\nu^{*}-1 /\left(\alpha_{i}^{*}+x_{i}^{*}\right)\right)=0, \quad \nu^{*} \geq 1 /\left(\alpha_{i}+x_{i}^{*}\right)
\end{gathered}
$$

If $\nu^{*}<1 / \alpha_{i}, x_{i}^{*}>0$. So $x_{i}^{*}=1 / \nu^{*}-\alpha_{i}$. Otherwise, $x_{i}^{*}=0$
Thus, $x_{i}^{*}=\left[1 / \nu^{*}-\alpha_{i}\right]^{+}$where $\nu^{*}$ is such that $\sum_{i} x_{i}^{*}=1$

## Global Sensitivity Analysis

Perturbed optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq u_{i}, \quad i=1,2, \ldots, m \\
& h_{i}(x)=v_{i} \quad i=1,2, \ldots, p
\end{array}
$$

Optimal value $p^{*}(u, v)$ as a function of parameters $(u, v)$
Assume strong duality and that dual optimum is attained:

$$
\begin{gathered}
p^{*}(0,0)=g\left(\lambda^{*}, \nu^{*}\right) \leq f_{0}(x)+\sum_{i} \lambda_{i}^{*} f_{i}(x)+\sum_{i} \nu_{i}^{*} h_{i}(x) \leq f_{0}(x)+\lambda^{* T} u+\nu^{* T} v \\
p^{*}(u, v) \geq p^{*}(0,0)-\lambda^{* T} u-\nu^{* T} v
\end{gathered}
$$

- If $\lambda_{i}^{*}$ is large, tightening $i$ th constraint $\left(u_{i}<0\right)$ will increase optimal value greatly
- If $\lambda_{i}^{*}$ is small, loosening $i$ th constraint $\left(u_{i}>0\right)$ will reduce optimal value only slightly


## Local Sensitivity Analysis

Assume that $p^{*}(u, v)$ is differentiable at $(0,0)$ :

$$
\lambda_{i}^{*}=-\frac{\partial p^{*}(0,0)}{\partial u_{i}}, \quad \nu_{i}^{*}=-\frac{\partial p^{*}(0,0)}{\partial v_{i}}
$$

Shadow price interpretation of Lagrange dual variables
Small $\lambda_{i}^{*}$ means tightening or loosening $i$ th constraint will not change optimal value by much

## Lecture Summary

- Convexity mentality. Convex optimization is 'nice' for several reasons: local optimum is global optimum, zero optimal duality gap (under technical conditions), KKT optimality conditions are necessary and sufficient
- Duality mentality. Can always bound primal through dual, sometimes solve primal through dual
- Primal-dual: where is the optimum, how sensitive it is to perturbations

Readings: Sections 4.1-4.2 and 5.1-5.6 in Boyd and Vandenberghe

