ELE539A: Optimization of Communication Systems Lecture 2: Convex Optimization and Lagrange Duality

> Professor M. Chiang Electrical Engineering Department, Princeton University

> > February 7, 2007

Lecture Outline

- Convex optimization
- Optimality condition
- Lagrange dual problem
- Interpretations
- KKT optimality condition
- Sensitivity analysis

Thanks: Stephen Boyd (some materials and graphs from Boyd and Vandenberghe)

Convex Optimization

A convex optimization problem with variables x:

minimize $f_0(x)$ subject to $f_i(x) \le 0, i = 1, 2, ..., m$ $a_i^T x = b_i, i = 1, 2, ..., p$

where f_0, f_1, \ldots, f_m are convex functions.

- Minimize convex objective function (or maximize concave objective function)
- Upper bound inequality constraints on convex functions (⇒ Constraint set is convex)
- Equality constraints must be affine

Convex Optimization

• Epigraph form:

minimize tsubject to $f_0(x) - t \le 0$ $f_i(x) \le 0, i = 1, 2, ..., m$ $a_i^T x = b_i, i = 1, 2, ..., p$

• Not in convex optimization form:

minimize
$$x_1^2 + x_2^2$$

subject to $\frac{x_1}{1+x_2^2} \le 0$
 $(x_1 + x_2)^2 = 0$

Now transformed into a convex optimization problem:

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Locally Optimal \Rightarrow Globally Optimal

Given x is locally optimal for a convex optimization problem, *i.e.*, x is feasible and for some R > 0,

$$f_0(x) = \inf\{f_0(z)|z \text{ is feasible }, \|z - x\|_2 \le R\}$$

Suppose x is not globally optimal, *i.e.*, there is a feasible y such that $f_0(y) < f_0(x)$

Since $||y - x||_2 > R$, we can construct a point $z = (1 - \theta)x + \theta y$ where $\theta = \frac{R}{2||y - x||_2}$. By convexity of feasible set, z is feasible. By convexity of f_0 , we have

$$f_0(z) \le (1 - \theta) f_0(x) + \theta f_0(y) < f_0(x)$$

which contradicts locally optimality of x

Therefore, there exists no feasible y such that $f_0(y) < f_0(x)$

Optimality Condition for Differentiable f_0

x is optimal for a convex optimization problem iff x is feasible and for all feasible y:

$$\nabla f_0(x)^T (y-x) \ge 0$$

 $-\nabla f_0(x)$ is supporting hyperplane to feasible set

Unconstrained convex optimization: condition reduces to:

$$\nabla f_0(x) = 0$$

Proof: take $y = x - t\nabla f_0(x)$ where $t \in \mathbf{R}_+$. For small enough t, y is feasible, so $\nabla f_0(x)^T (y - x) = -t \|\nabla f_0(x)\|_2^2 \ge 0$. Thus $\nabla f_0(x) = 0$

Unconstrained Quadratic Optimization

Minimize $f_0(x) = \frac{1}{2}x^T P x + q^T x + r$

P is positive semidefinite. So it's a convex optimization problem x minimizes f_0 iff (P,q) satisfy this linear equality:

$$\nabla f_0(x) = Px + q = 0$$

- If $q \notin \mathcal{R}(P)$, no solution. f_0 unbounded below
- If $q \in \mathcal{R}(P)$ and $P \succ 0$, there is a unique minimizer $x^* = -P^{-1}q$
- If $q \in \mathcal{R}(P)$ and P is singular, set of optimal x: $-P^{\dagger}q + \mathcal{N}(P)$

Duality Mentality

Bound or solve an optimization problem via a different optimization problem!

We'll develop the basic Lagrange duality theory for a general optimization problem, then specialize for convex optimization

Lagrange Dual Function

An optimization problem in standard form:

minimize $f_0(x)$ subject to $f_i(x) \le 0, i = 1, 2, ..., m$ $h_i(x) = 0, i = 1, 2, ..., p$

Variables: $x \in \mathbf{R}^n$. Assume nonempty feasible set

```
Optimal value: p^*. Optimizer: x^*
```

Idea: augment objective with a weighted sum of constraints Lagrangian $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$ Lagrange multipliers (dual variables): $\lambda \succeq 0, \nu$ Lagrange dual function: $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$

Lower Bound on Optimal Value

Claim:
$$g(\lambda, \nu) \leq p^*, \ \forall \lambda \succeq 0, \nu$$

Proof: Consider feasible \tilde{x} :

$$L(\tilde{x}, \lambda, \nu) = f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i h_i(\tilde{x}) \le f_0(\tilde{x})$$

since $f_i(\tilde{x}) \leq 0$ and $\lambda_i \geq 0$

Hence, $g(\lambda,\nu) \leq L(\tilde{x},\lambda,\nu) \leq f_0(\tilde{x})$ for all feasible \tilde{x}

Therefore, $g(\lambda,\nu) \leq p^*$

Lagrange Dual Function and Conjugate Function

- Lagrange dual function $g(\lambda,\nu)$
- Conjugate function: $f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x f(x))$

Consider linearly constrained optimization:

minimize $f_0(x)$ subject to $Ax \leq b$ Cx = d

$$g(\lambda,\nu) = \inf_{x} \left(f_0(x) + \lambda^T (Ax - b) + \nu^T (Cx - d) \right)$$

$$= -b^T \lambda - d^T \nu + \inf_{x} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x \right)$$

$$= -b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu)$$

Example

We'll use the simplest version of entropy maximization as our example for the rest of this lecture on duality. Entropy maximization is an important basic problem in information theory:

minimize
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$

subject to $Ax \leq b$
 $\mathbf{1}^T x = 1$

Since the conjugate function of $u \log u$ is e^{y-1} , by independence of the sum, we have

$$f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Therefore, dual function of entropy maximization is

$$g(\lambda,\nu) = -b^T \lambda - \nu - e^{-\nu - 1} \sum_{i=1}^n e^{-a_i^T \lambda}$$

where a^i are columns of A

Lagrange Dual Problem

Lower bound from Lagrange dual function depends on (λ, ν) . What's the best lower bound that can be obtained from Lagrange dual function?

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

This is the Lagrange dual problem with dual variables (λ, ν)

Always a convex optimization! (Dual objective function always a concave function since it's the infimum of a family of affine functions in (λ, ν))

Denote the optimal value of Lagrange dual problem by d^*

Weak **Duality**

What's the relationship between d^* and p^* ?

Weak duality always hold (even if primal problem is not convex):

 $d^* \le p^*$

Optimal duality gap:

$$p^* - d^*$$

Efficient generation of lower bounds through (convex) dual problem

Strong Duality

Strong duality (zero optimal duality gap):

 $d^* = p^*$

If strong duality holds, solving dual is 'equivalent' to solving primal. But strong duality does not always hold

Convexity and constraint qualifications \Rightarrow Strong duality

A simple constraint qualification: Slater's condition (there exists strictly feasible primal variables $f_i(x) < 0$ for non-affine f_i)

Another reason why convex optimization is 'easy'

Example

Primal optimization problem (variables x):

minimize $f_0(x) = \sum_{i=1}^n x_i \log x_i$ subject to $Ax \leq b$ $\mathbf{1}^T x = 1$

Dual optimization problem (variables λ, ν):

maximize $-b^T \lambda - \nu - e^{-\nu - 1} \sum_{i=1}^n e^{-a_i^T \lambda}$ subject to $\lambda \succeq 0$

Analytically maximize over the unconstrained $\nu \Rightarrow$ Simplified dual optimization problem (variables λ):

maximize $-b^T \lambda - \log \sum_{i=1}^n \exp(-a_i^T \lambda)$ subject to $\lambda \succeq 0$

Strong duality holds

Saddle Point Interpretation

Assume no equality constraints. We can express primal optimal value as

$$p^* = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda)$$

By definition of dual optimal value:

$$d^* = \sup_{\lambda \succeq 0} \inf_x L(x, \lambda)$$

Weak duality (max min inequality):

$$\sup_{\lambda \succeq 0} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda \succeq 0} L(x,\lambda)$$

Strong duality (saddle point property):

$$\sup_{\lambda \succeq 0} \inf_{x} L(x,\lambda) = \inf_{x} \sup_{\lambda \succeq 0} L(x,\lambda)$$

Economics Interpretation

- Primal objective: cost of operation
- Primal constraints: can be violated

• Dual variables: price for violating the corresponding constraint (dollar per unit violation). For the same price, can sell 'unused violation' for revenue

- Lagrangian: total cost
- Lagrange dual function: optimal cost as a function of violation prices

• Weak duality: optimal cost when constraints can be violated is less than or equal to optimal cost when constraints cannot be violated, for any violation prices

- Duality gap: minimum possible arbitrage advantage
- Strong duality: can price the violations so that there is no arbitrage advantages

Complementary Slackness

Assume strong duality holds:

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

So the two inequalities must hold with equality. This implies:

$$\lambda_i^* f_i(x^*) = 0, \ i = 1, 2, \dots, m$$

Complementary Slackness Property:

$$\lambda_i^* > 0 \quad \Rightarrow \quad f_i(x^*) = 0$$
$$f_i(x^*) < 0 \quad \Rightarrow \quad \lambda_i^* = 0$$

KKT Optimality Conditions

Since x^* minimizes $L(x,\lambda^*,\nu^*)$ over x, we have

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

Karush-Kuhn-Tucker optimality conditions:

$$f_i(x^*) \le 0, \ h_i(x^*) = 0, \ \lambda_i^* \succeq 0$$
$$\lambda_i^* f_i(x^*) = 0$$
$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0$$

• Any optimization (with differentiable objective and constraint functions) with strong duality, KKT condition is necessary condition for primal-dual optimality

• Convex optimization (with differentiable objective and constraint functions) with Slater's condition, KKT condition is also sufficient condition for primal-dual optimality (useful for theoretical and numerical purposes)

Waterfilling

maximize $\sum_{i=1}^{n} \log(\alpha_i + x_i)$ subject to $x \succeq 0, \ \mathbf{1}^T x = 1$

Variables: x (powers). Constants: α (noise)

KKT conditions:

$$x^* \succeq 0, \ \mathbf{1}^T x^* = 1, \ \lambda^* \succeq 0$$

 $\lambda_i^* x_i^* = 0, \ -1/(\alpha_i + x_i) - \lambda_i^* + \nu^* = 0$

Since λ^* are slack variables, reduce to

 $x^* \succeq 0, \ \mathbf{1}^T x^* = 1$ $x_i^* (\nu^* - 1/(\alpha_i^* + x_i^*)) = 0, \ \nu^* \ge 1/(\alpha_i + x_i^*)$

If $\nu^* < 1/\alpha_i$, $x_i^* > 0$. So $x_i^* = 1/\nu^* - \alpha_i$. Otherwise, $x_i^* = 0$ Thus, $x_i^* = [1/\nu^* - \alpha_i]^+$ where ν^* is such that $\sum_i x_i^* = 1$

Global Sensitivity Analysis

Perturbed optimization problem:

minimize $f_0(x)$ subject to $f_i(x) \le u_i, i = 1, 2, ..., m$ $h_i(x) = v_i \quad i = 1, 2, ..., p$

Optimal value $p^*(u, v)$ as a function of parameters (u, v)

Assume strong duality and that dual optimum is attained:

$$p^*(0,0) = g(\lambda^*,\nu^*) \le f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_i \nu_i^* h_i(x) \le f_0(x) + \lambda^{*T} u + \nu^{*T} v$$
$$p^*(u,v) \ge p^*(0,0) - \lambda^{*T} u - \nu^{*T} v$$

• If λ_i^* is large, tightening *i*th constraint ($u_i < 0$) will increase optimal value greatly

• If λ_i^* is small, loosening *i*th constraint $(u_i > 0)$ will reduce optimal value only slightly

Local Sensitivity Analysis

Assume that $p^*(u, v)$ is differentiable at (0, 0):

$$\lambda_i^* = -\frac{\partial p^*(0,0)}{\partial u_i}, \ \nu_i^* = -\frac{\partial p^*(0,0)}{\partial v_i}$$

Shadow price interpretation of Lagrange dual variables

Small λ_i^* means tightening or loosening $i {\rm th}$ constraint will not change optimal value by much

Lecture Summary

• Convexity mentality. Convex optimization is 'nice' for several reasons: local optimum is global optimum, zero optimal duality gap (under technical conditions), KKT optimality conditions are necessary and sufficient

• Duality mentality. Can always bound primal through dual, sometimes solve primal through dual

• Primal-dual: where is the optimum, how sensitive it is to perturbations

Readings: Sections 4.1-4.2 and 5.1-5.6 in Boyd and Vandenberghe