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Lecture Outline

Convex optimization
Optimality condition
Lagrange dual problem
Interpretations

e KK'T optimality condition

e Sensitivity analysis

Thanks: Stephen Boyd (some materials and graphs from Boyd and
Vandenberghe)




Convex Optimization

A convex optimization problem with variables x:

minimize

subject to

where fo, f1,..., fm are convex functions.

e Minimize convex objective function (or maximize concave objective
function)

e Upper bound inequality constraints on convex functions (= Constraint
set is convex)

e Equality constraints must be affine




Convex Optimization

e Epigraph form:
minimize

subject to

e Not in convex optimization form:

minimize  z% + z3
subject to 1. <0

1+a:2
(561 —+ 5132)2 =0

Now transformed into a convex optimization problem:
minimize  z% + 3
subject to z1 <0

r1 +x90 =0




Locally Optimal = Globally Optimal

Given zx is locally optimal for a convex optimization problem, i.e., = is
feasible and for some R > 0,

fo(x) = inf{ fo(2)|z is feasible , ||z — z||2 < R}

Suppose z is not globally optimal, i.e., there is a feasible y such that

fo(y) < fo(x)

Since ||y — z||2 > R, we can construct a point z = (1 — 0)xz + 0y where

0 = ﬁ. By convexity of feasible set, z is feasible. By convexity of

fo, we have
fo(z) < (1 =0)fo(z) +0fo(y) < fo(z)

which contradicts locally optimality of x

Therefore, there exists no feasible y such that fo(y) < fo(x)




Optimality Condition for Differentiable f,

x is optimal for a convex optimization problem iff x is feasible and for all
feasible y:

Vfo(zv)T(y —x) >0

—V fo(x) is supporting hyperplane to feasible set

Unconstrained convex optimization: condition reduces to:

Vfo(x) =0

Proof: take y =x —tV fo(x) where t € Ry. For small enough t, y is
feasible, so Vfo(z)l'(y — z) = —t||Vfo(z)||3 > 0. Thus Vfo(z) =0




Unconstrained Quadratic Optimization

Minimize fo(x) = %CIJTPCC—I—QTZC—I—T’

P is positive semidefinite. So it's a convex optimization problem

x minimizes fo iff (P, q) satisfy this linear equality:
Vfo(x) =Px+q=0
o If ¢ ¢ R(P), no solution. fy unbounded below

o If g€ R(P) and P > 0, there is a unique minimizer z*

e If ¢ € R(P) and P is singular, set of optimal z: —PTq+ N (P)




Duality Mentality

Bound or solve an optimization problem via a different optimization
problem!

We'll develop the basic Lagrange duality theory for a general
optimization problem, then specialize for convex optimization




Lagrange Dual Function

An optimization problem in standard form:

minimize  fo(x)
subject to  fi(x) <0

Variables: x € R™. Assume nonempty feasible set

Optimal value: p*. Optimizer: x*

Idea: augment objective with a weighted sum of constraints

Lagrangian L(z,\,v) = fo(x) + > ity Xifi(z) + > 51 vihi(x)

Lagrange multipliers (dual variables): A = 0,v

Lagrange dual function: g(\,v) = inf; L(x, A\, v)




Lower Bound on Optimal Value

Claim: g\, v) <p*, VA= 0,v

Proof: Consider feasible z:

L(E, X\ v) = fo(®) + > Xifi(&) Zuz ) < fo(a
=1

since f;(z) <0 and A\; >0

Hence, g(\,v) < L(z, A\, v) < fo(&) for all feasible &

Therefore, g(A,v) < p*




Lagrange Dual Function and Conjugate Function

e Lagrange dual function g(A,v)
e Conjugate function: f*(y) =sup,cdom s (¥’ = — f(z))
Consider linearly constrained optimization:

minimize  fo(x)

subject to Ax <b
Cx=d

inf (fo(:c) AT (Az — b) + 7 (Ca — d))

—bI'\ — dtv + inf (fo(:z:) + (AT + CTI/)T:U)

—bIN—dtv— fE(—ATX - CT)




Example

We'll use the simplest version of entropy maximization as our example
for the rest of this lecture on duality. Entropy maximization is an
important basic problem in information theory:

minimize  fo(z) = >0, z;logx;

subject to Ax <b

r=1

Since the conjugate function of ulogw is e¥~!, by independence of the
sum, we have

n

fy) = en !

1 =1

Therefore, dual function of entropy maximization is

g\ v)=—bIX—v—e ¥l Z e~ A
1=1

where a* are columns of A




Lagrange Dual Problem

Lower bound from Lagrange dual function depends on (A,v). What's the
best lower bound that can be obtained from Lagrange dual function?

maximize  g(\,v)
subjectto A >0

This is the Lagrange dual problem with dual variables (A, v)

Always a convex optimization! (Dual objective function always a
concave function since it's the infimum of a family of affine functions in

(A, v))

Denote the optimal value of Lagrange dual problem by d*




Weak Duality

What's the relationship between d* and p*?

Weak duality always hold (even if primal problem is not convex):

Optimal duality gap:
p* . d*

Efficient generation of lower bounds through (convex) dual problem




Strong Duality

Strong duality (zero optimal duality gap):

d*:p*

If strong duality holds, solving dual is ‘equivalent’ to solving primal. But
strong duality does not always hold

Convexity and constraint qualifications = Strong duality

A simple constraint qualification: Slater’'s condition (there exists strictly
feasible primal variables f;(x) < 0 for non-affine f;)

Another reason why convex optimization is ‘easy’




Example

Primal optimization problem (variables z):

n

minimize  fo(z) = >, x; log x;
subject to Ax <b

r=1

Dual optimization problem (variables A, v):

T

maximize  —bTA—v —e V7L1Y T e A
subjectto A >0

Analytically maximize over the unconstrained v = Simplified dual
optimization problem (variables \):

maximize  —bTX —log) ' | exp(—al \)
subjectto A >0

Strong duality holds




Saddle Point Interpretation

Assume no equality constraints. We can express primal optimal value as

p* = inf sup L(x, \)
T A>0

By definition of dual optimal value:

d* = sup inf L(x, \)
AS0 T

Weak duality (max min inequality):

sup inf L(x, \) < inf sup L(x, \)
A0 % T X>0

Strong duality (saddle point property):

sup inf L(x, \) = inf sup L(x, \)
A0 % T X>0




Economics Interpretation

e Primal objective: cost of operation
e Primal constraints: can be violated

e Dual variables: price for violating the corresponding constraint (dollar
per unit violation). For the same price, can sell ‘unused violation’ for
revenue

e Lagrangian: total cost
e Lagrange dual function: optimal cost as a function of violation prices

e \Weak duality: optimal cost when constraints can be violated is less
than or equal to optimal cost when constraints cannot be violated, for
any violation prices

e Duality gap: minimum possible arbitrage advantage

e Strong duality: can price the violations so that there is no arbitrage
advantages




Complementary Slackness

Assume strong duality holds:
fo(z™) = g(\*,v")

inf ( fo(z) + > X filz) + > V;khz-(:z:)>
1=1

=1

m b
fo(@®) + > Affi(z*) + ) vihi(z¥)
=1 1=1

fo(z™)
So the two inequalities must hold with equality. This implies:
Ajfi(a™) =
Complementary Slackness Property:

A >0 = fi(2")=0
fz(a:*) <0 = )\;< =0




KKT Optimality Conditions

Since z* minimizes L(z, \*,v*) over x, we have

V fo(z +Z/\*sz +Zqu

Karush-Kuhn-Tucker optimality conditions:
fi(x*) <0, hij(x*)=0, A\I =0
A i (z*) =0
V fo(z*) + 2211 )‘jvfz(x*) + 23;1 V;Vhi(x*) =

e Any optimization (with differentiable objective and constraint
functions) with strong duality, KKT condition is necessary condition for
primal-dual optimality

e Convex optimization (with differentiable objective and constraint
functions) with Slater's condition, KKT condition is also sufficient
condition for primal-dual optimality (useful for theoretical and numerical
purposes)




Waterfilling

maximize > % | log(a; + x;)
subjectto z >0, 1Tz=1
Variables: x (powers). Constants: o (noise)

KKT conditions:

z* >0, 1Tz* =1, \* >0
MNar =0, —=1/(a;+x;) = AF +v* =0

Since \* are slack variables, reduce to
z* >0, 1Tz =1

zr(v* —1/(af +21) =0, v* > 1/(a; +a7)

If v* <1/a;, 7 > 0. So x7 =1/v* — ;. Otherwise, 27 =0

Thus, =¥ = [1/v* — a;]T where v* is such that >, zF =1




Global Sensitivity Analysis

Perturbed optimization problem:

minimize  fo(x)
subject to  fi(x) <w,, 1=1,2,...,m
hz(a:) = V; 1= 1,2,...,p
Optimal value p*(u,v) as a function of parameters (u,v)

Assume strong duality and that dual optimum is attained:

p*(0,0) = g(A*,v*) < fo(x) + >, Aifi(x) + X, vihi(x) < fo(z) + XM Tu +v*T
p*(u,v) > p*(0,0) — Ty — vy

o If A7 is large, tightening ith constraint (u; < 0) will increase optimal
value greatly

o If A7 is small, loosening ith constraint (u; > 0) will reduce optimal
value only slightly




Local Sensitivity Analysis

Assume that p*(u,v) is differentiable at (0,0):

o 00 (0.0
ou; ov;

Shadow price interpretation of Lagrange dual variables

Small AY means tightening or loosening :th constraint will not change
optimal value by much




Lecture Summary

e Convexity mentality. Convex optimization is ‘nice’ for several reasons:
local optimum is global optimum, zero optimal duality gap (under
technical conditions), KKT optimality conditions are necessary and
sufficient

e Duality mentality. Can always bound primal through dual, sometimes
solve primal through dual

e Primal-dual: where is the optimum, how sensitive it is to perturbations

Readings: Sections 4.1-4.2 and 5.1-5.6 in Boyd and Vandenberghe




