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Lecture Outline

• Convex optimization

• Optimality condition

• Lagrange dual problem

• Interpretations

• KKT optimality condition

• Sensitivity analysis

Thanks: Stephen Boyd (some materials and graphs from Boyd and

Vandenberghe)



Convex Optimization

A convex optimization problem with variables x:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . , m

aT
i x = bi, i = 1, 2, . . . , p

where f0, f1, . . . , fm are convex functions.

• Minimize convex objective function (or maximize concave objective

function)

• Upper bound inequality constraints on convex functions (⇒ Constraint

set is convex)

• Equality constraints must be affine



Convex Optimization

• Epigraph form:

minimize t

subject to f0(x) − t ≤ 0

fi(x) ≤ 0, i = 1, 2, . . . , m

aT
i x = bi, i = 1, 2, . . . , p

• Not in convex optimization form:

minimize x2
1

+ x2
2

subject to x1

1+x2

2

≤ 0

(x1 + x2)2 = 0

Now transformed into a convex optimization problem:

minimize x2
1

+ x2
2

subject to x1 ≤ 0

x1 + x2 = 0



Locally Optimal ⇒ Globally Optimal

Given x is locally optimal for a convex optimization problem, i.e., x is

feasible and for some R > 0,

f0(x) = inf{f0(z)|z is feasible , ‖z − x‖2 ≤ R}

Suppose x is not globally optimal, i.e., there is a feasible y such that

f0(y) < f0(x)

Since ‖y − x‖2 > R, we can construct a point z = (1 − θ)x + θy where

θ = R
2‖y−x‖2

. By convexity of feasible set, z is feasible. By convexity of

f0, we have

f0(z) ≤ (1 − θ)f0(x) + θf0(y) < f0(x)

which contradicts locally optimality of x

Therefore, there exists no feasible y such that f0(y) < f0(x)



Optimality Condition for Differentiable f0

x is optimal for a convex optimization problem iff x is feasible and for all

feasible y:

∇f0(x)T (y − x) ≥ 0

−∇f0(x) is supporting hyperplane to feasible set

Unconstrained convex optimization: condition reduces to:

∇f0(x) = 0

Proof: take y = x − t∇f0(x) where t ∈ R+. For small enough t, y is

feasible, so ∇f0(x)T (y − x) = −t‖∇f0(x)‖2
2
≥ 0. Thus ∇f0(x) = 0



Unconstrained Quadratic Optimization

Minimize f0(x) = 1

2
xT Px + qT x + r

P is positive semidefinite. So it’s a convex optimization problem

x minimizes f0 iff (P, q) satisfy this linear equality:

∇f0(x) = Px + q = 0

• If q /∈ R(P ), no solution. f0 unbounded below

• If q ∈ R(P ) and P ≻ 0, there is a unique minimizer x∗ = −P−1q

• If q ∈ R(P ) and P is singular, set of optimal x: −P †q + N (P )



Duality Mentality

Bound or solve an optimization problem via a different optimization

problem!

We’ll develop the basic Lagrange duality theory for a general

optimization problem, then specialize for convex optimization



Lagrange Dual Function

An optimization problem in standard form:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . , m

hi(x) = 0, i = 1, 2, . . . , p

Variables: x ∈ Rn. Assume nonempty feasible set

Optimal value: p∗. Optimizer: x∗

Idea: augment objective with a weighted sum of constraints

Lagrangian L(x, λ, ν) = f0(x) +
Pm

i=1
λifi(x) +

Pp
i=1

νihi(x)

Lagrange multipliers (dual variables): λ � 0, ν

Lagrange dual function: g(λ, ν) = infx L(x, λ, ν)



Lower Bound on Optimal Value

Claim: g(λ, ν) ≤ p∗, ∀λ � 0, ν

Proof: Consider feasible x̃:

L(x̃, λ, ν) = f0(x̃) +
m
X

i=1

λifi(x̃) +

p
X

i=1

νihi(x̃) ≤ f0(x̃)

since fi(x̃) ≤ 0 and λi ≥ 0

Hence, g(λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃) for all feasible x̃

Therefore, g(λ, ν) ≤ p∗



Lagrange Dual Function and Conjugate Function

• Lagrange dual function g(λ, ν)

• Conjugate function: f∗(y) = supx∈dom f (yT x − f(x))

Consider linearly constrained optimization:

minimize f0(x)

subject to Ax � b

Cx = d

g(λ, ν) = inf
x

“

f0(x) + λT (Ax − b) + νT (Cx − d)
”

= −bT λ − dT ν + inf
x

“

f0(x) + (AT λ + CT ν)T x
”

= −bT λ − dT ν − f∗
0 (−AT λ − CT ν)



Example

We’ll use the simplest version of entropy maximization as our example

for the rest of this lecture on duality. Entropy maximization is an

important basic problem in information theory:

minimize f0(x) =
Pn

i=1
xi log xi

subject to Ax � b

1
T x = 1

Since the conjugate function of u log u is ey−1, by independence of the

sum, we have

f∗
0 (y) =

n
X

i=1

eyi−1

Therefore, dual function of entropy maximization is

g(λ, ν) = −bT λ − ν − e−ν−1

n
X

i=1

e−aT

i
λ

where ai are columns of A



Lagrange Dual Problem

Lower bound from Lagrange dual function depends on (λ, ν). What’s the

best lower bound that can be obtained from Lagrange dual function?

maximize g(λ, ν)

subject to λ � 0

This is the Lagrange dual problem with dual variables (λ, ν)

Always a convex optimization! (Dual objective function always a

concave function since it’s the infimum of a family of affine functions in

(λ, ν))

Denote the optimal value of Lagrange dual problem by d∗



Weak Duality

What’s the relationship between d∗ and p∗?

Weak duality always hold (even if primal problem is not convex):

d∗ ≤ p∗

Optimal duality gap:

p∗ − d∗

Efficient generation of lower bounds through (convex) dual problem



Strong Duality

Strong duality (zero optimal duality gap):

d∗ = p∗

If strong duality holds, solving dual is ‘equivalent’ to solving primal. But

strong duality does not always hold

Convexity and constraint qualifications ⇒ Strong duality

A simple constraint qualification: Slater’s condition (there exists strictly

feasible primal variables fi(x) < 0 for non-affine fi)

Another reason why convex optimization is ‘easy’



Example

Primal optimization problem (variables x):

minimize f0(x) =
Pn

i=1
xi log xi

subject to Ax � b

1
T x = 1

Dual optimization problem (variables λ, ν):

maximize −bT λ − ν − e−ν−1
Pn

i=1
e−aT

i
λ

subject to λ � 0

Analytically maximize over the unconstrained ν ⇒ Simplified dual

optimization problem (variables λ):

maximize −bT λ − log
Pn

i=1
exp(−aT

i λ)

subject to λ � 0

Strong duality holds



Saddle Point Interpretation

Assume no equality constraints. We can express primal optimal value as

p∗ = inf
x

sup
λ�0

L(x, λ)

By definition of dual optimal value:

d∗ = sup
λ�0

inf
x

L(x, λ)

Weak duality (max min inequality):

sup
λ�0

inf
x

L(x, λ) ≤ inf
x

sup
λ�0

L(x, λ)

Strong duality (saddle point property):

sup
λ�0

inf
x

L(x, λ) = inf
x

sup
λ�0

L(x, λ)



Economics Interpretation

• Primal objective: cost of operation

• Primal constraints: can be violated

• Dual variables: price for violating the corresponding constraint (dollar

per unit violation). For the same price, can sell ‘unused violation’ for

revenue

• Lagrangian: total cost

• Lagrange dual function: optimal cost as a function of violation prices

• Weak duality: optimal cost when constraints can be violated is less

than or equal to optimal cost when constraints cannot be violated, for

any violation prices

• Duality gap: minimum possible arbitrage advantage

• Strong duality: can price the violations so that there is no arbitrage

advantages



Complementary Slackness

Assume strong duality holds:

f0(x∗) = g(λ∗, ν∗)

= inf
x

 

f0(x) +
m
X

i=1

λ∗
i fi(x) +

p
X

i=1

ν∗
i hi(x)

!

≤ f0(x∗) +
m
X

i=1

λ∗
i fi(x

∗) +

p
X

i=1

ν∗
i hi(x

∗)

≤ f0(x∗)

So the two inequalities must hold with equality. This implies:

λ∗
i fi(x

∗) = 0, i = 1, 2, . . . , m

Complementary Slackness Property:

λ∗
i > 0 ⇒ fi(x

∗) = 0

fi(x
∗) < 0 ⇒ λ∗

i = 0



KKT Optimality Conditions

Since x∗ minimizes L(x, λ∗, ν∗) over x, we have

∇f0(x∗) +
m
X

i=1

λ∗
i ∇fi(x

∗) +

p
X

i=1

ν∗
i ∇hi(x

∗) = 0

Karush-Kuhn-Tucker optimality conditions:

fi(x
∗) ≤ 0, hi(x

∗) = 0, λ∗
i � 0

λ∗
i fi(x

∗) = 0

∇f0(x∗) +
Pm

i=1
λ∗

i ∇fi(x
∗) +

Pp
i=1

ν∗
i ∇hi(x

∗) = 0

• Any optimization (with differentiable objective and constraint

functions) with strong duality, KKT condition is necessary condition for

primal-dual optimality

• Convex optimization (with differentiable objective and constraint

functions) with Slater’s condition, KKT condition is also sufficient

condition for primal-dual optimality (useful for theoretical and numerical

purposes)



Waterfilling

maximize
Pn

i=1
log(αi + xi)

subject to x � 0, 1
T x = 1

Variables: x (powers). Constants: α (noise)

KKT conditions:

x∗ � 0, 1
T x∗ = 1, λ∗ � 0

λ∗
i x∗

i = 0, −1/(αi + xi) − λ∗
i + ν∗ = 0

Since λ∗ are slack variables, reduce to

x∗ � 0, 1
T x∗ = 1

x∗
i (ν∗ − 1/(α∗

i + x∗
i )) = 0, ν∗ ≥ 1/(αi + x∗

i )

If ν∗ < 1/αi, x∗
i > 0. So x∗

i = 1/ν∗ − αi. Otherwise, x∗
i = 0

Thus, x∗
i = [1/ν∗ − αi]

+ where ν∗ is such that
P

i x∗
i = 1



Global Sensitivity Analysis

Perturbed optimization problem:

minimize f0(x)

subject to fi(x) ≤ ui, i = 1, 2, . . . , m

hi(x) = vi i = 1, 2, . . . , p

Optimal value p∗(u, v) as a function of parameters (u, v)

Assume strong duality and that dual optimum is attained:

p∗(0, 0) = g(λ∗, ν∗) ≤ f0(x) +
P

i λ∗
i fi(x) +

P

i ν∗
i hi(x) ≤ f0(x) + λ∗T u + ν∗T v

p∗(u, v) ≥ p∗(0, 0) − λ∗T u − ν∗T v

• If λ∗
i is large, tightening ith constraint (ui < 0) will increase optimal

value greatly

• If λ∗
i is small, loosening ith constraint (ui > 0) will reduce optimal

value only slightly



Local Sensitivity Analysis

Assume that p∗(u, v) is differentiable at (0, 0):

λ∗
i = −

∂p∗(0, 0)

∂ui

, ν∗
i = −

∂p∗(0, 0)

∂vi

Shadow price interpretation of Lagrange dual variables

Small λ∗
i means tightening or loosening ith constraint will not change

optimal value by much



Lecture Summary

• Convexity mentality. Convex optimization is ‘nice’ for several reasons:

local optimum is global optimum, zero optimal duality gap (under

technical conditions), KKT optimality conditions are necessary and

sufficient

• Duality mentality. Can always bound primal through dual, sometimes

solve primal through dual

• Primal-dual: where is the optimum, how sensitive it is to perturbations

Readings: Sections 4.1-4.2 and 5.1-5.6 in Boyd and Vandenberghe


